Электробезопасность на производстве. Классификация технических способов и средств защиты для обеспечения электробезопасности Особенностипоражения электрическим током

Классификация технических способов и средств защиты от поражения электрическим током установлена ГОСТом 12.1.019-79 (Электробезопасность. Общие требования и номенклатура видов защиты). Эти способы и средства следующие:

1. Применение малого напряжения. Малое напряжение (не более 42 В) применяют, например, для питания ручных переносных ламп и светильников местного освещения в помещениях с повышенной опасностью и особо опасных, а также для питания ручных электрифицированных машин в особо опасных помещениях . При особо неблагоприятных условиях (сырые участки траншей, колодцы и т.п.) для питания ручных переносных ламп применяют напряжение 12 В.

2. Электрическая изоляция токоведущих частей. С течением времени в условиях химически активной среды или в других неблагоприятных условиях эксплуатации электроизоляционные свойства изоляции снижаются, поэтому сопротивление ее нужно периодически контролировать. В случае повреждения рабочей изоляции устраивают дополнительную изоляцию токоведущих частей.

3. Оградительные устройства . Это устройства, предотвращающие прикосновение или приближение на опасные расстояния к токоведущим частям в случаях, когда провода или токоведущие части оборудования не могут иметь изоляции (например, троллейные провода).

4. Предупредительная сигнализация. Звуковой сигнал и красный свет лампы предупреждают о появлении опасности, например, напряжения в электроустановках; зеленый свет оповещает о снятии этого напряжения.

5. Блокировка. Блокирующие устройства защищают от электротравматизма путем автоматического разрыва электрической цепи перед тем, как работающий может оказаться под напряжением.

6. Знаки безопасности . Знаки безопасности (плакаты) подразделяют на:

    предупреждающие : «Стой! Опасно для жизни!», «Осторожно! Электрическое напряжение»;

    указательные : «Заземлено»;

    запрещающие : «Не включать – работают люди», «Опасное электрическое поле. Без средств защиты проход запрещен»;

    предписывающие : «Работать здесь», «Проход здесь».

7. Средства защиты и предохранительные приспособления. Они предназначены для защиты персонала от электротравм при работе на электроустановках. Средства защиты подразделяют на:

а) ограждающие (щиты, временные переносные заземлители);

б) изолирующие (диэлектрические отвертки, изолирующие клещи);

в) вспомогательные (очки).

Предохранительные приспособления – это предохранительные пояса, лестницы и т.д.

8. Выравнивание потенциалов. Это метод снижения напряжение прикосновения и шага между точками электрической цепи, к которым может одновременно прикасаться или на которых может одновременно стоять человек. Практически для выравнивания потенциалов устраивают контурное заземление, т.е. располагают заземлители по контуру вокруг заземленного оборудования.

9. Электрическое разделение сетей. Это разделение сетей на отдельные электрически не связанные между собой участки с помощью разделяющего трансформатора.

10 Защитное заземление . Это устранение опасности поражения человека током в случае прикосновения его к нетоковедущим металлическим частям электроустановки, оказавшимся под напряжением.

11. Зануление . Это превращение замыкания на корпус электроустановки в однофазное короткое замыкание, в результате чего срабатывает токовая защита и отключает поврежденный участок.

12. Защитное отключение . Это быстродействующая защита, обеспечивающая автоматическое отключение электроустановки при возникновении в ней опасности поражения током.

Повышение электробезопасности в установках достигается применением систем защитного заземления, зануления, защитного отключения и других средств и методов защиты, в том числе знаков безопасности и предупредительных плакатов и надписей. В системах местного освещения, в ручном электрофицированном инструменте и в некоторых случаях применяют пониженное напряжение.

Поскольку состояние окружающей среды (температура, влажность, наличие пыли, паров кислот и щелочей и т.п.) влияет на сопротивление тела человека и сопротивление изоляции, то согласно Правилам устройства электроустановок (ПУЭ) все помещения по опасности поражения электрическим током делятся на три категории.

