Резисторы (сопротивления). Постоянные резисторы. Виртуальный музей старых радиодеталей XX века Цифровая маркировка резисторов

Первым делом давайте разберемся с советскими резисторами.

Хоть ты что делай, а от советской электроники не убежишь. Поэтому, немного теории вам не повредит.

Первым взглядом мы должны оценить, какую максимальную мощность может рассеивать резистор. Сверху вниз, внизу на фото, резисторы по мощностям: 2 Ватта, 1 Ватт, 0.5 Ватт, 0.25 Ватт, 0.125 Ватт. На резисторах мощностью 1 и 2 Ватта пишут МЛТ-1 и МЛТ-2 соответственно.

МЛТ – это разновидность самых распространенных советских резисторов, от сокращенных названий М еталлопленочный, Л акированный, Т еплоустойчивый. У других же резисторов мощность можно прикинуть по габаритам. Чем больше резистор по габаритам, тем больше мощности он может рассеять в окружающее пространство.

Единицы измерения в МЛТэшках – Омы – обозначают как R или E. Килоомы – буковкой “К”, Мегаомы буковкой “М”. Здесь все просто. Например, 33Е (33 Ома); 33R (33 Ома); 47К (47 кОм); 510К (510 кОм); 1.0М (1 МОм). Есть также фишка такая, что буквы могут опережать цифры, например, K47 означает, что сопротивление равно 470 Ом, M56 – 560 Килоом. А иногда, чтобы не заморачиваться с запятыми, тупо толкают туда буковку, например. 4K3 = 4.3 Килоом, 1М2 – 1.2 Мегаома.

Давайте рассмотрим нашего героя. Смотрим сразу на обозначение. 1К0 или словами ” один ка ноль”. Значит, его сопротивление должно быть 1,0 Килоом.


Давайте убедимся, так ли это на самом деле?


Ну да, все сходится с небольшой погрешностью.

Цветовая маркировка резисторов

Чтобы определить значение сопротивления резистора с цветовой маркировкой, сначала надо повернуть его таким образом, чтобы его серебряная или золотая полосы находились справа, а группа других полосок - слева. Если же вы не можете найти серебряную или золотую полоску, то надо повернуть резистор таким образом, чтобы группа полосок находилась с левой стороны.

Цвет полоски – закодированная цифра:
Черный – 0
Коричневый – 1
Красный – 2
Оранжевый – 3
Желтый – 4
Зеленый – 5
Синий – 6
Фиолетовый – 7
Серый – 8
Белый – 9

Третья полоска имеет другое значение: она указывает количество нулей, которое следует добавить к полученному предыдущему цифровому значению.

Цвет полоски – Количество нулей
Черный – Нет нулей -
Коричневый – 1 – 0
Красный – 2 – 00
Оранжевый – 3 – 000
Желтый – 4 – 0000
Зеленый – 5 – 00000
Синий – 6 – 000000
Фиолетовый – 7 – 0000000
Серый – 8 – 00000000
Белый – 9 – 000000000

Следует помнить, что цветовая маркировка является вполне согласующейся и логичной, например, зеленый цвет означает либо величину 5 (для первых двух полосок), либо 5 нулей (для третьей полоски).

Сама последовательность цветов совпадает с последовательностью цветов в радуге (с красного по фиолетовый цвета) (!!!)

Если на резистор нанесена группа из четырех полосок вместо трех, то первые три полоски являются цифрами, а четвертая полоска означает количество нулей. Третья цифровая полоска дает возможность указать сопротивление резистора с более высокой точностью.

Давайте же рассмотрим неизвестный нам резистор.


В основном на резисторе бывают три, четыре, пять и даже шесть полосок. Первая полоска находится ближе всего к выводу резистора и ее делают шире, чем все другие полоски, но иногда это правило не соблюдается. Для того, чтобы не перелопачивать справочники по цветовой маркировке резисторов, в интернете можно скачать множество различных программ для определения номинала резистора.

Очень неплохой онлайн калькулятор вы также можете найти .

Калькулятор маркировки резисторов

Мне очень понравилась программа . С этой программой разберется даже дошкольник. Давайте же с помощью нее определим номинал нашего резистора. Вбиваем полоски интересующего нас резистора и программа выдаст нам его номинал.


