Что такое значение величины в физике. Основные физические величины и единицы их измерения

Физические величины

Физическая величина это характеристика физических объектов или явлений материального мира, общая для множества объектов или явлений в качественном отношении, но индивидуальная в количественном отношении для каждого из них . Например, масса, длина, площадь, температура и т.д.

Каждая физическая величина имеет свои качественную и количественную характеристики .

Качественная характеристика определяется тем, какое свойство материального объекта или какую особенность материального мира эта величина характеризует. Так, свойство "прочность" в количественном отношении характеризует такие материалы, как сталь, дерево, ткань, стекло и многие другие, в то время как количественное значение прочности для каждого из них совершенно разное

Для выявления количественного различия содержания свойства в каком-либо объекте, отображаемого физической величиной, вводится понятие размера физической величины . Этот размер устанавливается в процессе измерения - совокупность операций, выполняемых для определения количественного значения величины (ФЗ «Об обеспечении единства измерений»

Целью измерений является определение значения физической величины - некоторого числа принятых для нее единиц (например, результат измерения массы изделия составляет 2 кг, высоты здания -12 м и др.). Между размерами каждой физической величины существуют отношения в виде числовых форм (типа «больше», «меньше», «равенства», «суммы» и т.п.), которые могут служить моделью этой величины.

В зависимости от степени приближения к объективности различают истинное, действительное и измеренное значения физической величины .

Истинное значение физической величины - это значение, идеально отражающее в качественном и количественном отношениях соответствующее свойство объекта. Из-за несовершенства средств и методов измерений истинные значения величин практически получить нельзя. Их можно представить только теоретически. А значения величины, полученные при измерении, лишь в большей или меньшей степени приближаются к истинному значению.

Действительное значение физической величины - это значение величины, найденное экспериментальным путем и настолько приближающееся к истинному значению, что для данной цели может быть использовано вместо него.

Измеренное значение физической величины - это значение, полученное при измерении с применением конкретных методов и средств измерений.

При планировании измерений следует стремиться к тому, чтобы номенклатура измеряемых величин соответствовала требованиям измерительной задачи (например, при контроле измеряемые величины должны отражать соответствующие показатели качества продукции).

Для каждого параметра продукции должны соблюдаться требования:

Корректность формулировки измеряемой величины, исключающая возможность различного толкования (например, необходимо четко определять, в каких случаях определяется "масса" или "вес" изделия, "объем" или "вместимость" сосуда и т.д.);

Определенность подлежащих измерению свойств объекта (например, "температура в помещении не более...°С " допускает возможность различного толкования. Необходимо так изменить формулировку требования, чтобы было ясно, установлено ли это требование к максимальной или к средней температуре помещения, что будет в дальнейшем учтено при выполнении измерений);

Использование стандартизованных терминов.

Физические единицы

Физическая величина, которой по определению присвоено числовое значение, равное единице, называетсяединицей физической величины.

Многие единицы физических величин воспроизводятся мерами, применяемыми для измерений (например, метр, килограмм). На ранних стадиях развития материальной культуры (в рабовладельческих и феодальных обществах) существовали единицы для небольшого круга физических величин - длины, массы, времени, площади, объёма. Единицы физических величин выбирались вне связи друг с другом, и притом различные в разных странах и географических районах. Так возникло большое количество часто одинаковых по названию, но различных по размеру единиц - локтей, футов, фунтов.

По мере расширения торговых связей между народами и развития науки и техники количество единиц физических величин увеличивалось и всё более ощущалась потребность в унификации единиц и в создании систем единиц. О единицах физических величин и их системах стали заключать специальные международные соглашения. В 18 в. во Франции была предложена метрическая система мер, получившая в дальнейшем международное признание. На её основе был построен целый ряд метрических систем единиц. В настоящее время происходит дальнейшее упорядочение единиц физических величин на базе Международной системы единиц (СИ).

Единицы физических величин делятся на системные, т. е. входящие в какую-либо систему единиц, и внесистемные единицы (например, мм рт. ст., лошадиная сила, электрон-вольт).

Системные единицы физических величин подразделяются на основные , выбираемые произвольно (метр, килограмм, секунда и др.), и производные , образуемые по уравнениям связи между величинами (метр в секунду, килограмм на кубический метр, ньютон, джоуль, ватт и т. п.).

Для удобства выражения величин, во много раз больших или меньших единиц физических величин, применяются кратные единицы (например, километр - 10 3 м, киловатт - 10 3 Вт) и дольные единицы (например, миллиметр - 10 -3 м, миллисекунда - 10-3 с)..

В метрических системах единиц кратные и дельные единицы физических величин (за исключением единиц времени и угла) образуются умножением системной единицы на 10 n , где n - целое положительное или отрицательное число. Каждому из этих чисел соответствует одна из десятичных приставок, принятых для образования кратных и дельных единиц.

В 1960 г. на XI Генеральной конференции по мерам и весам Международной организации мер и весов (МОМВ) была принята Международная системаединиц (SI).

Основными единицами в международной системе единиц являются: метр (м) – длина, килограмм (кг) – масса, секунда (с) – время, ампер (А) – сила электрического тока, кельвин (К) – термодинамическая температура, кандела (кд) – сила света, моль – количество вещества.

Наряду с системами физических величин в практике измерений по-прежнему используются так называемые внесистемные единицы. К их числу относятся, например: единицы давления – атмосфера, миллиметр ртутного столба, единица длины – ангстрем, единица количество теплоты – калория, единицы акустических величин – децибел, фон, октава, единицы времени – минута и час и т. п. Однако в настоящее время наметилась тенденция к их сокращению до минимума.

Международная система единиц имеет целый ряд достоинств: универсальность, унификация единиц для всех видов измерений, когерентность (согласованность) системы (коэффициенты пропорциональности в физических уравнениях безразмерны), лучшее взаимопонимание между различными специалистами в процессе научно-технических и экономических связей между странами.

В настоящее время применение единиц физических величин в России узаконено Конституцией РФ (ст. 71) (стандарты, эталоны, метрическая система и исчисление времени находятся в ведении Российской Федерации) и федеральным законом "Об обеспечении единства измерений". Статья 6 Закона определяет применение в Российской Федерации единиц величин Международной системы единиц, принятых Генеральной конференцией по мерам и весам и рекомендованные к применению Международной организацией законодательной метрологии. В то же время в Российской Федерации могут быть допущены к применению наравне с единицами величин СИ внесистемные единицы величин, наименование, обозначения, правила написания и применения которых устанавливаются Правительством Российской Федерации.