  • 1. Помещения с повышенной опасностью, характеризующиеся наличием одного из следующих факторов (признаков): сырости, когда относительная влажность превышает 75%; высокой температуры воздуха, превышающей 35 °С; токопроводящей пыли; токопроводящих полов; возможности одновременного прикосновения к имеющим соединение с землей металлоконструкциям зданий, технологическим аппаратам, механизмам и т. п., с одной стороны, и к металлическим корпусам электрооборудования - с другой.
  • 2. Особо опасные помещения, характеризующиеся наличием одного из трех условий: особой сырости, когда относительная влажность воздуха близка к 100%; химически активной среды, когда содержащиеся пары или образующиеся отложения действуют разрушающе на изоляцию и токоведущие части оборудования; двух и более признаков одновременно, свойственных помещениям с повышенной опасностью.
  • 3. Помещения без повышенной опасности, характеризующиеся отсутствием признаков повышенной и особой опасности.

Защитное заземление предназначено для устранения опасности поражения электрическим током в случае прикосновения к корпусу и к другим нетоковедущим частям электроустановок, оказавшимся под напряжением вследствие замыкания на корпус и по другим причинам (рис. 6.5). При этом все металлические нетоковедущие части электроустановок 1 соединяются с землей с помощью заземляющих проводников 2 и заземлителя 3.

Рис. 6.5.

/с3 - сопротивление заземляющего устройства; Д(| - сопротивление тела человека; /?|, /?2 - сопротивление каждой из фаз; /ч - электрический ток, проходящий через тело человека

Заземлитель - это проводник или совокупность металлически соединенных проводников, находящихся в соприкосновении с землей или ее эквивалентом. Заземлители бывают искусственные, предназначенные исключительно для целей заземления, и естественные - находящиеся в земле металлические предметы иного назначения.

Для заземления оборудования в первую очередь используют естественные заземлители: железобетонные фундаменты, а также расположенные в земле металлические конструкции зданий и сооружений.

Защитное заземление применяют в сетях напряжением до 1000 В с изолированной нейтралью и в сетях напряжением свыше 19 000 В как с изолированной, так и с заземленной нейтралью.

С помощью защитного заземления уменьшается напряжение па корпусе относительно земли до безопасного значения, следовательно, уменьшается и сила тока, протекающего через тело человека. На схеме защитного заземления (см. рис. 6.5) показано, что напряжение, приложенное к телу человека в случае прикосновения к оборудованию, можно снизить, уменьшая сопротивление заземляющего устройства. Согласно ПЭУ сопротивление заземления в электроустановках до 1000 В не должно превышать 4 Ом.

Защитное зануление так же, как и защитное заземление, предназначено для устранения опасности поражения электрическим током при замыкании на корпус электроустановок. Защитное зануление осуществляется присоединением корпуса и других конструктивных нетоковедущих частей электроустановок к неоднократному заземленному нулевому проводу (рис. 6.6).

Защитное зануление превращает пробой на корпус в короткое замыкание между фазным и пулевым проводами и способствует протеканию тока большой силы через устройства защиты среды, а в конечном итоге быстрому отключению поврежденного оборудования от сети. Из приведенной схемы (см. рис. 6.6) очевидно, что при замыкании на корпус фаза окажется соединенной накоротко с нулевым проводом, вследствие чего через защиту (плавкий предохранитель или автомат) потечет ток короткого замыкания, который и вызовет перегорание предохранителя или отключение автомата. Чтобы защита быстро срабатывала, ток короткого замыкания дол

Рис. 6.6.

й(і - сопротивление заземления нейтрали источника тока; /?" - сопротивление повторного заземления нулевого защитного проводника; /к - ток короткого замыкания

жен быть достаточно большим. Правила требуют, чтобы ток короткого замыкания был в три раза больше номинального тока плавкой вставки предохранителя или расцепителя автоматического отключения. Это требование выполняется, если нулевой провод имеет проводимость не менее 50% проводимости фазного провода. В качестве нулевых проводов можно использовать стальные полосы, металлические оплетки кабелей, металлоконструкции зданий, подкрановые пути и др.

Системы защитного отключения - это специальные электрические устройства, предназначенные для отключения электроустановок в случае появления опасности пробоя на корпус. Так как основной причиной замыкания па корпус токоведущих частей оборудования является нарушение изоляции, то системы защитного отключения осуществляют постоянный контроль за сопротивлением изоляции или токами утечки между токоведущими и нетоковедущими деталями конструкции оборудования. При достижении опасного уровня оборудование отключается до того момента, когда произойдет пробой на корпус и появится реальная опасность поражения электрическим током.