И вот снизу слева в рамке мы видим значение номинала резистора: 1кОм -+5%. Удобно не правда ли?

Теперь давайте замеряем сопротивление с помощью мультиметра: 971 Ом. 5% от 1000 Ом – это 50 Ом. Значит номинал резистор должен быть в диапазоне от 950 Ом и до 1050 Ом, иначе его можно признать не годным. Как мы видим, значение 971 Ом прекрасно вписывается в диапазон от 950 до 1050 Ом. Следовательно, мы правильно определили номинал резистора, и его спокойно можно использовать в наших целях.


Давайте потренируемся и определим номинал еще одного резистора.




Все ОК;-).

Маркировка SMD резисторов

Цифровая маркировка резисторов

Рассмотрим маркировку резисторов. Резисторы типоразмера 0402 (значения типоразмеров ) не маркируются. Остальные же маркируются тремя или четырьмя цифрами, так как они чуток больше и на них все-таки можно нанести цифры или какую-нибудь маркировку. Резисторы с допуском до 10% маркируются тремя цифрами, где две первые цифры обозначают номинал этого резистора, а последняя третья цифра – это 10 в степени этой последней цифры. Давайте рассмотрим вот такой резистор:


Сопротивление резистора, показанного на фото равняется 22х10 2 =2200 Ом или 2,2 К.

Проверяем так ли это? Берем между щупами этот крохотный SMD компонент и замеряем сопротивление.


Сопротивление 2,18 кОм. Небольшая погрешность не в счет.

SMD резистор с допуском 1% и типоразмера от 0805 и больше маркируются четырьмя цифрами. Например, резистор с номером 4422. Считается это как 442х10 2 =44200 Ом=44.2 кОм.

Существуют также SMD резисторы почти с нулевым сопротивлением (очень-очень малое сопротивление все-таки имеется) или просто-напросто так называемые перемычки. Они смотрятся более эстетичнее, чем какие-либо провода.

Кодовая маркировка резисторов - это самая распространенная практика в наши дни. Иногда попадаются резисторы, у которых маркировка выглядит очень странно. Не пугайтесь, это простая кодовая маркировка, которую используют некоторые производители радиоэлектронных компонентов. Это может выглядеть как-то так:

или даже так:

Как определить значение сопротивления таких резисторов? Для этого существует таблица, с помощью которой вы легко сможете определить номинал любого резистора с кодовой маркировкой. Итак, в первых двух цифрах засекречен номинал сопротивления резистора, а буква - это множитель.

Вот собственно и таблица:

Буквы: S=10 -2 ; R=10 -1 ; А=1; В= 10; С=10 2 ; D=10 3 ; Е=10 4 ; F=10 5

Значит, сопротивление этого резистора

у нас будет 140х10 4 =1,4 МегаОма.

А сопротивление этого резистора

у нас будет 102х10 2 =10,2 КилоОма.

В программе Резистор 2.2 можно также без проблем найти кодовую и цифровую маркировку резисторов.

Выбираем маркировку фирмы BOURNS


Ставим маркер на «3 символа». И набираем нашу кодовую маркировку. Например, тот же самый резистор с маркировкой 15Е. Внизу, слева в рамке, мы видим значение сопротивления этого резистора: 1,4 Мегаом.

Радиолюбителю при сборке электрических схем часто приходится сталкиваться с определением номинала неизвестных компонентов. Резистор используется чаще всего. С его обозначениями возникают и частые вопросы. В переводе с английского это название звучит как «Сопротивление». Они различаются как по номинальному сопротивлению, так и по допустимой мощности. Для того, чтобы мастер мог выбрать элемент с нужным номиналом на их корпусах наносят обозначение. В зависимости от типа резисторов кодировка может различаться, она бывает: буквенно-цифровая, цифровая либо цветовыми полосами. В этой статье мы расскажем подробнее, какая бывает маркировка резисторов отечественного и импортного производства, а также как расшифровать обозначения, указанные производителем.

Обозначение номинала буквами и цифрами

На сопротивлениях советского производства применяется буквенно-цифровая маркировка резисторов и обозначение цветовыми полосами (кольцами). Примером можно рассмотреть резисторы типа МЛТ, на них величина сопротивления указана цифро-буквенным способом. Резисторы до сотни Ом содержат в своей маркировке букву «R», или «Е», или «Ω». Тысячи Ом маркируются буквой «К», миллионы букву М, т.е. по буквам определяют порядок величины. При этом целые единицы от дробных отделяются этими же буквами. Давайте рассмотрим несколько примеров.