В практической деятельности следует руководствоваться единицами физических величин, регламентированных ГОСТ 8.417-2002 «Государственная система обеспечения единства измерений. Единицы величин».

Стандартом наряду с обязательным применением основных и производных единиц Международной системы единиц, а также десятичных кратных и дольных этих единиц допускается применять некоторые единицы, не входящие в СИ, их сочетания с единицами СИ, а также некоторые нашедшие широкое применение на практике десятичные кратные и дольные перечисленных единиц.

Стандарт определяет правила образования наименований и обозначений десятичных кратных и дольных единиц СИ с помощью множителей (от 10 –24 до 10 24) и приставок, правила написания обозначений единиц, правили образования когерентных производных единиц СИ

Множители и приставки, используемые для образования наименований и обозначений десятичных кратных и дольных единиц СИ приведены в табл.

Множители и приставки, используемые для образования наименований и обозначений десятичных кратных и дольных единиц СИ

Десятичный множитель Приставка Обозначение приставки Десятичный множитель Приставка Обозначение приставки
межд. рус межд. русс
10 24 иотта Y И 10 –1 деци d д
10 21 зетта Z З 10 –2 санти c с
10 18 экса E Э 10 –3 милли m м
10 15 пета P П 10 –6 микро µ мк
10 12 тера T Т 10 –9 нано n н
10 9 гига G Г 10 –12 пико p п
10 6 мега M М 10 –15 фемто f ф
10 3 кило k к 10 –18 атто a а
10 2 гекто h г 10 –21 зепто z з
10 1 дека da да 10 –24 иокто y и

Когерентные производные единицы Международной системы единиц, как правило, образуют с помощью простейших уравнений связи между величинами (определяющих уравнений), в которых числовые коэффициенты равны 1. Для образования производных единиц обозначения величин в уравнениях связи заменяют обозначениями единиц СИ.

Если уравнение связи содержит числовой коэффициент, отличный от 1, то для образования когерентной производной единицы СИ в правую часть подставляют обозначения величин со значениями в единицах СИ, дающими после умножения на коэффициент общее числовое значение, равное 1.

Физика как наука, изучающая явления природы, использует стандартную методику исследования. Основными этапами можно назвать: наблюдение, выдвижение гипотезы, проведение эксперимента, обоснование теории. В ходе наблюдения устанавливаются отличительные черты явления, ход его течения, возможные причины и последствия. Гипотеза позволяет пояснить ход явления, установить его закономерности. Эксперимент подтверждает (или не подтверждает) справедливость гипотезы. Позволяет установить количественное соотношение величин в ходе опыта, что приводит к точному установлению зависимостей. Подтвержденная в ходе опыта гипотеза ложится в основу научной теории.

Ни одна теория не может претендовать на достоверность, если не получила полного и безоговорочного подтверждения в ходе эксперимента. Проведение последнего сопряжено с измерениями физических величин, характеризующих процесс. - это основа измерений.

Что это такое

Измерение касается тех величин, которые подтверждают справедливость гипотезы о закономерностях. Физическая величина - это научная характеристика физического тела, качественное отношение которой является общим для множества аналогичных тел. Для каждого тела такая количественная характеристика сугубо индивидуальна.

Если обратиться к специальной литературе, то в справочнике М. Юдина и др. (1989 года издания) читаем, что физическая величина это: “характеристика одного из свойств физического объекта (физической системы, явления или процесса), общая в качественном отношении для многих физических объектов, но в количественном отношении индивидуальная для каждого объекта”.

Словарь Ожегова (1990 года издания) утверждает, что физическая величина это - "размер, объем, протяженность предмета".

К примеру, длина - физическая величина. Механика длину трактует как пройденное расстояние, электродинамика использует длину провода, в термодинамике аналогичная величина определяет толщину стенок сосудов. Суть понятия не меняется: единицы величин могут быть одинаковыми, а значение - различным.

Отличительной чертой физической величины, скажем, от математической, является наличие единицы измерения. Метр, фут, аршин - примеры единиц измерения длины.

Единицы измерения

Чтобы измерить физическую величину, ее следует сравнить с величиной, принятой за единицу. Вспомните замечательный мультфильм «Сорок восемь попугаев». Чтобы установить длину удава, герои измеряли его длину то в попугаях, то в слонятах, то в мартышках. В этом случае длину удава сравнивали с ростом других героев мультфильма. Результат количественно зависел от эталона.

Величины - мера ее измерения в определенной системе единиц. Путаница в этих мерах возникает не только вследствие несовершенства, разнородности мер, но иногда и из-за относительности единиц.

Русская мера длины - аршин - расстояние между указательным и большим пальцами руки. Однако руки у всех людей разные, и аршин, измеренный рукой взрослого мужчины, отличается от аршина на руке ребенка или женщины. Такое же несоответствие мер длины касается сажени (расстояние между кончиками пальцев расставленных в стороны рук) и локтя (расстояние от среднего пальца до локтя руки).

Интересно, что в лавки приказчиками брали мужчин небольшого роста. Хитрые купцы экономили ткань при помощи несколько меньших мерил: аршин, локоть, сажень.

Системы мер

Такое разнообразие мер существовало не только в России, но и в других странах. Введение единиц измерения зачастую было произвольным, иногда эти единицы вводились только вследствие удобства их измерения. Например, для измерения атмосферного давления ввели мм ртутного столба. Известный в котором использовалась трубка, заполоненная ртутью, позволил ввести такую необычную величину.

Мощность двигателей сравнивали с (что практикуется и в наше время).

Различные физические величины измерение физических величин делали не только сложными и недостоверными, но и усложняющими развитие науки.

Единая система мер

Единая система физических величин, удобная и оптимизированная в каждой промышленно развитой стране, стала насущной необходимостью. За основу была принята идея выбора как можно меньшего количества единиц, с помощью которых в математических соотношениях можно было бы выразить и другие величины. Такие основные величины не должны быть связаны друг с другом, их значение определяется однозначно и понятно в любой экономической системе.

Эту проблему решить пытались в различных странах. Создание единой СГС, МКС и другие) предпринималось неоднократно, но эти системы были неудобны либо с научной точки зрения, либо в бытовом, промышленном применении.

Задачу, поставленную в конце 19 века, решить получилось только в 1958 году. На заседании Международного комитета законодательной метрологии была представлена унифицированная система.

