Что такое целлюлоза? Растительная клетчатка-полисахарид. Целлюлоза распространение в природе

Который состоит из остатков молекулы глюкозы и является необходимым элементом для образования оболочки всех растительных клеток. Молекулы ее имеют и содержат три гидроксильные группы. Благодаря этому, она проявляет свойства .

Физические свойства целлюлозы

Целлюлоза является белым твердым веществом, которое способно достигать температуры в 200оС и при этом не разрушаться. Но при повышении температуры до 275оС она начинает воспламеняться, что говорит о ее принадлежности к горючим веществам.

Если рассматривать целлюлозу под микроскопом, можно заметить, что ее структура образована волокнами, имеющими длину не более 20 мм. Волокна целлюлозы соединены множеством водородных связей, но при этом они не имеют ответвлений. Это придает целлюлозе наибольшую прочность и способность к сохранению эластичности.

Химические свойства целлюлозы

Остатки молекул глюкозы, составляющие целлюлозу, образуются при . Серная кислота и йод в процессе гидролиза окрашивают целлюлозу в синий цвет, а просто йод- в коричневый.

Существует множество реакций с целлюлозой, при которых происходит образование новых молекул. Реагируя с азотной кислотой, целлюлоза превращается в нитроцеллюлозу. А в процессе уксусной кислотой образуется триацетат целлюлозы.

Целлюлоза не растворяется в воде. Самым эффективным ее растворителем является ионная жидкость.

Как получают целлюлозу?

Древесина состоит на 50% из целлюлозы. Путем длительной варки щепы в растворе реагентов, а затем проведения очистки полученного раствора, можно получить ее в чистом виде.

Способы варки целлюлозы различаются по типу реагентов. Они могут быть кислыми и щелочными. Кислые реагенты содержат сернистую кислоту и применяются для получения целлюлозы из малосмолистых деревьев. Щелочные реагенты существуют двух типов: натронные и сульфатные. Благодаря натронным реагентам, целлюлозу можно получать из лиственных деревьев и однолетних растений. Но, используя этот реагент, целлюлоза получается очень дорогой, поэтому натронные реагенты используют редко или не используют совсем.

Самым распространенным способом получения метод, основанный на сульфатных реагентах. Сульфат натрия - основа для белого щелока, который используется как реагент и пригоден для получения целлюлозы из любого растительного сырья.

Применение целлюлозы

Целлюлоза и ее эфиры используются для создания искусственных волокон, вискозного и ацетатного. Древесная целлюлоза используется для создания разнообразных вещей: бумаги, пластмассы, взрывных устройств, лаков и т. д.

Прежде всего, необходимо пояснить, что же именно представляет собой целлюлоза и каковы в общих чертах ее свойства.

Целлюлоза (от лат. cellula - букв, комнатка, здесь — клетка) - клетчатка, вещество клеточных стенок растений, представляет собой полимер класса углеводов - полисахарид, молекулы которого построены из остатков молекул моносахарида глюкозы (см. схему 1).


СХЕМА 1 Строение молекулы целлюлозы

Каждый остаток молекулы глюкозы - или, для краткости, глгокозный остаток - повернут относительно соседнего на 180° и связан с ним кислородным мостиком -О-, или, как принято говорить в данном случае, глюкозидной связью через атом кислорода. Вся молекула целлюлозы представляет, таким образом, как бы гигантскую цепочку. Отдельные звенья этой цепочки имеют форму шестиугольников, или - в терминах химии -6-членных циклов. В молекуле глюкозы (и ее остатке) этот 6-членный цикл построен из пяти атомов углерода С и одного атома кислорода О. Такие циклы называются пирановыми. Из шести атомов 6-членного пиранового цикла на изображенной выше схеме 1, в вершине одного из углов показан только атом кислорода О - гетероатом (от греч. етeроs; - другой, отличающийся от остальных). В вершинах остальных пяти углов располагается по атому углерода С (эти «обычные» для органики атомы углерода, в отличие от гетероатома, в формулах циклических соединений изображать не принято).

Каждый 6-членный цикл имеет форму не плоского шестиугольника, а изогнутого в пространстве, наподобие кресла (см. схему 2), - отсюда и название этой формы, или пространственной конформации, наиболее устойчивой для молекулы целлюлозы.


СХЕМА 2 Форма кресла

На схемах 1 и 2 стороны шестиугольников, расположенные к нам ближе, выделены жирной чертой. На схеме 1 видно также, что каждый глюкозный остаток содержит 3 гидроксильные группы -ОН (их называют гидроксигруппами или просто гидроксилами). Для наглядности эти группы -ОН заключены в пунктирную рамку.

Гидроксильные группы способны образовывать прочные межмолекулярные водородные связи с атомом водорода Н в качестве мостика, поэтому энергия связей между молекулами целлюлозы высока и целлюлоза как материал обладает значительной прочностью и жесткостью. Кроме того, группы -ОН способствуют поглощению водяных паров и придают целлюлозе свойства многоатомных спиртов (так называют спирты, содержащие несколько групп -ОН). При набухании целлюлозы водородные связи между ее молекулами разрушаются, цепочки молекул раздвигаются молекулами воды (или молекулами поглощенного реагента), и образуются новые связи - между молекулами целлюлозы и воды (или реагента).

В обычных условиях целлюлоза - твердое вещество плотностью 1,54-1,56 г/см3 , нерастворимое в обычных растворителях - воде, спирте, диэтиловом эфире, бензоле, хлороформе и др. В натуральных волокнах целлюлоза имеет аморфно-кристаллическое строение со степенью кристалличности около 70%.

В химических реакциях с целлюлозой участвуют обычно три группы -ОН. Остальные элементы, из которых построена молекула целлюлозы, вступают в реакцию при более сильных воздействиях - при повышенной температуре, при действии концентрированных кислот, щелочей, окислителей.

Так, например, при нагревании до температуры 130°С свойства целлюлозы изменяются лишь незначительно. Но при 150-160°С начинается процесс медленного разрушения - деструкции целлюлозы, а при температуре выше 160°С этот процесс происходит уже быстро и сопровождается разрывом глюкозидных связей (по атому кислорода), более глубоким разложением молекул и обугливанием целлюлозы.

По-разному действуют на целлюлозу кислоты. При обработке хлопковой целлюлозы смесью концентрированных азотной и серной кислот в реакцию вступают гидроксильные группы -ОН, и в результате получаются азотнокислые эфиры целлюлозы - так называемая нитроцеллюлоза, которая, в зависимости от содержания нитрогрупп в молекуле, обладает различными свойствами. Наиболее известны из нитроцеллюлоз пироксилин, применяемый для производства пороха, и целлулоид - пластмассы на основе нитроцеллюлозы с некоторыми добавками.