На фото сверху вниз:

  • 2К4 = 2,4 кОм или 2400 Ом;
  • 270R = 270 Ом;
  • К27 = 0,27 кОм или 270 Ом.

Маркировка третьего непонятна, возможно он развернут не той стороной. Кроме этого на резисторах от 1 Вт может присутствовать маркировка по мощности. Маркировка довольно удобна и наглядна. Она может незначительно отличаться в зависимости от типа резисторов и года их производства. Также может присутствовать дополнительная буква, которая указывает класс точности.

Импортные сопротивления, в том числе китайские, тоже могут маркироваться буквами. Яркий пример – это керамические резисторы.

В первой части обозначения указано 5W – это мощность резистора равная 5 Вт. 100R – значит, что его сопротивление в 100 Ом. Буква J говорит о допуске отклонений от номинального значения равном 5% в обе стороны. Полная таблица допусков изображена ниже. Класс точности или допустимое отклонение от номинала не всегда существенно влияет на работу схемы, хотя это зависит от их назначения.

Как определить номинал по цветовым кольцам

В последнее время выводные сопротивления чаще обозначаются с помощью цветовых полос и это относится как к отечественным, так и к зарубежным элементам. В зависимости от количества цветовых полос меняется способ их расшифровки. В общем виде он собран в ГОСТ 175-72.

Цветовая маркировка резисторов может выглядеть в виде 3, 4, 5 и 6 цветовых колец. При этом кольца могут быть смещены к одному из выводов. Тогда кольцо, которое ближе всех к проволочному выводу, считают первым и расшифровку цветного кода начинают с него. Или одно из колец может отсутствовать, обычно предпоследнее. Тогда первое это то, возле которого есть пара.

Другой вариант, когда маркировочные кольца расположены равномерно, т.е. заполняют поверхность равномерно. Тогда первое кольца определяют по цветам. Допустим, одно из крайних колец (первое) не может быть золотого цвета, тогда можно определить с какой стороны идет отчет.

Обратите внимание при таком способе маркировки из 4-х колец третье кольцо – это множитель. Как разобраться в этой таблице? Возьмем верхний резистор первое кольцо красного цвета, это 2, второе фиолетового – это 7, третье, множитель красное – это 100, а допуск у нас коричневый – это 1%. Тогда: 27*100=2700 Ом или 2,7 кОм с допуском отклонения в 1% в обе стороны.

Второй резистор имеет цветовую маркировку из 5 полос. У нас: 2, 7, 2, 100, 1%, тогда: 272*100=27200 Ом или 27,2 кОм с допуском в 1%.

У резисторов из 3 полос цветовая маркировка производится по такой логике:

  • 1 полоса – единицы;
  • 2 полоса – сотни;
  • 3 полоса – множитель.

Точность таких компонентов равна 20%.

Расшифровать цветовое обозначение вам поможет программа ElectroDroid, она доступна для Android в Play Market, в её бесплатной версии есть данная функция.

Другой способ расшифровки цветового кода от компании Philips предполагает использование 4, 5 и 6 полос. Тогда последняя полоса несет информацию о температурном коэффициенте сопротивления (насколько изменяется сопротивление при изменении температуры).

Чтобы определить номинал воспользуйтесь таблицей. Обратите внимание на последнюю колонку – это ТКС.

На корпусе цветные кольца распределяются, так как показано на этой схеме:

Более подробно узнать о том, как расшифровать маркировку резисторов, вы можете из данных видео:

Маркировка SMD резисторов

В современной электронике один из ключевых факторов при разработке устройства – его миниатюризация. Этим вызвано создание безвыводных элементов. SMD-компоненты отличаются малыми размерами, за счет их безвыводной конструкции. Пусть вас не смущает такой способ монтажа, он используется в большей части современной электроники и отличается хорошей надежностью. К тому же это упрощает конструкцию многослойной печатной платы. Дословная расшифровка с переводом обозначает «устройство для поверхностного монтажа», они и монтируются на поверхность печатной платы. Из-за миниатюрных размеров возникают трудности с обозначением их номинала и характеристик на корпусе, поэтому идут на компромисс и используют методы маркировки по цифрам, с буквами или используя кодовую систему. Давайте разберемся, как маркируются SMD резисторы.