Унифицированная система мер

1960 год ознаменовался историческим заседанием Генеральной конференции по мерам и весам. Уникальная система, названная «Systeme internationale d"unites» (сокращенно SI) была принята решением этого почетного собрания. В российской версии эта система названа Система интернациональная (аббревиатура СИ).

За основу приняты 7 основных единиц и 2 дополнительных. Их численное значение определяется в виде эталона

Таблица физических величин СИ

Наименование основной единицы

Измеряемая величина

Обозначение

Интернациональное

российское

Основные единицы

килограмм

Сила тока

Температура

Количество вещества

Сила света

Дополнительные единицы

Плоский угол

Стерадиан

Телесный угол

Сама система не может состоять только из семи единиц, поскольку разнообразие физических процессов в природе требует введения все новых и новых величин. В самой структуре предусмотрено не только внедрение новых единиц, но и их взаимосвязь в виде математических соотношений (их чаще называют формулами размерностей).

Единица физической величины получается с применением умножения, и деления основных единиц в формуле размерностей. Отсутствие числовых коэффициентов в таких уравнениях делает систему не только удобной во всех отношениях, но и когерентной (согласованной).

Производные единицы

Единицы измерения, которые формируются из семи основных, получили название производных. Кроме основных и производных единиц, возникла необходимость введения дополнительных (радиан и стерадиан). Их размерность принято считать нулевой. Отсутствие измерительных приборов для их определения делает невозможным их измерение. Их введение обусловлено применением в теоретических исследованиях. Например, физическая величина «сила» в этой системе измеряется в ньютонах. Поскольку сила - мера взаимного действия тел друг на друга, являющаяся причиной варьирования скорости тела определенной массы, то определить ее можно как произведение единицы массы на единицу скорости, деленную на единицу времени:

F = k٠M٠v/T, где k - коэффициент пропорциональности, M - единица массы, v - единица скорости, T - единица времени.

СИ дает следующую формулу размерностей: Н = кг٠м/с 2 , где использованы три единицы. И килограмм, и метр, и секунда отнесены к основным. Коэффициент пропорциональности равен 1.

Возможно введение безразмерных величин, которые определяются в виде соотношения однородных величин. К таковым можно отнести как известно, равный отношению силы трения к силе нормального давления.

Таблица физических величин, производных от основных

Наименование единицы

Измеряемая величина

Формула размерностей

кг٠м 2 ٠с -2

давление

кг٠ м -1 ٠с -2

магнитная индукция

кг ٠А -1 ٠с -2

электрическое напряжение

кг ٠м 2 ٠с -3 ٠А -1

Электрическое сопротивление

кг ٠м 2 ٠с -3 ٠А -2

Электрический заряд

мощность

кг ٠м 2 ٠с -3

Электрическая емкость

м -2 ٠кг -1 ٠c 4 ٠A 2

Джоуль на Кельвин

Теплоемкость

кг ٠м 2 ٠с -2 ٠К -1

Беккерель

Активность радиоактивного вещества

Магнитный поток

м 2 ٠кг ٠с -2 ٠А -1

Индуктивность

м 2 ٠кг ٠с -2 ٠А -2

Поглощенная доза

Эквивалентная доза излучения

Освещенность

м -2 ٠кд ٠ср -2

Световой поток

Сила, вес

м ٠кг ٠с -2

Электрическая проводимость

м -2 ٠кг -1 ٠с 3 ٠А 2

Электрическая емкость

м -2 ٠кг -1 ٠c 4 ٠A 2

Внесистемные единицы

Использование исторически сложившихся величин, не входящих в СИ или отличающихся только числовым коэффициентом, допускается при измерении величин. Это внесистемные единицы. Например, мм ртутного столба, рентген и другие.

Числовые коэффициенты используются для введения дольных и кратных величин. Приставки соответствуют определенному числу. Примером могут служить санти-, кило-, дека-, мега- и многие другие.

1 километр = 1000 метров,

1 сантиметр = 0,01 метра.

Типология величин

Попытаемся указать несколько основных признаков, которые позволяют установить тип величины.

1. Направление. Если действие физической величины напрямую связано с направлением, ее называют векторной, иные - скалярные.

2. Наличие размерности. Существование формулы физических величин дает возможность называть их размерными. Если в формуле все единицы имеют нулевую степень, то их называют безразмерными. Правильнее было бы назвать их величинами с размерностью, равной 1. Ведь понятие безразмерной величины нелогично. Основное свойство - размерность - никто не отменял!

3. По возможности сложения. Аддитивная величина, значение которой можно складывать, вычитать, умножать на коэффициент и т. д. (например, масса) - физическая величина, являющаяся суммируемой.

4. По соотношению с физической системой. Экстенсивная - если ее значение можно составить из значений подсистемы. Примером может служить площадь, измеряемая в метрах квадратных. Интенсивная - величина, значение которой не зависит от системы. К таковым можно отнести температуру.

Во времени живя, мы времени не знаем
Тем самым мы себя не понимаем
В такое время мы, однако, родились?
Какое время нам прикажет: «Удались»!
И как нам распознать, что наше время значит?
И что за будущее наше время прячет?
Но время – это мы! Никто иной!
Мы с вами!

П.Флеминг

Среди многочисленных физических величин существуют основные базовые, через которые выражаются все остальные с помощью определенных количественных соотношений. Это – длина, время и масса. Рассмотрим подробнее эти величины и их единицы измерения.

1. ДЛИНА. МЕТОДЫ ИЗМЕРЕНИЯ РАССТОЯНИЙ

Длина мера для измерения расстояния . Она характеризует протяженность в пространстве. Попытки субъективных измерений длины отмечались более 4000 лет назад: в III веке в Китае изобрели прибор для измерения расстояний: легкая тележка имела систему зубчатых передач, соединенную с колесом и барабаном. Каждое ли (576 м) отмечалось ударом барабана. С помощью этого изобретения министр Пей Сю создал «Региональный атлас» на 18 листах и большую карту Китая на шелке, которая была так велика, что одному человеку было трудно ее развернуть.
Существуют интересные факты измерения длины. Так, например, моряки измеряли свой путь трубками , т. е. расстоянием, которое проходит судно за время, за которое моряк выкуривает трубку. В Испании похожей единицей была сигара , а в Японии – лошадиный башмак (соломенная подошва, заменявшая подкову). Были и шаги (у древних римлян), и аршины (?71 см), и пяди (?18 см). Поэтому неоднозначность результатов измерений показала необходимость введения согласованной единицы. Действительно, дюйм (2,54 см, введенный как длина большого пальца, от глагола «дюйм») и фут (30 см, как длина ступни от английского «фут» – ступня) было трудно сравнивать.