Другой тип химического взаимодействия имеет место при обработке целлюлозы соляной или серной кислотой. Под действием этих минеральных кислот происходит постепенная деструкция молекул целлюлозы с разрывом глюкозидных связей, сопровождающаяся гидролизом, т.е. обменной реакцией с участием молекул воды (см. схему 3).



СХЕМА 3 Гидролиз целлюлозы
На этой схеме изображены те же три звена полимерной цепочки целлюлозы, т.е. те же три остатка молекул целлюлозы, что и на схеме 1, только 6-членные пирановые циклы представлены не в форме "кресел", а в форме плоских шестиугольников. Такое условное обозначение циклических структур также общепринято в химии.

Полный гидролиз, проводимый при кипячении с минеральными кислотами, приводит к получению глюкозы. Продуктом частичного гидролиза целлюлозы является так называемая гидроцеллюлоза, она обладает меньшей механической прочностью по сравнению с обычной целлюлозой, так как показатели механической прочности падают с уменьшением длины цепочки полимерной молекулы.

Совершенно другой эффект наблюдается в том случае, если целлюлозу обработать непродолжительное время концентрированной серной или соляной кислотой. Происходит пергаментация: поверхность бумаги или хлопчатобумажной ткани набухает, и этот поверхностный слой, представляющий собой частично разрушенную и подвергнувшуюся гидролизу целлюлозу, придает бумаге или ткани после высушивания особый лоск и повышенную прочность. Это явление впервые было замечено в 1846 г. французскими исследователями Ж.Пумару и Л.Фипойе.

Слабые (0,5%-ные) растворы минеральных и органических кислот при температуре примерно до 70°С, если после их нанесения следует промывка, не оказывают разрушающего действия на целлюлозу.

К щелочам (разбавленным растворам) целлюлоза устойчива. Растворы едкого натра в концентрации 2-3,5% применяют при щелочной варке тряпья, идущего на изготовление бумаги. При этом из целлюлозы удаляются не только загрязнения, но и продукты деструкции полимерных молекул целлюлозы, имеющие более короткие цепи. В отличие от целлюлозы, эти продукты деструкции растворимы в щелочных растворах.

Своеобразно действуют на целлюлозу концентрированные растворы щелочей на холоде - при комнатной и более низких температурах. Этот процесс, открытый в 1844 г. английским исследователем Дж. Мерсером и получивший название мерсеризации, широко применяется для облагораживания хлопчатобумажных тканей. Волокна обрабатывают в натянутом состоянии при температуре 20°С 17,5%-ным раствором едкого натра. Молекулы целлюлозы присоединяют щелочь, образуется так называемая щелочная целлюлоза, и этот процесс сопровождается сильным набуханием целлюлозы. После промывки щелочь удаляется, а волокна приобретают мягкость, шелковистый блеск, становятся более прочными и восприимчивыми к красителям и влаге.

При высоких температурах в присутствии кислорода воздуха концентрированные растворы щелочей вызывают деструкцию целлюлозы с разрывом глюкозидных связей.

Окислители, применяемые для отбелки целлюлозных волокон в текстильном производстве, а также для получения бумаг с высокой степенью белизны, действуют на целлюлозу разрушающе, окисляя гидроксильные группы и разрывая глюкозидные связи. Поэтому в производственных условиях все параметры процесса отбеливания строго контролируются.

Когда мы говорили о строении молекулы целлюлозы, мы имели в виду ее идеальную модель, состоящую только из многочисленных остатков молекулы глюкозы. Мы не уточняли, сколько этих глюкозных остатков содержится в цепочке молекулы (или, как принято называть гигантские молекулы, - в макромолекуле) целлюлозы. Но в действительности, т.е. в любом природном растительном сырье, существуют большие или меньшие отклонения от описанной идеальной модели. Макромолекула целлюлозы может содержать некоторое количество остатков молекул других моносахаридов - гексоз (т.е. содержащих 6 атомов углерода, как и глюкоза, которая также относится к гексозам) и пентоз (моносахаридов с 5-ю атомами углерода в молекуле). Макромолекула природной целлюлозы может содержать также и остатки уроновых кислот - так называют карбоновые кислоты класса моносахаридов, остаток глюкуроновой кислоты, например, отличается от остатка глюкозы тем, что содержит вместо группы -СН 2 ОН карбоксильную группу -СООН, характерную для карбоновых кислот.

Количество глюкозных остатков, содержащихся в макромолекуле целлюлозы, или так называемая степень полимеризации, обозначаемая индексом n, также различна для разных видов целлюлозного сырья и колеблется в широких пределах. Так, в хлопке n составляет в среднем 5 000 - 12 000, а в льне, пеньке и рами 20 000 - 30 000. Таким образом, молекулярная масса целлюлозы может достигать 5 млн. кислородных единиц. Чем выше n, тем прочнее целлюлоза. Для целлюлозы, получаемой из древесины, n значительно ниже - в пределах 2500 - 3000, что обусловливает и меньшую прочность волокон древесной целлюлозы.

Однако если рассматривать целлюлозу как материал, полученный из какого-либо одного вида растительного сырья - хлопка, льна, конопли или древесины и т.д., то и в этом случае молекулы целлюлозы будут иметь неодинаковую длину, неодинаковую степень полимеризации, т.е. в этой целлюлозе будут присутствовать более длинные и более короткие молекулы. Высокомолекулярную часть любой технической целлюлозы принято называть а-целлюлозой - так условно обозначают ту часть целлюлозы, которая состоит из молекул, содержащих 200 и более глюкозных остатков. Особенностью этой части целлюлозы является нерастворимость в 17,5%-ном растворе едкого натра при 20°С (таковы, как уже упоминалось, параметры процесса мерсеризации - первого этапа производства вискозного волокна).

Растворимая в этих условиях часть технической целлюлозы называется гемицеллюлозой. Она в свою очередь состоит из фракции b-целлюлозы, содержащей от 200 до 50 глюкозных остатков, и у-целлюлозы - наиболее низкомолекулярной фракции, с n менее 50. Название «гемицеллюлоза», так же как и «а-целлюлоза», условно: в состав гемицеллюлоз входит не только целлюлоза сравнительно низкой молекулярной массы, но и другие полисахариды, молекулы которых построены из остатков других гексоз и пентоз, т.е. другие гексозаны и пентозаны (см., например, содержание пентозанов в табл. 1). Общее их свойство - невысокая степень полимеризации n, менее 200, и как следствие - растворимость в 17,5%-ном растворе едкого натра.