Повышение электробезопасности достигается также путем применения изолирующих, ограждающих, предохранительных и сигнализирующих средств защиты.

Изолирующие электрозащитные средства делятся на основные и дополнительные. Основные изолирующие электрозащитные средства способны длительное время выдерживать рабочее напряжение электроустановки, и поэтому ими разрешается касаться токоведущих частей, находящихся под напряжением, и работать на этих частях. К таким средствам относятся: в электроустановках напряжением до 1000 В - диэлектрические резиновые перчатки, инструмент с изолирующими рукоятками и указатели напряжения до 1000 В (ранее назывались токоискателями); в электроустановках напряжением выше 1000 В - изолирующие штанги, изолирующие и электроизмерительные клещи, а также указатели напряжения выше 1000 В.

Дополнительные изолирующие электрозащитные средства обладают недостаточной электрической прочностью и поэтому не могут самостоятельно защищать человека от поражения током. Их назначение - усилить защитное действие основных изолирующих средств, вместе с которыми они должны применяться. К дополнительным изолирующим средствам относятся: в электроустановках напряжением до 1000 В - диэлектрические галоши, коврики и изолирующие подставки; в электроустановках напряжением выше 1000 В - диэлектрические перчатки, боты, коврики, изолирующие подставки.

Ограждающие средства защиты предназначены для временного ограждения токоведущих частей (временные переносные ограждения, щиты, ограждения-клетки, изолирующие накладки, изолирующие колпаки).

Сигнализирующие средства включают запрещающие и предупреждающие знаки безопасности, а также плакаты: запрещающие, предостерегающие, разрешающие, напоминающие. Чаще всего используется предупреждающий знак "Проход запрещен".

Предохранительные средства защиты предназначены для индивидуальной защиты работающего от световых, тепловых и механических воздействий. К ним относят: защитные очки, противогазы, специальные рукавицы и т.п.

Электробезопасность в соответствии с ГОСТ 12.1.019. должна обеспечиваться:

Безопасной конструкцией электроустановок;

Техническими способами и средствами защиты;

Организационными и техническими мероприятиями.

Обеспечение электробезопасности техническими способами и средствами предусматривает: защиту от случайного прикосновения к токоведущим частям и защиту от поражения электрическим током при прикосновении к металлическим нетоковедущим частям, которые могут оказаться под напряжением в результате повреждения изоляции.
Для обеспечения защиты от случайного прикосновения к токоведущим частям необходимо применять следующие способы и средства: защитные оболочки; защитные ограждения (временные или стационарные); безопасное расположение токоведущих частей; изоляция токоведущих частей (рабочая, дополнительная, усиленная, двойная); изоляция рабочего места; малое напряжение; защитное отключение; предупредительная сигнализация, блокировка, знаки безопасности.

Для обеспечения защиты от поражения электрическим током при прикосновении к металлическим нетоковедущим частям, которые могут оказаться под напряжением в результате повреждения изоляции, применяют следующие способы: защитное заземление; зануление; выравнивание потенциала; система защитных проводов; защитное отключение; изоляция нетоковедущих частей; электрическое разделение сети; малое напряжение; контроль изоляции; компенсация токов замыкания на землю; средства индивидуальной защиты.



Рассмотрим более подробно некоторые технические средства защиты от по­ражения электрическим током.

Применение малого напряжения . В целях умень­шения опасности поражения электрическим током применяют но­минальное напряжение - не более 42 В, например, для питания ручных переносных ламп и светильников местного освещения в по­мещениях с повышенной опасностью и особо опасных, а также для питания электрифицированных ручных машин в особо опасных по­мещениях. При особо неблагоприятных условиях (сырые участки траншей, шахты, колодцы и т. п.) для питания ручных переносных ламп нужно применять напряжение 12 В. Ток малого напряжения получают от понижающих трансформаторов. Защита от случайного перехода высокого напряжения (380, 220 и 127 В) на обмотку низкого напряжения (42 или 12 В) осуществляется путем заземле­ния вторичной обмотки и корпуса понижающего трансформатора.

Электрическая изоляция токоведущих частей. С течением времени в условиях химически активной среды или в других неблагоприятных условиях эксплуатации электроизоляци­онные свойства изоляции снижаются, поэтому сопротивление ее необходимо периодически контролировать.