Рис.1. Метр как эталон длины с 1889 по 1960г

С 1889 по 1960 г в качестве единицы длины использовалась одна десятимиллионная часть расстояния, измеренного вдоль Парижского меридиана от Северного полюса до экватора, – метр (от греч. metron – мера) (рис.1).
В качестве эталона длины использовался стержень из платиново-ириадиевого сплава, хранился он в Севре, около Парижа. До 1983 г метр считался равным 1650763,73 длины волны оранжевой спектральной линии, излучаемой криптоновой лампой.
Открытие лазера (в 1960 году в США) позволило измерить скорость света с большей степенью точности (?с=299 792 458 м/с) по сравнению с криптоновой лампой.
Метр единица длины, равная расстоянию, которое проходит свет в вакууме за время? 99 792 458 с.

Диапазон измерения размера объектов в природе приведен на рисунке 2.

Рис.2. Диапазон измерения размера объектов в природе

Методы измерения расстояний. Для измерения сравнительно небольших расстояний и размеров тел применяют рулетку, линейку, метр. Если измеряемые объемы малы и требуется большая точность, то измерения проводят микрометром, штангельциркулем. При измерении больших расстояний используют разные методы: триангуляцию, радиолокацию. Например, расстояние до любой звезды или Луны измеряют методом триангуляции (рис.3).

Рис.3. Метод триангуляции

Зная базу – расстояние l между двумя телескопами, расположенными в точках А и В на Земле, и углы а1 и а2 , под которыми они направлены на Луну, – можно найти расстояния АС и ВС:

При определении расстояния до звезды в качестве базы можно использовать диаметр орбиты Земли, вращающейся вокруг Солнца (рис. 4).

Рис.4. Определение расстояния до звезды

В настоящее время расстояние ближайших к Земле планет измеряется методом лазерной локации . Луч лазера, посланный, например, в сторону Луны, отражается и, возвращаясь на Землю, принимается фотоэлементом (Рис. 5).

Рис. 5. Измерение расстояний методом лазерной локации

Измеряя промежуток времени t0, через который возвращается отраженный луч, и зная скорость света «с», можно найти расстояние до планеты: .

Для измерения малых расстояний с помощью обычного микроскопа можно разделить метр на миллион частей и получить микрометр , или микрон . Однако продолжать таким образом деление невозможно, так как предметы, размеры которых меньше 0,5 микрона, нельзя увидеть в обычный микроскоп.

Рис.6. Фотография атомов углерода в графите, сделанная с помощью ионного микроскопа

Ионный микроскоп (рис. 6) позволяет проводить измерения диаметра атомов и молекул порядка 10~10м. Расстояние между атомами - 1,5?10~10м. Внутриатомное пространство практически пустое, с крошечным ядром в центре атома. Наблюдение рассеяния частиц высокой энергии при прохождении сквозь слой вещества позволяет зондировать вещество вплоть до размера атомных ядер (10–15м).

2. ВРЕМЯ. ИЗМЕРЕНИЕ РАЗНЫХ ПРОМЕЖУТКОВ ВРЕМЕНИ

Время – мера измерение разных промежутков времени . Это мера скорости, с которой происходят какие-либо изменения, т.е. мера скорости развития событий. В основу измерения временем положены периодические, повторяющиеся циклические процессы.
Считают, что первыми часами был гномон , изобретенный в Китае в конце XVI века. Время измеряли по длине и направлению тени от вертикального шеста (гномона), освещенного солнцем. Этот указатель тени и служил первыми часами.
Давно замечено было: максимальной устойчивостью и повторяемостью обладают астрономические явления; день сменяется ночью регулярно чередуются времена года. Эти все явления связаны с движением Солнца на небесной сфере. На их основе и создан календарь.
Измерения небольших промежутков времени (порядка 1 час) долго оставалось трудной задачей, с которой блестяще справился голландский ученый Христиан Гюйгенс (рис.7).

Рис.7. Христиан Гюйгенс

Он в 1656 г сконструировал маятниковые часы, колебания в которых поддерживала гиря и погрешность которых составляла 10 с в сутки. Но, несмотря на постоянное совершенствование часов и увеличение точности измерения времени, секунду (определенную как 1/86400 суток) нельзя было использовать в качестве постоянного эталона времени. Это объясняется незначительным замедлением скорости вращения Земли вокруг своей оси и соответственно увеличением периода обращения, т.е. длительности суток.
Получение стабильного эталона времени оказалось возможным в результате исследований спектров излучения разных атомов и молекул, что позволило измерить время с уникальной точностью. Период электромагнитных колебаний, излучаемых атомами, измеряется с относительной погрешностью порядка 10–10 с (рис.8).

Рис.8. Диапазон измерения времени объектов Вселенной

В 1967 г был введен новый эталон секунды. Секунда – эта единица времени, равная 9 192 631 770 периодам излучения изотопа атома цезия – 133.

Излучение цезия – 133 легко воспроизводится и измеряется в лабораторных условиях. Погрешность таких «атомных часов» за год составляет 3*10-7 с.
Для измерения большего промежутка времени используется периодичность иного рода. Многочисленные исследования радиоактивных (распадающихся со временем) изотопов показали, что время, за которое их число уменьшается в 2 раза (период полураспада), является постоянной величиной. Это означает, что период полураспада позволяет выбирать масштаб времени.
Выбор изотопа для измерения времени зависит от того, какой ориентировочно интервал времени измеряется. Период полураспада должен быть соизмерим с предполагаемым интервалом времени (табл. 1).

Таблица 1

Период полураспада некоторых изотопов

При археологических исследованиях наиболее часто измеряют содержание изотопа углерода 14С, период полураспада которого составляет 5730 лет. Возраст древней рукописи оценивается в 5730 лет, если содержание 14С в ней в 2 раза меньше первоначального (которое известно). При уменьшении содержания 14С в 4 раза по сравнению с первоначальным, возраст объекта кратен двум периодам полураспада, т. е. равен 11 460 годам. Для измерения еще большего интервала времени используются другие радиоактивные изотопы, имеющие больший период полураспада. Изотоп урана 238U (период полураспада 4,5 млрд. лет) в результате распада превращается в свинец. Сравнение содержания урана и свинца в горных породах и воде океанов позволило установить примерный возраст Земли, который составляет около 5,5 млрд. лет.