Качество целлюлозы определяется не только содержанием a-целлюлозы, но и содержанием гемицеллюлоз. Известно, что при повышенном содержании a-целлюлозы волокнистый материал отличается обычно более высокой механической прочностью, химической и термической стойкостью, стабильностью белизны и долговечностью. Но для получения прочного полотна бумаги необходимо, чтобы в технической целлюлозе присутствовали и гемицеллюлозные спутники, так как чистая а-целлюлоза не склонна к фибриллированию (расщеплению волокон в продольном направлении с образованием тончайших волоконец - фибрилл) и в процессе размола волокон легко рубится. Гемицеллюлоза облегчает фибриллирование, что в свою очередь улучшает сцепление волокон в бумажном листе без чрезмерного уменьшения их длины при размоле.

Когда мы говорили о том, что понятие «а-целлюлоза» тоже условно, мы имели в виду, что и а-целлюлоза не является индивидуальным химическим соединением. Этот термин обозначает суммарное количество веществ, находящихся в технической целлюлозе и нерастворимых в щелочи при мерсеризации. Действительное же содержание высокомолекулярной целлюлозы в a-целлюлозе всегда меньше, так как примеси (лигнин, зола, жиры, воски, а также пентозаны и пектиновые вещества, химически связанные с целлюлозой) не полностью растворяются при мерсеризации. Поэтому без параллельного определения количества этих примесей содержание а-целлюлозы не может характеризовать чистоту целлюлозы, о ней можно судить лишь при наличии этих необходимых дополнительных данных.

Продолжая изложение первоначальных сведений о строении и свойствах спутников целлюлозы, вернемся к табл. 1.

В табл. 1 были приведены вещества, встречающиеся наряду с целлюлозой в растительных волокнах. Первыми после целлюлозы указаны пектиновые вещества и пентозаны. Пектиновые вещества - это полимеры класса углеводов, которые, так же как целлюлоза, имеют цепочечное строение, но построены из остатков уроновой кислоты, точнее - галактуроновой кислоты. Полигалактуроновая кислота называется пектовой кислотой, а ее метиловые эфиры - пектинами (см. схему 4).



СХЕМА 4 Участок цепи макромолекулы пектина

Это, разумеется, только схема, так как пектины разных растений различаются по молекулярной массе, содержанию групп -ОСН3 (так называемых метокси-, или метоксильных, групп, или просто - метоксилов) и их распределению по цепи макромолекулы. Пектины, содержащиеся в клеточном соке растений, растворимы в воде и способны образовывать в присутствии сахара и органических кислот плотные гели. Однако пектиновые вещества существуют в растениях главным образом в виде нерастворимого протопектина - полимера разветвленного строения, в котором линейные участки макромолекулы пектина связаны поперечными мостиками. Протопектин содержится в стенках растительной клетки и межклеточном цементирующем материале, выполняя роль опорных элементов. Вообще пектиновые вещества являются резервным материалом, из которого путем ряда превращений образуется целлюлоза и формируется клеточная стенка. Так, например, в начальной стадии роста хлопкового волокна содержание пектиновых веществ в нем достигает 6%, а ко времени вскрытия коробочки постепенно убывает примерно до 0,8%. Параллельно увеличивается содержание целлюлозы в волокне, повышается его прочность, повышается степень полимеризации целлюлозы.

Пектиновые вещества довольно стойки к кислотам, но под действием щелочей при нагревании разрушаются, и это обстоятельство используется для очистки целлюлозы от пектиновых веществ (путем варки, например, хлопкового пуха с раствором едкого натра). Легко разрушаются пектиновые вещества и под действием окислителей.

Пентозаны - это полисахариды, построенные из остатков пентоз - обычно арабинозы и ксилозы. Соответственно эти пентозаны называются арабанами и ксиланами. Они имеют линейное (цепочечное) или слабо разветвленное строение и в растениях обычно сопутствуют пектиновым веществам (арабаны) или входят в состав гемицеллюлоз (ксиланы). Пентозаны бесцветны, аморфны. Арабаны хорошо растворимы в воде, ксиланы в воде не растворяются.

Следующим важнейшим спутником целлюлозы является лигнин - полимер разветвленного строения, вызывающий одревеснение растений. Как видно из табл. 1, лигнин отсутствует в хлопковом волокне, но в остальных волокнах - льняном, пеньковом, рами и особенно джутовом - он содержится в меньших или больших количествах. Он заполняет главным образом пространства между клетками растения, но проникает и в поверхностные слои волокон, играя роль инкрустирующего вещества, скрепляющего целлюлозные волокна. Особенно много лигнина содержится в древесине - до 30%. По своей природе лигнин уже не относится к классу полисахаридов (как целлюлоза, пектиновые вещества и пентозаны), а представляет собой полимер на основе производных многоатомных фенолов, т.е. относится к так называемым жирноароматическим соединениям. Существенное его отличие от целлюлозы заключается и в том, что макромолекула лигнина имеет нерегулярное строение, т.е. полимерную молекулу составляют не одинаковые остатки мономерных молекул, а разнообразные структурные элементы. Однако последние имеют между собой то общее, что состоят из ароматического ядра (которое образовано в свою очередь 6-ю атомами углерода С) и боковой пропановой цепочки (из 3-х атомов углерода С), этот общий для всех лигнинов структурный элемент называют фенилпропановым звеном (см. схему 5).


СХЕМА 5 Фенилпропановое звено

Таким образом, лигнин принадлежит к группе природных соединений, имеющих общую формулу (С 6 С 3)х. Лигнин не является индивидуальным химическим соединением со строго определенным составом и свойствами. Лигнины различного происхождения заметно отличаются друг от друга, и даже лигнины, полученные из одного вида растительного сырья, но разными способами, иногда очень сильно различаются по элементарному составу, содержанию тех или иных заместителей (так называют группы, соединенные с бензольным ядром или боковой пропановой цепочкой), растворимости и другим свойствам.

Высокая реакционная способность лигнина и неодинаковость его строения затрудняют исследование его структуры и свойств, но тем не менее установлено, что в состав всех лигнинов входят фенилпропановые звенья, представляющие собой производные гваякола (т.е. монометилового эфира пирокатехина, см. схему 6).