Если на SMD-резисторе нанесено 3 цифры тогда расшифровка производится следующим образом: XYZ, где X и Y – это первые две цифры номинала, а Z количество нолей. Рассмотрим на примере.

Возможно обозначение 4-мя цифрами, тогда всё таким же образом, только первые три цифры, это сотни, десятки и единицы, а последняя – нули.

Если в маркировку введены буквы, то расшифровка подобна отечественным резисторам МЛТ.

Слово «резистор » произошло от латинского « resisto », что значит сопротивляюсь. Резисторы относятся к наиболее распространенным деталям радиоэлектронной аппаратуры.

Основным параметром резисторов является их номинальное сопротивление, измеряемое в Омах (Ом), килоомах (кОм) или мегаомах (МОм). Номинальные значения сопротивлений указываются на корпусе резисторов , однако действительная величина сопротивления может отличаться от номинального значения. Эти, отклонения устанавливаются стандартом в соответствии с классом точности, определяющим величину погрешности.

Постоянные резисторы

Широко используются три класса точности допускающие отклонение сопротивления от номинального значения:

  • I класс – на ± 5 %
  • II класс – на ± 10 %
  • III класс – на ± 20 %

Существует так же так называемые прецизионные резисторы , они выпускаются с допусками:

  • ± 2 %
  • ± 1 %
  • + 0,2 %
  • ± 0,1 %
  • ± 0,5 %
  • ± 0,02 %
  • ± 0,01 %

Помимо сопротивления резисторы характеризуются предельным рабочим напряжением, температурным коэффициентом сопротивления и номинальной мощностью рассеяния.

Предельным рабочим напряжением называют максимально допустимое напряжение, приложенное к выводам резистора, при котором он надежно работает. Температурный коэффициент сопротивления (ТКС) отражает относительное изменение величины сопротивления резистора при колебании температуры окружающей среды на 1 °С. В зависимости от материала, из которого изготовлен резистор, его сопротивление с увеличением температуры может возрастать либо уменьшаться. В первом случае ТКС оказывается положительным, а во втором – отрицательным.

Если на резисторе выделяется большая мощность, чем предусмотрено, его температура будет повышаться, и он даже может перегореть. В большинстве устройств РЭА применяются резисторы с номинальной мощностью рассеяния от 0,125 до 2 Вт.

Номинальное значение сопротивления и допускаемое отклонение указываются на резисторе с помощью специальных буквенных обозначений:

  • Е (К) – от 1 до 99 Ом
  • К – от 0,1 до 99 кОм
  • М – от 0,1 до 99 МОм

Пример обозначений номинальных сопротивлений резисторов:

  • 27Е – 27 Ом
  • 4Е7 – 4,7 Ом
  • К680 – 680 Ом
  • 1К5 – 1,5 кОм
  • 43К – 43 кОм
  • 2М4 – 2,4 МОм
  • 3М – 3 МОм

Различают два основных вида резисторов : нерегулируемые (постоянные ) и регулируемые (переменные и подстроечные ). Особую группу составляют полупроводниковые резисторы.

Постоянные резисторы

Постоянные резисторы могут быть проволочными и непроволочными. Проволочные резисторы представляют собой цилиндрическое тело, на которое наматывается проволока из металла, обладающего большим удельным сопротивлением. Первыми элементами обозначения таких резисторов являются буквы:

  • ПЭВ-Р

Из наиболее широко применяемых непроволочных резисторов можно назвать углеродистые, типа:

Металлизированные резисторы , лакированные эмалью, теплостойкие:

Композиционные резисторы, с стеклянным основанием, на которое наносится токопроводящий материал-смесь нескольких веществ:

На электрических схемах постоянные резисторы, независимо от их типа, изображаются в виде прямоугольников, выводы от концов резисторов – линиями, проведенными от середин меньших сторон. Допустимая рассеиваемая мощность резистора указывается внутри прямоугольника. Рядом с условным графическим обозначением наносят латинскую букву R , после которой следует порядковый номер резистора, согласно принципиальной схеме, а также номинальное его сопротивление.