Изоляцию подразделяют на рабочую (обеспечивает нормаль­ную работу электроустановки и защиту от поражения электриче­ским током); дополнительную (дополнительную к рабочей на слу­чай повреждения рабочей изоляции); усиленную (улучшенную ра­бочую изоляцию); двойную (состоящую из рабочей и дополнитель­ной изоляции).

Оградительные устройства. Устройства, предотвра­щающие прикосновение или приближение на опасные расстояния к токоведущим частям в случаях, когда провода или токоведущие части электрооборудования не могут иметь изоляции (например, троллейные провода), размещают на расстоянии, недоступном для соприкосновения с ними человека (например, вверху); применяют также защитные ограждения, изготовленные из трудногорючих или негорючих материалов.

В общем случае ограждения и оболочки предназначены для предотвращения любого прикосновения к токоведущим частям электроустановки (ГОСТ Р 50571. 3-94) Если необходимо снять ограждение или вскрыть оболочку или ее части, это может быть сделано только:

С помощью ключа или специального инструмента или

После обесточивания токоведущих частей, защищенных этими ограждениями или оболочками и т.д.


Защита путем размещения вне зоны досягаемости предназначена только для предотвращения непреднамеренных прикосновений к токоведущим частям. Части электроустановки с разными потенциалами, доступные одновременному прикосновению, не должны находиться внутри зоны досягаемости. Две части считаются доступными одновременному прикосновению, если они находятся на расстоянии не более 2,5 м друг от друга (рис.4.46.)

Граница зоны досягаемости;

Рис. 4.46. Зона досягаемости: S - поверхность, на которой может находится человек; 0,75; 1,25; 2,50 м - расстояния от края поверхности S до границы зоны досягаемости

Предупредительная сигнализация, блокиров­ка, знаки безопасности. Звуковой сигнал и красный свет лампы предупреждают о появлении опасности, например напряже­ния в электроустановках, зеленый свет оповещает о снятии этого напряжения.

Предупредительные плакаты, вывешиваемые на видных местах, подразделяют на предостерегающие или предупреждающие об опасности (например, «Стой, опасно для жизни»). Запрещающие плакаты предназначены для запрещения оперирования коммутационными аппаратами (например, «Не вклю­чать- работают люди», «Не включать - работа на линии»). Есть плакаты, напоминающие о каких-либо принятых мерах (например, «Заземлено»).

Для исключения ошибочных соединений и лучшей ориентации в электрических цепях электроустановок провода, шины и кабели имеют маркировку ввиде цифровых и буквенных обозначений и отличительную окраску. Блокирующие устройства защищают от электротравматизма путем автоматического разрыва электриче­ской цепи перед тем, как рабочий может оказаться под напряже­нием. Так, при снятии защитного ограждения или открывании две­рец установки, находящейся под напряжением, контакты разъеди­няются, отключая установку.

Средства защиты и предохранительные при­способления предназначены для защиты персонала от элект­ротравм при работе на электроустановках. Защитные средства под­разделяют на вспомогательные (очки, противогазы), ограждающие (временные переносные заземлители, щиты, изолирующие накладки) и изолирующие, которые, в свою очередь, подразделяют на ос­новные и дополнительные. Основные защитные средства способны длительно выдерживать рабочее напряжение электроустановки, и ими можно прикасаться к токоведущим частям оборудования. При напряжении в установках более 1000 В в качестве защитных средств применяют изолирующие штанги, изолирующие и токоизмерительные клещи и указатели напряжения.

Если работы выполняют под напряжением в установках до 1000 В, кроме штанг и клещей используют диэлектрические пер­чатки, рукавицы и монтерский электроинструмент с изолирован­ными ручками.

Дополнительные защитные средства применяют при использо­вании основных средств для усиления их изолирующих свойств. К таким защитным средствам при работе под напряжением более 1000 В относят диэлектрические перчатки, боты, ковры и изолиру­ющие подставки. В установках под напряжением до 1000 В допол­нительными защитными средствами являются диэлектрические ковры и галоши, а также изолирующие подставки.

Предохранительными приспособлениями являются предохрани­тельные пояса, монтерские когти, лестницы.

Компенсация токов замыкания на землю . В дан­ном случае между нейтралью и землей включают компенсацион­ную катушку. Этот вид защиты применяют одновременно с защит­ным заземлением или отключением.