3. МАССА

Если длина и время – фундаментальные характеристики времени и пространства, то масса является фундаментальной характеристикой вещества. Массой обладают все тела: твердые, жидкие, газообразные; разные по размерам (от 10–30 до 1050 кг), указанные на рис 9.

Рис.9. Диапазон измерения массы объектов Вселенной

Масса характеризует равные свойства материи.

О массе тел человек вспоминает в самых разных ситуациях: при покупке продуктов, в спортивных играх, строительстве… – во всех видах деятельности найдется повод поинтересоваться массой того или иного тела. Масса не менее загадочная величина, чем время. Эталоном массы 1 кг, начиная с 1884 г., является платиново-иридиевый цилиндр, хранящийся в Международной палате мер и весов близ Парижа. Национальные палаты мер и весов имеют копии такого эталона.
Килограмм – единица массы, равная массе международного эталона килограмма.
Килограмм (от французских слов kilo – тысяча и gramme – мелкая мера). Килограмм приблизительно равен массе 1 л чистой воды при 15 0 С.
Работа с реальным эталоном массы требует особой тщательности, так как прикосновение щипцов и даже воздействие атмосферного воздуха может привести к изменению массы эталона. Определение массы объектов, имеющих объем, соизмеримый с объемом эталона массы, можно проводить с относительной погрешностью порядка 10–9кг.

4. ФИЗИЧЕСКИЕ ПРИБОРЫ

Для проведения разного рода исследований и экспериментов применяют физические приборы. По мере развития физики они совершенствовались и усложнялись (см. Приложение ).
Некоторые физические приборы очень просты, например линейка (рис.10), отвес (груз, подвешенный на нити), позволяющий проверять вертикальность конструкций, уровень, термометр, секундомер, источник тока; электрический двигатель, реле и др.

Рис.10. Линейка

В научных экспериментах часто используют сложные приборы и установки, которые совершенствовались и усложнялись по мере развития науки и техники. Так, для изучения свойств элементарных частиц, входящих в состав какого-либо вещества, используют ускорители - огромные, сложнейшие установки, снабженные множеством различных измерительных и регистрирующих приборов. В ускорителях частицы разгоняются до огромных скоростей, близких к скорости света, и становятся «снарядами», бомбардирующими вещество, помещенное в специальных камерах. Происходящие при этом явления позволяют сделать выводы о строении атомных ядер и элементарных частиц. Созданный в 1957 г. большой ускоритель в г. Дубне под Москвой имеет диаметр 72 м, а ускоритель в г. Серпухове имеет диаметр 6 км (рис 11).

Рис.11. Ускоритель

При выполнении астрономически наблюдений используют различные приборы. Основным астрономическим прибором является телескоп. Он позволяет получить изображение солнца, Луны, планет.

5. МЕТРИЧЕСКАЯ МЕЖДУНАРОДНАЯ СИСТЕМА ЕДИНИЦ «СИ»

Измеряют все: медики определяют температуру тела, объем легких, рост, пульс пациентов; продавцы взвешивают продукты, отмеряют метры тканей; портные снимают мерку с модниц; музыканты строго выдерживают ритм и темп, считая такты; фармацевты взвешивают порошки и отмеряют в склянки необходимое количество микстуры; учителя физкультуры не расстаются с рулеткой и секундомером, определяя выдающиеся спортивные достижения школьников... Все жители планеты измеряют, прикидывают, оценивают, сверяют, отсчитывают, различают, отмеряют, измеряют и считают, считают, считают...
Каждый из нас, без сомнения, знает, что, прежде чем измерять, нужно установить «единицу, с которой вы будете сравнивать измеряемый отрезок пути или промежуток времени, или массу».
Ясно и другое: о единицах нужно договариваться всем миром, иначе возникнет невообразимая путаница. В играх и то возможны недоразумения: у одного шаг намного короче, у другого – длиннее (Пример: «Будем бить пенальти с семи шагов»). Ученые всего мира предпочитают работать с согласованной и логически последовательной системой единиц измерения. На Генеральной конференции мер и весов в 1960 г. было достигнуто соглашение о международной системе единиц –.Systems International d"Unite"s (сокращенно – «единицы измерения СИ»). Эта система включает семь основных единиц измерения, а все остальные единицы измерения производные выводятся из основных умножением или делением одной единицы на другую без числовых пересчетов (Табл. 2).

Таблица 2

Основные единицы измерения «Си»

Международная система единиц является метрической . Это значит, что кратные и дольные единицы образуются из основных всегда одним и тем же способом: умножением или делением на 10. Это удобно, в особенности при записи очень больших и очень малых чисел. Например, расстояние от Земли до Солнца, приблизительно равное 150.000.000 км, можно записать так: 1,5 *100.000.000 км. Теперь заменим число 100.000.000 на 108. Таким образом, расстояние до Солнца записывается в виде:

1,5 * 10 8 км = l,5 * 10 8 * 10 3 M = l,5 * 10 8 + 3 м = l,5 * 10 11 м.

Другой пример.
Диаметр молекулы водорода равен 0,00000002 см.
Число 0,00000002 = 2/100.000.000 = 2/10 8 . Для кратности число 1/10 8 пишут в виде 10 –8 . Итак, диаметр молекулы водорода равен 2*10 –8 см.
Но в зависимости от диапазона измерений, удобно использовать единицы, большие или меньше по величине. Эти кратные и дольные единицы отличаются от основных на порядки величин. Название основной величины является корнем слова, а приставка характеризует соответствующее отличие в порядке.

Например, приставка «кило-» означает введение единицы в тысячу раз (на 3 порядка) большей, чем основная: 1 км = 10 3 м.

В таблице 3 приведены приставки для образования кратных и дольных единиц.

Таблица 3

Приставки для образования десятичных кратных и дольных единиц

Степень

Приставка

Символ

Примеры

Степень

Приставка

Символ

Примеры

эксаджоуль, ЭДж

децибел, дБ

петасекунда, Пс

сантиметр, см

терагерц, ТГц

миллиметр, мм

гигавольт, ГВ

микрограмм, мкг

мегаватт, МВт

нанометр, нм

килограмм, кг

10 –12

пикофарад, пФ

гектопаскаль, гПа

10 –15

фемтометр, фм

декатесла, даТл

10 –18

аттокулон, аКл

Введенные таким образом кратные и дольные единицы часто по порядку величины характеризуют физические объекты.
Многие физические величины являются постоянными - константами (от латинского слова constans - постоянный, неизменный) (табл.4). Например, постоянны в данных условиях температура таяния льда и температура кипения воды, скорость распространения света, плотности различных веществ. Константы тщательно измеряют в научных лабораториях и заносят в таблицы справочников и энциклопедий. Справочными таблицами пользуются ученые и инженеры.