СХЕМА 6 Производное гваякола

Выявлены и некоторые отличия в строении и свойствах лигнинов однолетних растений и злаков, с одной стороны, и древесины - с другой. Например, лигнины трав и злаков (к ним относятся лен и пенька, на которых мы останавливаемся более подробно) сравнительно хорошо растворяются в щелочах, тогда как лигнины древесины -трудно. Это обусловливает более жесткие параметры процесса удаления лигнина (делигнификации) из древесины методом натронной варки древесины (как-то: более высокие температуры и давления) по сравнению с процессом удаления лигнина из молодых побегов и трав методом варки в щелоке - методом, который был известен в Китае еще в начале первого тысячелетия нашей эры и который широко использовался под названием мацерации или бучения в Европе при переработке тряпья и разного рода отходов (льняных, пеньковых) в бумагу.

Мы уже говорили о высокой реакционной способности лигнина, т.е. о его способности вступать в многочисленные химические реакции, что объясняется присутствием в макромолекуле лигнина большого количества реакционноспособных функциональных групп, т.е. способных вступать в те или иные химические превращения, присущие определенному классу химических соединений. Особенно это относится к спиртовым гидроксилам -ОН, находящимся у атомов углерода в боковой пропановой цепочке, по этим группам -ОН происходит, например, сульфирование лигнина при сульфитной варке древесины - еще одном способе ее делигнификации.

Вследствие большой реакционной способности лигнина легко происходит и его окисление, в особенности в щелочной среде, с образованием карбоксильных групп -СООН. А при действии хлорирующих и белящих агентов лигнин легко хлорируется, причем атом хлора Сl вступает как в ароматическое ядро, так и в боковую пропановую цепочку, в присутствии влаги одновременно с хлорированием происходит и окисление макромолекулы лигнина, и получаемый хлорлигнин содержит также карбоксильные группы. Хлорированный и окисленный лигнин легче вымывается из целлюлозы. Все эти реакции широко используются в целлюлозно-бумажной промышленности для очистки целлюлозных материалов от примеси лигнина, который является очень неблагоприятным компонентом технической целлюлозы.

Почему присутствие лигнина нежелательно? Прежде всего потому, что лигнин имеет разветвленную, часто трехмерную, пространственную структуру и поэтому не обладает волокнообразующими свойствами, т. е. из него не могут быть получены нити. Он придает целлюлозным волокнам жесткость, ломкость, снижает способность целлюлозы набухать, окрашиваться и взаимодействовать с реагентами, применяемыми при различных процессах обработки волокон. При приготовлении бумажной массы лигнин затрудняет размол и фибриллирование волокон, ухудшает их взаимное сцепление. Кроме того, сам по себе он окрашен в желто-коричневый цвет, а при старении бумаги к тому же еще и усиливает ее пожелтение.

Наши рассуждения о строении и свойствах спутников целлюлозы могут показаться, на первый взгляд, излишними. Действительно, уместны ли здесь даже краткие описания строения и свойств лигнина, если реставратор-график имеет дело не с природными волокнами, а с бумагой, т.е. материалом, изготовленным из очищенных от лигнина волокон? Это, разумеется, так, но только в том случае, если речь идет о тряпичной бумаге, изготовленной из хлопчатобумажного сырья. В хлопке лигнина нет. Практически нет его и в тряпичной бумаге из льна или пеньки - он был почти полностью удален в процессе бучения тряпья.

Однако в бумаге, полученной из древесины, и в особенности в сортах газетной бумаги, в которых наполнителем служит древесная масса, лигнин содержится в достаточно больших количествах, и это обстоятельство следует иметь в виду реставратору, работающему с самыми разными, в том числе и низкосортными бумагами.

Строение.

Молекулярная формула целлюлозы (-C 6 H 10 O 5 -) n , как и у крахмала. Целлюлоза тоже является природным полимером. Ее макромалекула состоит из многих остатков молекул глюкозы. Может воэникнуть вопрос: почему крахмал и целлюлоза – вещества с одинаковой молекулярной формулой – обладают различными свойствами?

При рассмотрении синтетических полимеров мы уже выяснили, что их свойства зависят от числа элементарных звеньев и их структуры. Это же положение относится и к природным полимерам. Оказывается, степень полимеризации у целлюлозы намного больше, чем у крахмала. Кроме того, сравнивая структуры этих природных полимеров, установили, что макромолекулы целлюлозы, в отличие от крахмала, состоят из остатков молекулы b-глюкозы и имеют только линейное строение. Макромолекулы целлюлозы располагаются в одном направлении и образуют волокна (лен, хлопок, конопля).

В каждом остатке молекулы глюкозы содержатся три гидроксильные группы.

Физические свойства .

Целлюлоза – волокнистое вещество. Она не плавится и не переходит в парообразное состояние: при нагревании примерно до 350 о С целлюлоза разлагается – обугливается. Целлюлоза нерастворима ни в воде, ни в большинстве других неорганических и органических растворителях.

Неспособность целлюлозы растворяться в воде – неожиданное свойство для вещества, содержащего по три гидроксильные группы на каждые шесть атомов углерода. Хорошо известно, что полигидроксильные соединения легко растворяются в воде. Нерастворимость целлюлозы объясняется тем, что ее волокна представляют собой как бы «пучки» расположенных параллельно нитевидных молекул, связанных множеством водородных связей, которые образуются в результате взаимодействия гидроксильных групп. Внутрь подобного «пучка» растворитель проникнуть не может, а следовательно, не происходит и отрыва молекул друг от друга.

Растворителем целлюлозы является реактив Швейцера – раствор гидроксида меди (II) с аммиаком, с которым она одновременно и взаимодействует. Концентрированные кислоты (серная, фосфорная) и концентрированный раствор хлорида цинка также растворяют целлюлозу, но при этом происходит ее частичный распад (гидролиз), сопровождающийся уменьшением молекулярной массы.

Химические свойства .

Химические свойства целлюлозы определяются прежде всего присутствием гидроксильных групп. Действуя металлическим натрием, можно получить алкоголят целлюлозы n. Под действием концентрированных водных растворов щелочей происходит так называемая мерсиризация – частичное образование алкоголятов целлюлозы, приводящая к набуханию волокна и повышению его восприимчивости к красителям. В результате окисления в макромолекуле целлюлозы появляется некоторое число карбонильных и карбоксильных групп. Под влиянием сильных окислителей происходит распад макромолекулы. Гидроксильные группы целлюлозы способны алкилироваться и ацилироваться, давая простые и сложные эфиры.