Выравнивание потенциалов - метод снижения напря­жений прикосновения и шага между точками электрической цепи, к которым можно одновременно прикасаться или на которых мо­жет одновременно стоять человек. Практически для этого устраи­вают контурное заземление, т. е. располагают заземлители по кон­туру вокруг заземленного оборудования.

Электрическое разделение сетей - разделение их на отдельные электрически не связанные между собой участки с помощью разделяющего трансформатора. Такой трансформатор предназначен для отделения приемника энергии от первичной электрической сети и сети заземления. Безопасность заключается в том, что сети большой протяженности имеют большую емкость относительно земли и небольшие сопротивления изоляции. В этом случае человек, прикоснувшийся к токоведущим частям, попадает под действие фазного напряжения.

Защитное заземление - устранение опасности пораже­ния человека током в случае прикосновения его к нетоковедущим металлическим частям электроустановки, оказавшимся под напря­жением.

Защитное заземление - это преднамеренное электрическое соединение с зем­лей (или ее эквивалентом) металлических нетоковедущих частей, которые могут оказаться под напряжением.


Принцип действия защитного заземления основан на снижении до безопасных значений напряжений шага, обусловленных замы­канием на корпус. Снижают напряжение путем уменьшения потен­циала заземленного оборудова­ния за счет уменьшения сопротив­ления заземления.

Рис.4.47. Принципиальная схема действия защитного заземления.

При замыкании фазы 1 (рис. 4.47) на корпус электроустанов­ки человек, прикоснувшийся к этому корпусу, попадает под фаз­ное напряжение, опасное для жизни. При наличии заземляю­щего устройства со­противление тела человека и заземлителя включаются в парал­лельные ветви, и при неизменном общем токе, т. е. при токе корот­кого замыкания I 3 сила тока, про­ходящего через тело человека, будет равной Ih=I 3 (R 3 /Rh), ас учетом коэффициентов α 1 – коэффициент напряжения прикосновения и α 2 – коэффициент, учитывающий падение напряжении в дополнительных сопротивлениях цепи человека. Под напряжением прикосновения понимаем напряжение между двумя точками электрической цепи, которых одновременно касается человек.

Из этого равенства следует, что для уменьшения силы тока, проходящего через тело человека, необходимо уменьшить сопротивление заземлителя.

Для участка, к которому подключается человек, т. е. участок корпус - земля как часть электрической цепи, применим закон Ома

где U K - напряжение на корпусе, В; I 3 - ток замыкания на зем­лю, A; R 3 - сопротивление заземлителя, Ом.

Отсюда следует, что уменьшить напряжение до безопасной ве­личины на корпусе, к которому прикасается человек, можно путем уменьшения сопротивления участка корпус - земля. Уменьшают сопротивление этого участка снижением сопротивления заземлителя R 3 .

Исследованиями установлено, что безопасное напряжение на корпусе не должно превышать 40В. Принимая ток короткого замыкания в размере 10 А (практически он не превышает несколь­ких ампер) при напряжении в сети до 1000В, необходимое сопротивление заземлителя должно быть порядка 4 Ом.

Защитное заземление устраивают в трехфазных трехпроводных сетях с изолированной нейтралью напряжением до 1000В, а выше 1000 В - с любым режимом нейтрали. Заземлению подлежат электроустановки напряжением выше 42 В переменного тока в по­мещениях с повышенной опасностью и особо опасных, а также в наружных установках.

В отличие от защитного заземления рабочее заземление пред­назначено для обеспечения нормальных режимов работы электро­установки.

Не заземляют электроустановки, работающие при напряжении 42 В и ниже переменного тока, за исключением взрывоопасных ус­тановок, электроприемники с двойной изоляцией, корпуса различ­ных электроизмерительных приборов.

Заземлять необходимо следующие элементы электроустановок: корпуса электрических машин, трансформаторов, аппаратов, све­тильников, переносных злектроприемников, каркасы распредели­тельных щитов, щитов управления, щитков и шкафов, металличе­ские конструкции распределительных устройств, металлические оболочки кабелей и проводов, стальные трубы электропроводки и т. д.

Заземляющее устройство (рис. 4.47.) состоит из заземлителя 2, представляющего собой металлический проводник (один или не­сколько), находящийся в земле, и проводника 3 , соединяющего за­земляемые элементы электроустановки 1 с заземлителем 2.