Обозначение постоянного резистора

Для сопротивления от 0 до 999 Ом единицу измерения не указывают, для сопротивления от 1 кОм до 999 и от 1 МОм и выше к числовому его значению добавляют обозначения единиц измерения.


Сопротивление резистора ориентировочное

Если величина сопротивления резистора на схеме указана ориентировочно и в процессе настройки может быть изменена, к условному обозначению резистора добавляется звездочка * .

При необходимости подчеркнуть, что данный резистор должен обязательно быть проволочным, рядом с символом R делается надпись « пров ».

Переменные резисторы

Регулируемые, или переменные резисторы являются радиоэлементами, сопротивления которых можно изменять от нуля до номинальной величины. Как и постоянные, регулируемые резисторы могут быть проволочными и непроволочными.


Регулируемый резистор без отводов

Регулируемый непроволочный резистор представляет собой токопроводящее покрытие, нанесенное на диэлектрическую пластинку в виде дуги, по которому перемещается пружинящий контакт (движок), скрепленный с осью. От этого контакта и от краев токопроводящего покрытия сделаны выводы.


Функциональная характеристика переменного резистора

По виду зависимости сопротивления между начальным выводом от токопроводящей части и движком от угла поворота оси различают резисторы типов:

  • А – линейная зависимость
  • Б – логарифмическая
  • В – показательная зависимость


Регулируемый резистор с двумя дополнительными отводами


Сдвоенный переменный резистор


Двойной переменный резистор


Регулируемый резистор с выключателем

Подстроечные резисторы

Разновидностью регулируемых резисторов являются подстроечные резисторы, которые не имеют выступающей оси, скрепленной с движком. Изменять положение движка и, следовательно, сопротивление между ним и одним из концов токопроводящего слоя в подстроечном резисторе можно только с помощью отвертки.


Подстроечные резисторы

Терморезисторы

Терморезистор – полупроводниковый резистор, включаемый в электрическую цепь, сопротивление которого возрастает при уменьшении температуры и понижается при ее увеличении. Температурный коэффициент сопротивления (ТКС) таких резисторов отрицательный.

Позистор – полупроводниковый резистор, включаемый в электрическую цепь, сопротивление которого увеличивается при увеличении температуры и уменьшается при ее уменьшении. Температурный коэффициент сопротивления (ТКС) таких резисторов положительный.


Терморезисторы (термисторы)


Условное графическое обозначение варисторов

Варисторами – называют полупроводниковые резисторы, в которых используется свойство уменьшения сопротивления полупроводникового материала при увеличении приложенного напряжения.

Система обозначений варисторов включает буквы СН (сопротивление нелинейное ) и цифры.

Первая из цифр обозначает материал

  • 1 – карбид кремния
  • 2 – селен

Вторая цифра – конструкцию

  • 1,8 – стержневая
  • 2, 10 – дисковая
  • 3 – микромодульная

Третья цифра – порядковый номер разработки. Последним элементом обозначения также является число. Оно указывает на классификационное напряжение в вольтах , например – СН-1-2-1-100 .

Варисторы применяют для защиты от перенапряжений контактов, приборов и элементов радиоэлектронных устройств, высоковольтных линий и линий связи, для стабилизации и регулирования электрических величин и т. д.

Фоторезисторы

Фоторезисторами – называют полупроводниковые резисторы, сопротивление которых изменяется от светового или проникающего электромагнитного излучения. Более широко используются фоторезисторы с положительным фотоэффектом. Их сопротивление уменьшается при освещении или облучении электромагнитными волнами.


Условное графическое обозначение фоторезисторов

Благодаря высокой чувствительности, простоте конструкции, малым габаритам фоторезисторы применяются в фотореле различного назначения, счетчиках изделий в промышленности, системах контроля размеров и формы деталей, устройствах регулирования различных величин, телеуправлении и телеконтроле, датчиках различных величин и др.

Система обозначений фоторезисторов ранних выпусков содержит три буквы и цифру. Первые две буквы – ФС (фотосопротивление ), за ними следует буква, обозначающая материал светочувствительного элемента:

  • А – сернистый свинец
  • К – сернистый кадмий
  • Д – селенистый кадмий

Затем идет цифра, указывающая на вид конструкции, например: ФСК-1 .