Одно из наиболее характерных свойств целлюлозы – способность в присутствии кислот подвергаться гидролизу с образованием глюкозы. Аналогично крахмалу гидролиз целлюлозы протекает ступенчато. Суммарно этот процесс можно изобразить так:

(C 6 H 10 O 5) n + nH 2 O H2SO4_ nC 6 H 12 O 6

Так как в молекулах целлюлозы имеются гидроксильные группы, то для нее характерны реакции этерификации. Из них практическое значение имеют реакции целлюлозы с азотной кислотой и ангидридом уксусной кислоты.

При взаимодействии целлюлозы с азотной кислотой в присутствии концентрированной серной кислоты, в зависимости от условий образуются динитроцеллюлоза и тринитроцеллюлоза, являющиеся сложными эфирами:

При взаимодействии целлюлозы с уксусным ангидридом (в присутствии уксусной и серной кислот) получается триацетилцеллюлоза или диацетилцеллюлоза:

Целлюлоза горит. При этом образуются оксид углерода (IV) и вода.

При нагревании древесины без доступа воздуха происходит разложение целлюлозы и других веществ. При этом получаются древесный уголь, метан, метиловый спирт, уксусная кислота, ацетон и другие продукты.

Получение.

Образцом почти чистой целлюлозой является вата, полученная из очищенного хлопка. Основную массу целлюлозы выделяют из древесины, в которой она содержится вместе с другими веществами. Наиболее распространенным методом получения целлюлозы в нашей стране является так называемый сульфитный. По этому методу измельченную древесину в присутствии раствора гидросульфита кальция Ca(HSO 3) 2 или гидросульфита натрия NaHSO 3 нагревают в автоклавах при давлении 0,5–0,6 МПа и температуре 150 о С. При этом все другие вещества разрушаются, а целлюлоза выделяется в сравнительно чистом виде. Ее промывают водой, сушат и направляют на дальнейшую переработку, большей частью на производство бумаги.

Применение.

Целлюлоза используется человеком с очень древних времен. Сначала применяли древесину как горючий и строительный материал; затем хлопковые, льняные и другие волокна стали использовать как текстильное сырье. Первые промышленные способы химической переработки древесины возникли в связи с развитием бумажной промышленности.

Бумага – это тонкий слой волокон клетчатки, спрессованных и проклеенных для создания механической прочности, гладкой поверхности, для предотвращения растекания чернил. Первоначально для изготовления бумаги употребляли растительное сырье, из которого чисто механически можно было получить необходимые волокна, стебли риса (так называемая рисовая бумага), хлопка, использовали также изношенные ткани. Однако по мере развития книгопечатания перечисленных источников сырья стало не хватать для удовлетворения растущей потребности бумаги. Особенно много бумаги расходуется для печатания газет, причем вопрос о качестве (белизне, прочности, долговечности) для газетной бумаги значения не имеет. Зная, что древесина примерно на 50% состоит из клетчатки, к бумажной массе стали добавлять размолотую древесину. Такая бумага непрочна и быстро желтеет (особенно на свету).

Для улучшения качества древесных добавок к бумажной массе были предложены различные способы химической обработки древесины, позволяющие получить из нее более или менее чистую целлюлозу, освобожденную от сопутствующих веществ – лигнина, смол и других. Для выделения целлюлозы было предложено несколько способов, из которых мы рассмотрим сульфитный.

По сульфитному способу измельченную древесину ”варят “ под давлением с гидросульфитом кальция. При этом сопутствующие вещества растворяются, и освобожденную от примесей целлюлозу отделяют фильтрованием. Образующиеся сульфитные щелока являются в бумажном производстве отходами. Однако вследствие того, что они содержат наряду с другими веществами способные к брожению моносахариды, их используют как сырье для получения этилового спирта (так называемый гидролизный спирт).

Целлюлоза применяется не только как сырье в бумажном производстве, но идет еще и на дальнейшую химическую переработку. Наибольшее значение имеют простые и сложные эфиры целлюлозы. Так, при действии на целлюлозу смесью азотных и серных кислот получают нитраты целлюлозы. Все они горючи и взрывчаты. Максимальное число остатков азотной кислоты, которые можно ввести в целлюлозу, равно трем на каждое звено глюкозы:

N HNO3_ n

Продукт полной этерификации - тринитрат целлюлозы (тринитроцеллюлоза) - должен содержать в соответствии с формулой 14,1% азота. На практике получают продукт с несколько меньшим содержанием азота (12,5/13,5%), известный в технике под названием пирокселин. При обработке эфиром пироксилин желатинизируется; после испарения растворителя остаётся компактная масса. Мелконарезанные кусочки этой массы – бездымный порох.

Продукты нитрования, содержащие около 10% азота, отвечает по составу динитрату целлюлозы: в технике такой продукт известен под названием коллоксилин. При действии на него смеси спирта и эфира образуется вязкий раствор, так называемый коллодий, применяемый в медицине. Если к такому раствору добавить камфору (0.4 ч. камфоры на 1 ч. коллоксилина) и испарить растворитель, то останется прозрачная гибкая плёнка – целлулоид. Исторически – это первый известный тип пластмассы. Ещё с прошлого века целлулоид получил широкое применение как удобный термопластичный материал для производства многих изделий (игрушки, галантерея и т. д.). В особенности важно использование целлулоида в производстве киноплёнки и нитролаков. Серьёзным недостатком этого материала является его горючесть, поэтому в настоящее время целлулоид всё чаще заменяют другими материалами, в частности ацетатами целлюлозы.