Таблица 4

Фундаментальные константы

Константа

Обозначение

Значение

Скорость света в вакууме

2,998 * 10 8 м/с

Постоянная Планка

6,626 * 10 –34 Дж*с

Заряд электрона

1,602 * 10 –19 Кл

Электрическая постоянная

8,854 * 10 –12 Кл 2 /(Н * м2)

Постоянная Фарадея

9,648 * 10 4 Кл/моль

Магнитная проницаемость вакуума

4 * 10 –7 Вб/(А*м)

Атомная единица массы

1,661 * 10 –27 кг

Постоянная Больцмана

1,38 * 10 –23 Дж/К

Постоянная Авогадро

6,02 * 10 23 моль–1

Молярная газовая постоянная

8,314 Дж/(моль*К)

Гравитационная постоянная

6,672 * 10 –11 Н * м2/кг2

Масса электрона

9,109 * 10 –31 кг

Масса протона

1,673 * 10 –27 кг

Масса нейтрона

1,675 * 10 –27 кг

6. НЕМЕТРИЧЕСКИЕ РУССКИЕ ЕДИНИЦЫ

Они приведены в таблице 5.

Таблица 5

Неметрические русские единицы

Величины

Единицы

Значение в единицах СИ, кратных и дольных от них

миля (7 верст)
верста (500 саженей)
сажень (3 аршина; 7 фунтов; 100 соток)
сотка
аршин (4 четверти; 16 вершков; 28 дюймов)
четверть (4 вершка)
вершок
фут (12 дюймов)

304,8 мм (точно)

дюйм (10 линий)

25,4 мм (точно)

линия (10 точек)

2,54 мм (точно)

точка

254 мкм (точно)

квадратная верстка
десятина
квадратная сажень
кубическая сажень
кубический аршин
кубический вершок

Вместимость

ведро
четверть (для сыпучих тел)
четверик (8 гарнцев; 1/8 четверти)
гарнец
берковец (10 пудов)
пуд (40 фунтов)
фунт (32 лота; 96 золотников)
лот (3 золотника)
золотник (96 долей)
доля

Сила, вес

берковец (163,805 кгс)
пуд (16,3805 кгс)
фунт (0,409512 кгс)
лот (12,7973 гс)
золотник (4,26575 гс)
доля (44,4349 мгс)

* Наименование русских единиц силы и веса совпадали с наименованиями русских единиц массы.

7. ИЗМЕРЕНИЕ ФИЗИЧЕСКИХ ВЕЛИЧИН

Практически, любой опыт, любое наблюдение в физике сопровождается измерением физических величин. Физические величины измеряют с помощью специальных приборов. Многие из этих приборов вам уже известны. Например, линейкой (рис. 7). Можно измерить линейные размеры тел: длину, высоту и ширину; часами или секундомером – время; с помощью рычажных весов определяют массу тела, сравнивая ее с массой гири, принятой за единицу массы. Мензурка позволяет измерять объемы жидких или сыпучих тел (веществ).

Обычно прибор имеет шкалу со штрихами. Расстояния между двумя штрихами, около которых написаны значения физической величины, могут быть дополнительно разделены на несколько делений, не обозначенных числами. Деления (промежутки между штрихами) и числа – это и есть шкала прибора. На шкале прибора, как правило, проставлена единица величины (наименование), в которой выражается измеряемая физическая величина. В случае, когда числа стоят не против каждого штриха, возникает вопрос: как узнать числовое значение измеряемой величины, если его нельзя прочитать по шкале? Для этого нужно знать цену деления шкалы прибора значение наименьшего деления шкалы измерительного прибора.

Отбирая приборы для проведения измерений, важно учитывать пределы измерений. Чаще всего встречаются приборы только с одним – верхним пределом измерений. Иногда встречаются двухпредельные приборы. У таких приборов нулевое деление находится внутри шкалы.

Представим себе, что едем в автомобиле, и стрелка его спидометра остановилась против деления «70». Можно ли быть уверенными в том, что скорость автомобиля равна точно 70 км/ч? Нет, так как спидометр имеет погрешность. Можно, конечно, сказать, что скорость автомобиля равна приблизительно 70 км/ч, но этого бывает недостаточно. Напимер, тормозной путь автомобиля зависит от скорости, и ее «приблизительность» может привеси к аварии. Поэтому на заводе-изготовителе определяют наибольшую погрешность спидометра и указывает ее в паспорте этого прибора. Значение погрешности спидометра позволяет определить, в каких пределах находится истинное значение скорости автомобиля.

Пусть погрешность спидометра, указанная в паспорте, равна 5 км/ч. Найдем в нашем примере разность и сумму показания спидометра и его погрешности:

70 км/ч – 5 км/ч = 65км/ч.
70 км/ч + 5 км/ч = 75 км/ч.

Не зная истинного значения скорости, мы может быть уверены, что скорость автомобиля не меньше 65 км/ч и не более 75 км/ч. Этот результат можно записать с использованием знаков «< » (меньше или равно) и «> » (больше или равно): 65 км/ч < скорости автомобиля < 75 км/ч.

То, что при показании спидометра 70 км/ч истинная скорость может оказаться равной 75 км/ч, надо обязательно учитывать. Например, исследования показали, что если легковой автомобиль движется по мокрому асфальту со скоростью 70 км/ч, его тормозной путь не превосходит 46 м, а при скорости 75 км/ч тормозной путь возрастает до 53 м.
Приведенный пример позволяет сделать следующий вывод: все приборы имеют погрешность, в результате измерения нельзя получить истинное значение измеряемой величины. Можно лишь указать интервал в виде неравенства, которому принадлежит неизвестное значение физической величины.
Для прохождения границ этого неравенства необходимо знать погрешность прибора.

Х – пр < х < Х + пр.