В новой системе обозначений первые две буквы СФ (сопротивление фоточувствительное ). Следующая за ними цифра указывает на материал чувствительного элемента, а последняя цифра означает порядковый номер разработки, например: СФ2-1 .

Резистор

Резистор - это элемент электрическиой цепи с постоянным или переменным номиналом, предназначенный для поглощения электрической энергии. Получил своё название из английского языка - resistor. В среде российских радиолюбителей часто именуется "Сопротивлением" . Существует модификация с возможностью изменения значения номинала, она называется - "потенциометр" или в простонародье - "Переменное сопротивление" . Применение резистора в электрических цепях обосновано целым рядом очень полезных технических функций, таких как линейное преобразование тока в напряжение и напряжения в ток, деление напряжения и/или тока в заданных пределах.

Главное при выборе резисторов для ламповой схемотехники

При подборе резисторов для ламповых схем усиления радиолюбитель, привыкший работать с транзисторами и микросхемами, столкнется с двумя новыми для него проблемами. Во-первых, в отличие от большинства транзисторных схем для лампового усилителя, где все лампы работают в классе А и, следовательно, потребляют заметную, порой значительную мощность, существенной становится номинальная мощность резисторов, поэтому дальше в схемах вы сплошь и рядом будете встречаться с обозначением мощности 0,5 Вт; 1,0 Вт; 2,0 Вт и даже 5,0 Вт и 10,0 Вт. Лучше всего использовать в работе резисторы типов МЛТ (ОМЛТ) с допусками 2% и 5%, С2-ЗЗН с допусками 1%, 2% и 5%, Р14 с допусками 1%, 2% и 5%, С1-4 мощностью 0,5 Вт и допусками 2% и 5 %.
Идеально было бы использовать прецизионные резисторы типов С2-14 или С2-29В с допусками 0,25% ... 1,0%, охватывающие всю шкалу сопротивлений от 10 Ом до 5,1 МОм и мощностей от 0,125 до 2 Вт, однако это может быть накладно.
В качестве резисторов мощностью свыше 5 Вт лучше всего применять типы С5-35В (старое обозначение ПЭВ), С5-37 с допусками 5% или прецизионные резисторы типов С5-5 и С5-16 с допусками 0,5% ... 2,0%.
Второй, более существенный момент - это допустимый разброс абсолютных значений. Впрочем, не следует заранее пугаться: в схеме обычно встречается всего несколько резисторов, сопротивление которых столь критично к высокой точности. В большинстве случаев для всех ламповых схем вполне допустим разброс 5%, а в некоторых цепях и до 10%.

В отношении переменных резисторов наибольшие трудности возникают при применении сдвоенных и спаренных регуляторов громкости и тембра в стереоусилителях. Главный их недостаток состоит в том, что в положении минимального значения (ось - до конца влево) переход движка с графитового покрытия на металлическое основание у двух потенциометров происходит не одновременно: у одного - чуть раньше, у другого - чуть позже, вследствие чего, например, громкость в одном из каналов пропадает полностью, а в другом - нет. Для современного лампового усилителя это считается абсолютно недопустимым.
Если Вы решили строить качественный Hi - End усилитель, не пожалейте денег и купите настоящие импортные реостаты, но только не китайского производства.
Можно конечно попытаться провести собственными силами доработку, которая сведется к тому, что в одном из двух сдвоенных резисторов (а скорее всего в обоих) придется исправить этот дефект чисто механически, подгибанием дужки токосъемника, если это допускает конструкция, или взаимным, навстречу друг другу, смещением платформ, несущих токосъемники. Но результат такой доработки крайне сомнителен.
Кроме того, для обеспечения большего срока службы и предотвращения шорохов и тресков все без исключения оперативные регуляторы (громкость, тембр, стереобаланс) необходимо еще до установки в усилитель вскрыть, протереть рабочую (токонесущую) часть спиртом или чистым бензином Б70 (но не автомобильным и уж тем более не растворителем или ацетоном), затем равномерно смазать чистым техническим вазелином, снова аккуратно и плотно закрыть крышками, а в зазор между осью и втулкой капнуть одну каплю машинного или трансформаторного масла.
В качестве установочных и регулировочных переменных резисторов, которыми придется пользоваться крайне редко, в основном при первичной регулировке и настройке усилителя, лучше всего выбирать пылезащищенные и влагозащищенные, с надежным контактом между токосъемником и рабочей поверхностью дужки, - например, типов СПЗ-9, СПЗ-16, СПЗ-456, СП4-2М-6 или проволочные подстроечные, - типов СП5-16В, СП5-2В.