В качестве заземлителей могут быть использованы находящиеся в соприкосновении с землей:

Металлические стержни или трубы;

Металлические полосы или проволока;

Металлические плиты, пластины или листы;

Фундаментные заземлители;

Стальная арматура железобетона.

Эффективность заземлителя зависит от конкретных грунтовых условий, и поэтому в зависимости от этих условий и требуемого значения сопротивления растеканию должны быть выбраны количество и конструкция заземлителей. Значение сопротивления растеканию заземлителя может быть рассчитано или измерено. Наименьшие размеры заземляющих проводников, проложенных в земле представлены в табл. 4.24.

План лекции:

Введение.

1. Действие электрического тока на организм человека.

2. Первая помощь пострадавшему при поражении электрическим током.

3. Факторы, влияющие на степень тяжести электротравматизма.

4. Классификация помещений по степени опасности поражения людей электрическим током.

5. Основные причины поражения людей электрическим током.

Введение.

Электробезопасность – система организационных и технических мероприятий и средств, обеспечивающих защиту людей от вредного и опасного воздействия электрического тока, электрической дуги, электромагнитного поля и статического электричества.

Электрические установки, используемые на производстве, представляют большую потенциальную опасность. Кроме поражения людей электрическим током нарушение режима работы электроустановок может сопровождаться в отдельных случаях возникновением пожара или взрыва.

Опасность поражения людей электрическим током специфична и усугубляется еще тем, что она не может быть обнаружена органами чувств человека: зрением, слухом, обонянием.

Анализ статических данных показывает, что электротравматизм в общем балансе травматизма на производстве не высок - всего 0,5...1%. Однако по числу случаев со смертельным исходом электротравматизм занимает одно из первых мест, достигая в отдельных отраслях 30...40%. При этом до 80% случаев со смертельным исходом приходится на электроустановки напряжением 127...380 В.

Согласно Правил устройства электроустановок (ПУЭ) все электроустановки по напряжению разделяют на 2 группы: установки напряжением до 1000 В, включительно и свыше 1000 В.

Наибольшее количество электротравм, приходящиеся, как правило, на установки напряжением до 1000 В, объясняется тем обстоятельством, что указанные электроустановки находят повсеместное распространение, и в большинстве случаев обслуживаются они персоналом, не имеющим специальной электрической подготовки.

Практика показывает, что в большинстве случаев при применении электрической энергии опасность возникает из-за нарушения целостности изоляции токоведущих частей. На состояние изоляции существенное влияние оказывает температура и влажность окружающей среды производственных помещений, наличие химически активной среды и ряд других факторов.

Таким образом при эксплуатации электрического оборудования, аппаратуры и приборов большое значение приобретают вопросы защиты обслуживающего персонала и других лиц от опасности поражения электрическим током.

1. Действие электрического тока на организм человека.

Проходя через тело человека, электрический ток оказывает на него сложное действие, являющееся совокупностью термического, электролитического и биологического воздействия.

Термическое действие тока проявляется в ожогах отдельных участков тела, а также в нагреве от высоких температур других органов, приводящем к серьезным функциональным расстройствам.

Электролитическое действие тока выражается в разложении крови и других органических жидкостей, вызывая значительные нарушения их физико-химического состава.

Биологическое действие тока проявляется в раздражении и возбуждении живых тканей организма, что сопровождается непроизвольными судорожными сокращениями мышц, в том числе мышцы и мышц легких.

Раздражающее действие тока на ткани живого организма, а следовательно, и обусловленные им непроизвольные судорожные сокращения мышц, может быть прямым, когда ток проходит непосредственно по этим тканям, а в некоторых случаях – рефлекторным, т.е. через центральную нервную систему, когда путь тока лежит вне этих тканей.

Любое из выше перечисленных воздействий может привести к электрической травме, т.е. повреждению организма, вызванному действием на него электрического тока или электрической дуги.

Электротравмы условно можно разделить на два вида: местные электротравмы и электрические удары. Примерно в 55% случаев травмы носят смешанный характер.

Под местными электротравмами понимаются четко выраженные местные нарушения целостности тканей организма. Чаще всего это поверхностные повреждения, т.е. повреждения кожи, а иногда других мягких тканей, а также связок и костей. Обычно местные электротравмы излечиваются и работоспособность восстанавливается полностью или частично.