Погрешность измерения х никогда не бывает меньше погрешности прибора пр.
Часто указатель прибора не совпадает со штрихом шкалы. Тогда определить расстояние от штриха до указателя очень трудно. Вот другая причина возникновения погрешности, называемой погрешностью отсчета . Эта погрешность отсчета, например, для спидометра, не превосходит половины цены деления.

В науке и технике используются единицы измерения физических величин, образующие определенные системы. В основу совокупности единиц, устанавливаемой стандартом для обязательного применения, положены единицы Международной системы (СИ). В теоретических разделах физики широко используются единицы систем СГС: СГСЭ, СГСМ и симметричной Гауссовой системы СГС. Определенное применение находят также единицы технической системы МКГСС и некоторые внесистемные единицы.

Международная система (СИ) построена на 6 основных единицах (метр, килограмм, секунда, кельвин, ампер, кандела) и 2 дополнительных (радиан, стерадиан). В окончательной редакции проекта стандарта “Единицы физических величин” приведены: единицы системы СИ; единицы, допускаемые к применению наравне с единицами СИ, например: тонна, минута, час, градус Цельсия, градус, минута, секунда, литр, киловатт–час, оборот в секунду, оборот в минуту; единицы системы СГС и другие единицы, применяемые в теоретических разделах физики и астрономии: световой год, парсек, барн, электронвольт; единицы, временно допускаемые к применению такие, как: ангстрем, килограмм–сила, килограмм–сила–метр, килограмм–сила на квадратный сантиметр, миллиметр ртутного столба, лошадиная сила, калория, килокалория, рентген, кюри. Важнейшие из этих единиц и соотношения между ними приведены в табл.П1.

Сокращенные обозначения единиц, приведенные в таблицах, применяются только после числового значения величины или в заголовках граф таблиц. Нельзя применять сокращенные обозначения вместо полных наименований единиц в тексте без числового значения величин. При использовании как русских, так и международных обозначений единиц используется прямой шрифт; обозначения (сокращенные) единиц, названия которых даны по именам ученых (ньютон, паскаль, ватт и т.д.) следует писать с заглавной буквы (Н, Па, Вт); в обозначениях единиц точку как знак сокращения не применяют. Обозначения единиц, входящих в произведение, разделяются точками как знаками умножения; в качестве знака деления применяют обычно косую черту; если в знаменатель входит произведение единиц, то оно заключается в скобки.



Для образования кратных и дольных единиц используются десятичные приставки (см. табл. П2). Особенно рекомендуется применение приставок, представляющих собой степень числа 10 с показателем, кратным трем. Целесообразно использовать дольные и кратные единицы, образованные от единиц СИ и приводящие к числовым значениям, лежащим между 0,1 и 1000 (например: 17 000 Па следует записать как 17 кПа).

Не допускается присоединять две или более приставок к одной единице (например: 10 –9 м следует записать как 1 нм). Для образования единиц массы приставку присоединяют к основному наименованию “грамм” (например: 10 –6 кг= =10 –3 г=1 мг). Если сложное наименование исходной единицы представляет собой произведение или дробь, то приставку присоединяют к наименованию первой единицы (например кН∙м). В необходимых случаях допускается в знаменателе применять дольные единицы длины, площади и объема (например В/см).

В табл.П3 приведены основные физические и астрономические постоянные.

Таблица П1

ЕДИНИЦЫ ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ ВЕЛИЧИН В СИСТЕМЕ СИ

И ИХ СООТНОШЕНИЕ С ДРУГИМИ ЕДИНИЦАМИ

Наименование величин Единицы измерения Сокращенное обозначение Размер Коэффициент для приведения к единицам СИ
СГС МКГСС и внесистемные единицы
Основные единицы
Длина метр м 1 см=10 –2 м 1 Å=10 –10 м 1 св.год=9,46×10 15 м
Масса килогамм кг 1г=10 –3 кг
Время секунда с 1 ч=3600 с 1 мин=60 с
Температура кельвин К 1 0 С=1 К
Сила тока ампер А 1 СГСЭ I = =1/3×10 –9 А 1 СГСМ I =10 А
Сила света кандела кд
Дополнительные единицы
Плоский угол радиан рад 1 0 =p/180 рад 1¢=p/108×10 –2 рад 1²=p/648×10 –3 рад
Телесный угол стерадиан ср Полный телесный угол=4p ср
Производные единицы
Частота герц Гц с –1

Продолжение табл.П1

Угловая скорость радиан в секунду рад/с с –1 1 об/с=2p рад/с 1об/мин= =0,105 рад/с
Объем кубический метр м 3 м 3 1см 2 =10 –6 м 3 1 л=10 –3 м 3
Скорость метр в секунду м/с м×с –1 1см/с=10 –2 м/с 1км/ч=0,278 м/с
Плотность килограмм на куби-ческий метр кг/м 3 кг×м –3 1г/см 3 = =10 3 кг/м 3
Сила ньютон Н кг×м×с –2 1 дин=10 –5 Н 1 кг=9,81Н
Работа, энергия, количество тепла джоуль Дж (Н×м) кг×м 2 ×с –2 1 эрг=10 –7 Дж 1 кгс×м=9,81 Дж 1 эВ=1,6×10 –19 Дж 1 кВт×ч=3,6×10 6 Дж 1 кал=4,19 Дж 1 ккал=4,19×10 3 Дж
Мощность ватт Вт (Дж/с) кг×м 2 ×с –3 1эрг/с=10 –7 Вт 1л.с.=735Вт
Давление паскаль Па (Н/м 2) кг∙м –1 ∙с –2 1дин/см 2 =0,1Па 1 ат=1 кгс/см 2 = =0,981∙10 5 Па 1мм.рт.ст.=133 Па 1атм= =760 мм.рт.ст.= =1,013∙10 5 Па
Момент силы ньютон–метр Н∙м кгм 2 ×с –2 1 дин×см= =10 –7 Н×м 1 кгс×м=9,81 Н×м
Момент инерции килограмм–метр в квадрате кг×м 2 кг×м 2 1 г×см 2 = =10 –7 кг×м 2
Динамическая вязкость паскаль–секунда Па×с кг×м –1 ×с –1 1П/пуаз/= =0,1Па×с