Схемы соединения сопротивлений

Величина тока на любом участке последовательной цепи, состоящей из нескольких сопротивлений неизменна и представляет собой величину, зависящуюот общего сопротивления цепи и приложенного к ее концам напряжения.

I = I1 = I2 = I3

Общее (эквивалентное) сопротивление равно сумме всех, последовательно соединенных сопротивлений.

R = R1 + R2 + R3

Общее падение напряжения на последовательной цепи сопротивлений равно сумме падений напряжений на каждом сопротивлении.

U = U1 + U2 + U3

Напряжения на участках цепи прямо пропорционально сопротивлениям этих участков.

U1 = I*R1 ; U2 = I*R2 ; U3 = I*R3 ;

Следовательно справедливы следующие формулы:

I = U1/R1 = U2/R2 = U3/R3 = U/R

Припараллельном соединении нескольких сопротивлений ток в неразветвленных частях цепи равен сумме токов в параллельных ветвях.

I = I1 + I2 + I3

Падение напряжения на параллельном соединении равно падению напряжения на каждом его элементе.

U = U1 = U2 = U3

Проводимость цепи является величиной обратной сопротивлению.

Общая проводимость параллельного соединения равна сумме проводимостей отдельных ветвей.

g = g1 + g2 + g3

Общее сопротивление равно обратной величине общей проводимости и меньше наименьшего сопротивления.

Общее сопротивление определяется из формулы:

1/R = 1/R1 + 1/R2 + 1/R3

Ток в каждой параллельной ветви определяется согласно закону Ома:

I1 = U/R1 = U*g1 ; I2 = U/R2 = U*g2 ; I3 = U/R3 = U*g3 ;

Токи в параллельных ветвях прямо пропорциональны проводимостям или обратно пропорциональны сопротивлениям ветвей.

I1 : I2: I3 = g1 : g2 : g3

I1 : I2: I3 = 1/R1 : 1/R2 : 1/R3

Расчет параллельных соединений сопротивлений

Формула для расчета результирующего сопротивления при соединении двух сопротивлений в параллельную схему.

R = R1*R2/(R1 + R2)

Формула для расчета результирующего сопротивления при соединении трех сопротивлений в параллельную схему.

R = R1*R2*R3/(R1*R2 + R2*R3 + R1*R3)

Типы применяемых резисторов

Очень старые резисторы

Резисторы этого типа применялись в старой ламповой радиоаппаратуре 40х - 50х годов.

Резисторы МЛТ (ОМЛТ)

Самый распространенный класс резисторов.

Сфера применения этих резисторов поистине гигантская. Они применяются во всех типах электронной техники где нет жестких требований по климатике и воздействиям окружающей среды.

Проволочные резисторы повышенной точности

Резисторы типа ПТМН - 1 являются высокоточными прецизионными резисторами с отклонением номинала 0.25%. Как правило использовались в точной измерительной аппаратуре.

Резисторы широкого применения

Глубокий спектр номиналов и мощностей резисторов МЛТ, а также значительная дешевизна использования этих компонентов, позволяет отдавать им предпочтение во многих классах радиоаппаратуры и ламповой усилительной технике там где не нужна высокая точность соответствия схемным решениям. Разброс параметров номинальных значений в пределах 10% - 20%.

Современные резисторы с цветовой маркировкой

Новые резисторы с цветовой маркировкой как правило выпускаются на автоматических производственных линиях и продаются в ленточной упаковке.

Эти резисторы предназначены для выполнения навесного и печатного монтажа слаботочных электронных схем, так как их мощность рассеяния составляет 0.25 Вт. Их с успехом можно использовать при монтаже самых первых входных ламповых каскадов усиления как элементы цепей сеточного смещения.

Цветовая маркировка резисторов

Очень часто буквенно - цифровые обозначения номиналов резисторов заменяют на соответствующий цветовой код.