К местным электротравмам относят электрические ожоги, электрические знаки, металлизацию кожи, электроофтальмию и механические повреждения.

Ожоги являются результатом теплового воздействия электрического тока в месте контакта. Ожоги составляют две трети всех электротравм, причем многие из них сопровождаются другими видами повреждений. Ожоги бывают двух видов - токовый (контактный) и дуговой.

Токовый ожог возникает при прохождении тока непосредственно через тело человека в результате его контакта с токоведущей частью и является следствием преобразования электрической энергии в тепловую. При этом, поскольку кожа человека обладает во много раз большим электрическим сопротивлением, чем другие ткани тела, в ней выделяется большая часть тепла. Данное обстоятельство в полной мере подтверждается и законом Джоуля-Ленца:

Q = 0,24  J 2  R  t (1)

где Q – количество выделяющегося тепла, ккал;

J – сила тока, А;

R – сопротивление на пути движения тока (сопротивление тела человека), Ом;

t – время действия тока, сек.

Этим и объясняется, что токовый ожог является, как правило, ожогом кожи в месте контакта тела с токоведущей частью. Токовые ожоги возникают в электроустановках относительно небольшого напряжения - не выше 1...2 кВ, в большинстве случаев они сравнительно легкие и характеризуются обычно 1 или 2 степенью (покраснение кожи, образование пузырей). Иногда возникают и тяжелые ожоги 3 и 4 степеней (омертвление пораженного участка кожи, обугливание тканей).

При более высоких напряжениях между токоведущей частью и телом человека образуется электрическая дуга, которая и обуславливает возникновение дугового ожога. Дуговой жег является результатом воздействия на тело человека электрической дуги, обладающей высокой температурой (свыше 3500 С) и большой энергией. Этот ожог возникает обычно в электроустановках высокого напряжения – выше 1000 В и, как правило, носит тяжелый характер – ожоги 3-ей или 4-ой степени. Электрическая дуга может вызывать обширные ожоги тела, выгорание тканей на большую глубину, обугливание и бесследное сгорание больших участков тела. Зачастую ожоги 3-ей и 4-ой степеней тяжести заканчиваются смертельным исходом.

Электрические знаки (знаки тока или электрические метки) представляют собой четко очерченные пятна серого или бледно-желтого цвета на поверхности кожи человека, подвергающегося действию тока. Знаки появляются примерно у каждого пятого пострадавшего. Электрические знаки, как правило, безболезненны и их лечение заканчивается благополучно.

Металлизация кожи – проникновение в ее верхние слои мельчайших частиц металла, расплавившегося под действием электрической дуги. Это происходит, в основном, при коротких замыканиях, при отключении разъединителей и рубильников под нагрузкой и т.п. Поврежденный участок кожи имеет шероховатую, жесткую поверхность. По цвету пораженный участок напоминает обычно цвет металла, частици которого проникают в кожный покров. Пострадавший при этом испытывает напряжение кожи от присутствия в ней инородного тела, а также болевые ощущения от ожога за счет тепла занесенного в кожу металла (расплавление частицы металла имеют достаточно высокую температуру – несколько сот С).

Металлизация кожи наблюдается примерно у 10% пострадавших. В большинстве случаев одновременно с металлизацией кожи происходит жег электрической дугой, который почти всегда вызывает более тяжелые поражения.

Электроофтальмия – воспаление наружных оболочек глаз, возникающее в результате воздействия мощного потока ультрафиолетовых лучей, которые энергично поглощаются клетками организма и вызывают в них химические изменения. Такое облучение возможно, например, при коротком замыкании, которое сопровождается интенсивным излучением не только видимого света, но и ультрафиолетовых и инфракрасных лучей. Электроофтальмия возникает довольно редко (1...2% пострадавших).

Механические повреждения являются следствием резких непроизвольных судорожных сокращений мышц под действием тока, проходящего через тело человека. Такие сокращения могут приводить к нарушению целостности кожного покрова, разрывам кровеносных сосудов, а также вывихам суставов, а порой и к переломам костей. Механические повреждения относят к разряду тяжелых травм, требующих длительного лечения. Они происходят сравнительно редко – примерно у 3% пострадавших.