Продолжение табл.П1

Кинематическая вязкость квадратный метр на секунду м 2 /с м 2 ×с –1 1Ст/стокс/= =10 –4 м 2 /с
Теплоемкость системы джоуль на кельвин Дж/К кг×м 2 х х с –2 ×К –1 1 кал/ 0 С=4,19 Дж/К
Удельная теплоемкость джоуль на килограмм–кельвин Дж/ (кг×К) м 2 ×с –2 ×К –1 1 ккал/(кг× 0 С)= =4,19×10 3 Дж/(кг×К)
Электрический заряд кулон Кл А×с 1СГСЭ q = =1/3×10 –9 Кл 1СГСМ q = =10 Кл
Потенциал, электрическое напряжение вольт В (Вт/А) кг×м 2 х х с –3 ×А –1 1СГСЭ u = =300 В 1СГСМ u = =10 –8 В
Напряженность электрического поля вольт на метр В/м кг×м х х с –3 ×А –1 1 СГСЭ Е = =3×10 4 В/м
Электрическое смещение (электрическая индукция) кулон на квадратный метр Кл/м 2 м –2 ×с×А 1СГСЭ D = =1/12p х х 10 –5 Кл/м 2
Электрическое сопротивление ом Ом (В/А) кг×м 2 ×с –3 х х А –2 1СГСЭ R = 9×10 11 Ом 1СГСМ R = 10 –9 Ом
Электрическая емкость фарад Ф (Кл/В) кг –1 ×м –2 х с 4 ×А 2 1СГСЭ С = 1 см= =1/9×10 –11 Ф

Окончание табл.П1

Магнитный поток вебер Вб (В×с) кг×м 2 ×с –2 х х А –1 1СГСМ ф = =1 Мкс (максвел) = =10 –8 Вб
Магнитная индукция тесла Тл (Вб/ м 2) кг×с –2 ×А –1 1СГСМ В = =1 Гс(гаусс)= =10 –4 Тл
Напряженность магнитного поля ампер на метр А/м м –1 ×А 1СГСМ Н = =1Э(эрстед)= =1/4p×10 3 А/м
Магнитодвижущая сила ампер А А 1СГСМ Fm
Индуктивность генри Гн (Вб/А) кг×м 2 х х с –2 ×А –2 1СГСМ L = 1 см= =10 –9 Гн
Световой поток люмен лм кд
Яркость кандела на квадратный метр кд/м 2 м –2 ×кд
Освещенность люкс лк м –2 ×кд

Физическая величина

Физи́ческая величина́ - физическое свойство материального объекта, физического явления , процесса, которое может быть охарактеризовано количественно.

Значение физической величины - одно или несколько (в случае тензорной физической величины) чисел, характеризующих эту физическую величину, с указанием единицы измерения , на основе которой они были получены.

Размер физической величины - значения чисел, фигурирующих в значении физической величины .

Например, автомобиль может быть охарактеризован с помощью такой физической величины , как масса. При этом, значением этой физической величины будет, например, 1 тонна, а размером - число 1, или же значением будет 1000 килограмм, а размером - число 1000. Этот же автомобиль может быть охарактеризован с помощью другой физической величины - скорости. При этом, значением этой физической величины будет, например, вектор определённого направления 100 км/ч, а размером - число 100.

Размерность физической величины - единица измерения , фигурирующая в значении физической величины . Как правило, у физической величины много различных размерностей: например, у длины - нанометр, миллиметр, сантиметр, метр, километр, миля, дюйм, парсек, световой год и т. д. Часть таких единиц измерения (без учёта своих десятичных множителей) могут входить в различные системы физических единиц - СИ , СГС и др.

Часто физическая величина может быть выражена через другие, более основополагающие физические величины. (Например, сила может быть выражена через массу тела и его ускорение). А значит, соответственно, и размерность такой физической величины может быть выражена через размерности этих более общих величин. (Размерность силы может быть выражена через размерности массы и ускорения). (Часто такое представление размерности некоторой физической величины через размерности других физических величин является самостоятельной задачей, которая в некоторых случаях имеет свой смысл и назначение.) Размерности таких более общих величин часто уже являются основными единицами той или другой системы физических единиц, то есть такими, которые сами уже не выражаются через другие, ещё более общие величины.

Пример.
Если физическая величина мощность записывается как

P = 42,3 × 10³ Вт = 42,3 кВт, Р - это общепринятое литерное обозначение этой физической величины, 42,3 × 10³ Вт - значение этой физической величины, 42,3 × 10³ - размер этой физической величины.

Вт - это сокращённое обозначение одной из единиц измерения этой физической величины (ватт). Литера к является обозначением десятичного множителя «кило » Международной системы единиц (СИ) .

Размерные и безразмерные физические величины

  • Размерная физическая величина - физическая величина, для определения значения которой нужно применить какую-то единицу измерения этой физической величины. Подавляющее большинство физических величин являются размерными.
  • Безразмерная физическая величина - физическая величина, для определения значения которой достаточно только указания её размера. Например, относительная диэлектрическая проницаемость - это безразмерная физическая величина.

Аддитивные и неаддитивные физические величины

  • Аддитивная физическая величина - физическая величина, разные значения которой могут быть суммированы, умножены на числовой коэффициент, разделены друг на друга. Например, физическая величина масса - аддитивная физическая величина.
  • Неаддитивная физическая величина - физическая величина, для которой суммирование, умножение на числовой коэффициент или деление друг на друга её значений не имеет физического смысла. Например, физическая величина температура - неаддитивная физическая величина.

Экстенсивные и интенсивные физические величины

Физическая величина называется

  • экстенсивной, если величина её значения складывается из величин значений этой физической величины для подсистем, из которых состоит система (например, объём , вес);
  • интенсивной , если величина её значения не зависит от размера системы (например, температура , давление).

Некоторые физические величины, такие как момент импульса , площадь , сила , длина , время , не относятся ни к экстенсивным, ни к интенсивным.

От некоторых экстенсивных величин образуются производные величины:

  • удельная величина - это величина, делённая на массу (например, удельный объём);
  • молярная величина - это величина, делённая на количество вещества (например, молярный объём).

Скалярные, векторные, тензорные величины

В самом общем случае можно сказать, что физическая величина может быть представлена посредством тензора определённого ранга (валентности) .

Система единиц физических величин

Система единиц физических величин - совокупность единиц измерений физических величин, в которой существует некоторое число так называемых основных единиц измерений, а остальные единицы измерения могут быть выражены через эти основные единицы. Примеры систем физических единиц - Международная система единиц (СИ) , СГС .

Символы физических величин

Литература

  • РМГ 29-99 Метрология. Основные термины и определения.
  • Бурдун Г. Д., Базакуца В. А. Единицы физических величин . - Харьков : Вища школа, .


Просмотров