ЦЕЛЛЮЛОЗА
клетчатка, главный строительный материал растительного мира, образующий клеточные стенки деревьев и других высших растений. Самая чистая природная форма целлюлозы - волоски семян хлопчатника.
Очистка и выделение. В настоящее время промышленное значение имеют лишь два источника целлюлозы - хлопок и древесная масса. Хлопок представляет собой почти чистую целлюлозу и не требует сложной обработки, чтобы стать исходным материалом для изготовления искусственного волокна и неволокнистых пластиков. После того как от хлопкового семени отделены длинные волокна, используемые для изготовления хлопчатобумажных тканей, остаются короткие волоски, или "линт" (хлопковый пух), длиной 10-15 мм. Линт отделяют от семени, в течение 2-6 ч нагревают под давлением с 2,5-3%-м раствором гидроксида натрия, затем промывают, отбеливают хлором, снова промывают и сушат. Полученный продукт представляет собой целлюлозу чистоты 99%. Выход равен 80% (масс.) линта, а остальное приходится на лигнин, жиры, воски, пектаты и шелуху семян. Древесную массу делают обычно из древесины деревьев хвойных пород. Она содержит 50-60% целлюлозы, 25-35% лигнина и 10-15% гемицеллюлоз и нецеллюлозных углеводородов. В сульфитном процессе древесную щепу варят под давлением (около 0,5 МПа) при 140° C с диоксидом серы и бисульфитом кальция. При этом лигнины и углеводороды переходят в раствор и остается целлюлоза. После промывки и отбеливания очищенная масса отливается в рыхлую бумагу, похожую на промокательную, и сушится. Такая масса на 88-97% состоит из целлюлозы и вполне пригодна для химической переработки в вискозное волокно и целлофан, а также в производные целлюлозы - сложные и простые эфиры. Процесс регенерации целлюлозы из раствора при добавлении кислоты в ее концентрированный медноаммиачный (т.е. содержащий сульфат меди и гидроксид аммония) водный раствор был описан англичанином Дж.Мерсером около 1844. Но первое промышленное применение этого метода, положившее начало промышленности медно-аммиачного волокна, приписывается Е. Швейцеру (1857), а дальнейшее его развитие - заслуга М. Крамера и И. Шлоссбергера (1858). И только в 1892 Кросс, Бевин и Бидл в Англии изобрели процесс получения вискозного волокна: вязкий (откуда название вискоза) водный раствор целлюлозы получался после обработки целлюлозы сначала крепким раствором едкого натра, что давало "натронную целлюлозу", а затем - дисульфидом углерода (CS2), в результате чего получался растворимый ксантогенат целлюлозы. При выдавливании струйки этого "прядильного" раствора через фильеру с малым круглым отверстием в кислотную ванну целлюлоза регенерировалась в форме вискозного волокна. При выдавливании раствора в такую же ванну через фильеру с узкой щелью получалась пленка, названная целлофаном. Ж. Бранденбергер, занимавшийся во Франции этой технологией с 1908 по 1912, первым запатентовал непрерывный процесс изготовления целлофана.
Химическая структура. Несмотря на широкое промышленное применение целлюлозы и ее производных, принятая в настоящее время химическая структурная формула целлюлозы была предложена (У.Хоуорсом) лишь в 1934. Правда, с 1913 была известна ее эмпирическая формула C6H10O5, определенная по данным количественного анализа хорошо промытых и высушенных образцов: 44,4% C, 6,2% H и 49,4% O. Благодаря работам Г.Штаудингера и К.Фройденберга было известно также, что это длинноцепная полимерная молекула, состоящая из показанных на рис. 1 повторяющихся глюкозидных остатков. Каждое звено имеет три гидроксильные группы - одну первичную (- CH2ЧOH) и две вторичные (>CHЧOH). К 1920 Э.Фишер установил структуру простых сахаров, и в том же самом году рентгенографические исследования целлюлозы впервые показали четкую дифракционную картину ее волокон. Рентгенограмма волокна хлопка указывает на четко выраженную кристаллическую ориентацию, но волокно льна еще более упорядочено. При регенерации целлюлозы в форме волокна кристалличность в значительной мере теряется. Как нетрудно видеть в свете достижений современной науки, структурная химия целлюлозы практически стояла на месте с 1860 по 1920 по той причине, что все это время оставались в зачаточном состоянии вспомогательные научные дисциплины, необходимые для решения проблемы.

РЕГЕНЕРИРОВАННАЯ ЦЕЛЛЮЛОЗА
Вискозное волокно и целлофан. И вискозное волокно, и целлофан - это регенерированная (из раствора) целлюлоза. Очищенная природная целлюлоза обрабатывается избытком концентрированного гидроксида натрия; после удаления избытка ее комки растирают и полученную массу выдерживают в тщательно контролируемых условиях. При таком "старении" уменьшается длина полимерных цепей, что способствует последующему растворению. Затем измельченную целлюлозу смешивают с дисульфидом углерода и образовавшийся ксантогенат растворяют в растворе едкого натра для получения "вискозы" - вязкого раствора. Когда вискоза попадает в водный раствор кислоты, из нее регенерируется целлюлоза. Упрощенные суммарные реакции таковы:


Вискозное волокно, получаемое выдавливанием вискозы через малые отверстия фильеры в раствор кислоты, широко применяется для изготовления одежды, драпировочных и обивочных тканей, а также в технике. Значительные количества вискозного волокна идут на технические ремни, ленты, фильтры и шинный корд.
Целлофан. Целлофан, получаемый выдавливанием вискозы в кислую ванну через фильеру с узкой щелью, проходит затем через ванны промывки, отбеливания и пластификации, пропускается через сушильные барабаны и сматывается в рулон. Поверхность целлофановой пленки почти всегда покрывают нитроцеллюлозой, смолой, каким-либо воском или лаком, чтобы уменьшить пропускание паров воды и обеспечить возможность термической герметизации, так как целлофан без покрытия не обладает свойством термопластичности. На современных производствах для этого используются полимерные покрытия поливинилиденхлоридного типа, поскольку они в меньшей степени влагопроницаемы и дают более прочное соединение при термогерметизации. Целлофан широко применяется главным образом в тароупаковочном производстве как оберточный материал для галантерейных товаров, пищевых продуктов, табачных изделий, а также в качестве основы для самоклеющейся упаковочной ленты.
Вискозная губка. Наряду с получением волокна или пленки, вискозу можно смешать с подходящими волокнистыми и мелкокристаллическими материалами; после кислотной обработки и водного выщелачивания такая смесь преобразуется в вискозный губчатый материал (рис. 2), который применяется для упаковки и теплоизоляции.



Медноаммиачное волокно. Волокно из регенерированной целлюлозы производится в промышленных масштабах также путем растворения целлюлозы в концентрированном медноаммиачном растворе (CuSO4 в NH4OH) и формования из полученного раствора волокна в кислотной осадительной ванне. Такое волокно называется медноаммиачным.
СВОЙСТВА ЦЕЛЛЮЛОЗЫ
Химические свойства. Как показано на рис. 1, целлюлоза представляет собой высокополимерный углевод, состоящий из глюкозидных остатков C6H10O5, соединенных эфирными мостиками в положении 1,4. Три гидроксильные группы в каждом глюкопиранозном звене могут быть этерифицированы такими органическими агентами, как смесь кислот и ангидридов кислот с соответствующим катализатором, например серной кислотой. Простые эфиры могут образовываться в результате действия концентрированного гидроксида натрия, приводящего к образованию натронной целлюлозы, и последующей реакции с алкилгалогенидом:


Реакция с оксидом этилена или пропилена дает гидроксилированные простые эфиры:


Наличием этих гидроксильных групп и геометрией макромолекулы обусловлено сильное полярное взаимное притяжение соседних звеньев. Силы притяжения столь велики, что обычные растворители не в состоянии разорвать цепь и растворить целлюлозу. Эти свободные гидроксильные группы ответственны также за большую гигроскопичность целлюлозы (рис. 3). Этерификация и эфиризация понижают гигроскопичность и повышают растворимость в обычных растворителях.