Электрический удар – это возбуждение живых тканей организма человека проходящим через него электрическим током, сопровождающееся сокращением мышц.

Различают четыре степени электрических ударов:

    судорожные сокращения мышц без потери сознания;

    судорожные сокращения мышц с потерей сознания, но с сохранившимся дыханием и работой сердца;

    потеря сознания и нарушение сердечной деятельности или дыхания (либо того или другого вместе);

    клиническая смерть, т.е. отсутствие дыхания и кровообращения.

Человек, находящийся в состоянии клинической смерти, не дышит, его сердце не работает, болевые раздражения не вызывают никаких реакций, зрачки глаз расширены и не реагируют на свет. Однако в этот период почти во всех тканях организма еще продолжаются слабые процессы, достаточные для поддержания минимальной жизнедеятельности.

При клинической смерти первыми начинают погибать чувствительные к кислородному голоданию клетки коры головного мозга - через 5...6 минут. Другие органы перестают функционировать несколько позже: печень и почки через 10...20 минут; мышечная система через 20...30 минут. Если своевременно оказать помощь пострадавшему (искусственное дыхание и непрямой массаж сердца); то возможно восстановление функций организма. В противном случае процесс становится необратимым и клиническая смерть переходит в биологическую смерть.

К общетехническим средствам электробезопасности относятся:

    рабочая изоляция;

    двойная изоляция;

    недоступность токоведущих частей (применение оградительных средств – кожух, электрический шкаф и др.);

    блокировки безопасности (механические, электрические);

    малое напряжение. Малое напряжение, согласно стандарту – номинальное напряжение не более 42 В, применяемое в целях уменьшения опасности поражения электрическим током (ГОСТ12.1.009-76 ССБТ. Электро-безопасность. Термины и определения). В 7-м издании ПУЭ водится понятие «сверхнизкое (малое) напряжение» (СНН) – напряжение, не превышающее 50 В переменного и 120 В постоянного тока. Для переносных светильников – 36 В, для особоопасных помещений и вне помещений – 12 В;

    меры ориентации (использование маркировок отдельных частей электрооборудования, надписи, предупредительные знаки, разноцветная изоляция, световая сигнализация).

Специальные средства защиты

Наибольшее распространение среди технических мер защиты человека в сетях до 1000 В получили:

    защитное заземление;

    зануление;

    защитное отключение.

Средства индивидуальной защиты, используемые в электроустановках

Средства защиты, используемые в электроустановках, по своему назначению подразделяются на две категории: основные и дополнительные .

Основные электрозащитные средства – это средства защиты, изоляция которых длительно выдерживает рабочее напряжение электроустановок и которые позволяют прикасаться к токоведущим частям, находящимся под напряжением.

Дополнительные электрозащитные средства – это средства защиты, дополняющие основные средства, а также служащие для защиты от напряжения прикосновения и напряжения шага, которые сами по себе не могут при данном напряжении обеспечить защиту от поражения током, а применяются совместно с основными электрозащитными средствами.

Все электрозащитные средства перед эксплуатацией проходят приемо-сдаточные испытания и периодически (через 6…36 месяцев) подвергаются контрольным осмотрам и эксплуатационным электрическим испытаниям повышенным напряжением.

Классификация электрозащитных средств приведена в табл. 15.

Таблица 15

Классификация средств индивидуальной защиты, используемых в электроустановках

Виды средств

Наименование средств защиты при напряжении электроустановки

до 1000 В

свыше 1000 В

Основные

Изолирующие штанги, изолирующие и электроизмерительные клещи, указатели напряжения, диэлектрические перчатки, слесарно-монтажный инструмент с изолирующими ручками

Изолирующие штанги, изолирующие и электроизмерительные клещи, указатели напряжения, изолирующие устройства и приспособления для работ на высоковольтных линиях с непосредственным прикосновением электромонтера к токоведущим частям

Дополнительные

Диэлектрические галоши, диэлектрические коврики, переносные заземления, изолирующие подставки и накладки, оградительные устройства, плакаты и знаки безопасности

Диэлектрические перчатки и боты, диэлектрические коврики, изолирующие подставки и накладки, индивидуальные изолирующие комплекты, диэлектрические колпаки, переносные заземления, оградительные устройства, плакаты и знаки безопасности



Просмотров