Другим видом маркировки является нанесение на корпус резистора цветных колец. Маркировочные кольца сдвинуты к одному из выводов резистора и располагаются слева направо. Если размеры резистора не обеспечивают отступа, то ширина первого кольца примерно в два раза шире остальных. Число колец может быть от четырех до шести.

Система обозначения характеристик постоянных резисторов цветовым кодом

Пояснительная схема значения цветовых полос в цветовой маркировке резисторов.

Суть цветовой маркировки соостоит в том, что на поверхность резистора наносятса группы цветных полос, обозначающих двухзначный или трехзначный номинал (две или три полосы), полоса множителя, полоса допуска и полоса ТКЕ.

В зависимости от цвета полос, характеристики ими обозначенные, принимают то или иное значение. Таким образом формируется номинал резистора и его точностные характеристики.

Маркировка резисторов зарубежного производства.

Буквенно-цифровая маркировка
На корпус резистора наносится маркировка, состоящая из двух или трех цифр и буквы.
Буква играет роль запятой и обозначает, в каких единицах измеряется номинал резистора:
R — в омах;
К — в килоомах;
М — в мегаомах.
Примеры обозначения приведены в табл. 1

Таблица 1 Примеры обозначения номиналов резисторов

Сопротивление

0,1 Ом

0,33 Ом

6,8 Ом

150 Ом

1 кОм

5,6 кОм

47 кОм

150 кОм

1 МОм

2,2 МОм

Обозначение

R10

R33

22R

150R

Например: 330RG означает 330 Ом ±2%. R22M означает 0,22 Ом ±20%.

Цветовая маркировка зарубежных резисторов

Цветовая маркировка резисторов зарубежного производства аналогична цветовой маркировке резисторов отечественного производства.

Для обычных резисторов

Для проволочных резисторов

Переменные резисторы

Особенности применения переменных резисторов

Переменные резисторы (потенциометры) применяются в качестве внешних устройств настройки и регулировки сигналов: в качестве регуляторов громкости, тембра, уровней, на-стройки на частоту в радиоприемниках с перестройкой частоты при помощи варикапов.

Подстроечные резисторы применяются в схемах радиоэлектронных устройств для того, чтобы обеспечить их настройку во избежание многократных замен, связанных с необходимостью подбора постоянного резистора.
Переменные резисторы выпускаются в различном исполнении. По типам они делятся на резисторы с угольной дорожкой, дорожкой из кермета (металлокерамики), проволочные и многооборотные проволочные. По причине наличия подвижного контакта переменные резисторы являются источником шумов, и порой напряжение создаваемых ими шумов может достигать десятков милливольт (15...50 мВ). Поэтому при применении переменных резисторов следует придержи-ваться следующих правил:
избегайте использования переменных резисторов с угольной дорожкой: они сильно шумят и ненадежны;
в регуляторах громкости аудиоаппаратуры применяйте потенциометры с лога-рифмическим законом регулирования сопротивления;
не применяйте переменных резисторов с угольной дорожкой в устройствах электропитания для регулировки выходного напряжения. Из-за несовершенства дорожки возможно мгновенное появление полного выходного напряжения.
В современной зарубежной технике применяются подстроечные резисторы серии POZ3, имеющие номинал от 200 Ом до 2 МОм. Средний вывод у них расположен обособленно и имеет большую ширину, чем крайние выводы. Некоторые варианты исполнения таких переменных резисторов показаны на рис. 1 и рис. 2
на рис. 1 крайние выводы обозначены цифрами 1 и 3, а средний — цифрой 2 (поворот — по часовой стрелке от выв. 1 к выв. 3).

Рисунок 1. Переменные резисторы Китайского производства.

Рисунок 2. Дискретные переменные резисторы с тонкомпенсацией Японского производства.

Рисунок 3. График зависимости сопротивления потенциометра от угла поворота движка.

Подбирая потенциометры для реализации своих разработок, необходимо уделять особое внимание типу зависимости изменения номинала сопротивления от угла поворота потенциометра или положения линейного движка в продольных потенциометрах.

Рисунок 4. Ползунковый линейный потенциометр в металлическом корпусе.

Рисунок 4. Ползунковый двухканальный линейный потенциометр.



Просмотров