Под действием водного раствора кислоты разрываются кислородные мостики в положении 1,4-. Полный разрыв цепи дает глюкозу - моносахарид. Первоначальная длина цепи зависит от происхождения целлюлозы. Она максимальна в природном состоянии и уменьшается в процессе выделения, очистки и преобразования в производные соединения (см. таблицу).

СТЕПЕНЬ ПОЛИМЕРИЗАЦИИ ЦЕЛЛЮЛОЗЫ
Материал Число глюкозидных остатков
Необработанный хлопок 2500-3000
Очищенный хлопковый линт 900-1000
Очищенная древесная масса 800-1000
Регенерированная целлюлоза 200-400
Промышленный ацетат целлюлозы 150-270


Даже механический сдвиг, например при абразивном размельчении, приводит к уменьшению длины цепей. При уменьшении длины полимерной цепи ниже определенного минимального значения изменяются макроскопические физические свойства целлюлозы. Окислительные агенты оказывают на целлюлозу воздействие, не вызывая расщепления глюкопиранозного кольца (рис. 4). Последующее действие (в присутствии влаги, например, при климатических испытаниях), как правило, приводит к разрыву цепи и увеличению числа альдегидоподобных концевых групп. Поскольку альдегидные группы легко окисляются до карбоксильных, содержание карбоксила, практически отсутствующего в природной целлюлозе, резко возрастает в условиях атмосферных воздействий и окисления.



Как и все полимеры, целлюлоза разрушается под воздействием атмосферных факторов в результате совместного действия кислорода, влаги, кислотных компонентов воздуха и солнечного света. Важное значение имеет ультрафиолетовая составляющая солнечного света, и многие хорошо защищающие от УФ-излучения агенты увеличивают срок службы изделий из производных целлюлозы. Кислотные компоненты воздуха, такие, как оксиды азота и серы (а они всегда присутствуют в атмосферном воздухе промышленных районов), ускоряют разложение, зачастую оказывая более сильное воздействие, чем солнечный свет. Так, в Англии было отмечено, что образцы хлопка, испытывавшиеся на воздействие атмосферных условий, зимой, когда практически не было яркого солнечного света, деградировали быстрее, чем летом. Дело в том, что сжигание зимой больших количеств угля и газа приводило к повышению в воздухе концентрации оксидов азота и серы. Кислотные поглотители, антиоксиданты и агенты, поглощающие УФ-излучение, снижают чувствительность целлюлозы к атмосферным воздействиям. Замещение свободных гидроксильных групп приводит к изменению такой чувствительности: нитрат целлюлозы деградирует быстрее, а ацетат и пропионат - медленнее.
Физические свойства. Полимерные цепи целлюлозы упакованы в длинные пучки, или волокна, в которых наряду с упорядоченными, кристаллическими имеются и менее упорядоченные, аморфные участки (рис. 5). Измеренный процент кристалличности зависит от типа целлюлозы, а также от способа измерения. По рентгеновским данным, он составляет от 70% (хлопок) до 38-40% (вискозное волокно). Рентгенографический структурный анализ дает информацию не только о количественном соотношении между кристаллическим и аморфным материалом в полимере, но и о степени ориентации волокна, вызываемой растяжением или нормальными процессами роста. Резкость дифракционных колец характеризует степень кристалличности, а дифракционные пятна и их резкость - наличие и степень предпочтительной ориентации кристаллитов. В образце вторичного ацетата целлюлозы, полученного процессом "сухого" формования, и степень кристалличности, и ориентация весьма незначительны. В образце триацетата степень кристалличности больше, но предпочтительная ориентация отсутствует. Термообработка триацетата при температуре 180-240° C заметно повышает степень его кристалличности, а ориентирование (вытягиванием) в сочетании с термообработкой дает самый упорядоченный материал. Лен обнаруживает высокую степень и кристалличности, и ориентации.
См. также
ХИМИЯ ОРГАНИЧЕСКАЯ ;
БУМАГА И ПРОЧИЕ ПИСЧИЕ МАТЕРИАЛЫ ;
ПЛАСТМАССЫ .


Рис. 5. МОЛЕКУЛЯРНАЯ СТРУКТУРА целлюлозы. Молекулярные цепи проходят через несколько мицелл (кристаллических областей) протяженностью L. Здесь A, A" и B" - концы цепей, лежащие в кристаллизованной области; B - конец цепи вне кристаллизованной области.


ЛИТЕРАТУРА
Бушмелев В.А., Вольман Н.С. Процессы и аппараты целлюлозно-бумажного производства. М., 1974 Целлюлоза и ее производные. М., 1974 Аким Э.Л. и др. Технология обработки и переработки целлюлозы, бумаги и картона. Л., 1977

Энциклопедия Кольера. - Открытое общество . 2000 .

Целлюлоза - это природный полимер глюкозы (а именно, остатки бетта-глюкозы) растительного происхождения с линейным строением молекул. По-другому целлюлоза еще называется клетчаткой. В данном полимере больше пятидесяти процентов углерода, который содержится в растениях. Целлюлоза занимает первое место среди соединений органического происхождения на нашей планете.

Чистая целлюлоза - это хлопчатобумажные волокна (до девяносто восьми процентов) либо льняные волокна (до восьмидесяти пяти процентов). До пятидесяти процентов целлюлозы содержит древесина, тридцать процентов целлюлозы в соломе. Много ее и в конопле.

Целлюлоза имеет белый цвет. Серная кислота окрашивает ее в синий оттенок, а йод - в коричневый. Целлюлоза твердая и волокнистая, без вкуса и запаха, не разрушается при температуре двести градусов Цельсия, но воспламеняется при температуре двести семьдесят пять градусов Цельсия (то есть является горючим веществом), а при нагревании до трехсот шестидесяти градусов Цельсия обугливается. Ее нельзя растворить в воде, но можно растворить в растворе аммиака с гидроксидом меди. Клетчатка является очень прочным и эластичным материалом.

Значение целлюлозы для живых организмов

Целлюлоза относится к полисахаридным углеводам.

В живом организме функции углеводов следующие:

  1. Функция структуры и опоры, так как углеводы принимают участие в построении опорных структур, а целлюлоза представляет собой главный компонент структуры стенок растительных клеток.
  2. Защитная функция, характерная для растений (колючки либо шипы). Такие образования на растениях состоят из стенок омертвевших растительных клеток.
  3. Пластическая функция (другое название анаболическая функция), так как углеводы являются компонентами сложных молекулярных структур.
  4. Функция обеспечения энергией, так как углеводы являются энергетическим источником для живых организмов.
  5. Запасающая функция, так как живые организмы запасают в своих тканях углеводы в качестве питательных веществ.
  6. Осмотическая функция, так как углеводы принимают участие в регулировании осмотического давления внутри живого организма (например, кровь содержит от ста миллиграмм до ста десяти миллиграмм глюкозы, а от концентрации этого углевода в крови и зависит кровяное осмотическое давление). Осмосный перенос доставляет питательные элементы в высоких стволах деревьев, так как капиллярный перенос в этом случае неэффективен.
  7. Функция рецепторов, так как некоторые углеводы находятся в составе воспринимающей части рецепторов клеток (молекул на клеточной поверхности либо молекул, которые растворены в клеточной цитоплазме). Рецептор особым образом реагирует на соединение с определенной химической молекулой, которая передает внешний сигнал, и передает этот сигнал в саму клетку.

Биологическая роль целлюлозы такова:

  1. Клетчатка - это главная структурная часть клеточной оболочки растений. Образуется в результате фотосинтеза. Целлюлоза растений является питанием травоядным животным (к примеру, жвачным), в их организме клетчатка расщепляется при помощи фермента целлюлаза. Он довольно редкий, поэтому в чистом виде целлюлоза в пищу человека не употребляется.
  2. Клетчатка в пище дает человеку чувство сытости и улучшает подвижность (перистальтику) его кишечника. Целлюлоза способна связывать жидкость (до ноля целых четырех десятых грамм жидкости на один грамм целлюлозы). В толстом кишечнике его метаболизируют бактерии. Клетчатка приваривается без участия кислорода (в организме есть только один анаэробный процесс). Итогом переваривания становится образование кишечных газов и летающих жирных кислот. Большее количество этих кислот всасывается кровью и применяется как энергия для организма. А то количество кислот, которое не усвоилось, и кишечные газы увеличивают объем кала и ускоряют его попадание в прямую кишку. Также энергия данных кислот применяется для увеличения количества полезной микрофлоры в толстом кишечнике и поддержки ее жизни там. Когда количество пищевых волокон в еде возрастает, то возрастает и объем полезных кишечных бактерий улучшается синтезирование витаминных веществ.
  3. Если добавлять в еду от тридцати до сорока пяти грамм отрубей (содержат клетчатку), сделанных из пшеницы, то каловые массы увеличиваются с семидесяти девяти грамм до двухсот двадцати восьми грамм в день, и срок их передвижения сокращается с пятидесяти восьми часов до сорока часов. Когда клетчатка добавляется в еду регулярно, то каловые массы становятся мягче, что помогает выполнять профилактику запора и геморроя.
  4. Когда в еде много клетчатки (например отруби), то организм как здорового человека, так и организм больного сахарным диабетом первого типа, становится более устойчив к глюкозе.
  5. Клетчатка как щетка убирает со стенок кишечника грязные налипания, впитывает токсичные вещества, забирает холестерин и удаляет все это из организма естественным путем. Доктора пришли к выводу, что люди, которые едят ржаной хлеб и отруби реже страдают раком прямого кишечника.

Больше всего клетчатки содержится в отрубях из пшеницы и ржи, в хлебе из грубо перемолотой муки, в хлебе из белков и отрубей, в сухих фруктах, морковке, крупах, свекле.

Области применения целлюлозы

Люди применяют целлюлозу уже долгое время. В первую очередь древесный материал шел как топливо и доски для строительства. Потом хлопок, лен и волокна конопли применяли для изготовления различных тканей. Впервые в промышленности химическую обработку древесного материала стали практиковать из-за развития производства бумажных изделий.

В настоящее время целлюлозу используют в различных промышленных областях. И именно для промышленные нужд получают ее в основном из древесного сырья. Целлюлозу применяют в производстве целлюлозно-бумажных изделий, в производстве различных тканей, в медицине, при производстве лаков, при изготовлении органического стекла и в иных областях промышленности.

Рассмотрим ее применение подробнее

Из целлюлозы и ее эфиров получают ацетатный шелк, изготавливают ненатуральные волокна, пленку из ацетилцеллюлозы, которая не горит. Изготавливают порох без дыма из пироксилина. Из целлюлозы делают плотную медицинскую пленку (коллодий) и целлюлоид (пластмассу) для игрушек, кинопленки и фотопленки. Делают нитки, канаты, вату, различные виды картона, строительный материал для судостроения и постройки домов. А еще получают глюкозу (для медицинских целей) и этиловый спорт. Целлюлозу применяют и в качестве сырья, и в качестве вещества для переработки химическим путем.

Много глюкозы нужно для изготовления бумаги. Бумага представляет собой тоненький волокнистый слой целлюлозы, которая была проклеена и спрессована на особом оборудовании, чтобы получить тонкую плотную гладкую поверхность бумажного изделия (чернила не должны растекаться по ней). Сначала для создания бумаги применялся только то материал растительного происхождения, из него нужные волокна выделяли механическим способом (рисовые стебли, хлопок, ветошь).

Но книгопечатание развивалось очень быстрыми темпами, стали выпускаться еще и газеты, поэтому произведенной таким способом бумаги стало недостаточно. Люди выяснили, что в древесине много клетчатки, поэтому к растительной массе, из которой делали бумагу, начали добавлять перемолотое древесное сырье. Но эта бумага была быстро рвущейся и желтеющей за очень короткое время, особенно при длительном нахождении на свету.

Поэтому стали разрабатываться разные методы обработки древесного материала химическими веществами, которые позволяют выделить из него очищенную от различных примесей целлюлозу.

Для получения целлюлозы щепу варят в растворе реагентов (кислоты либо щелочи) в течение длительного времени, потом очищают полученную жидкость. Так производится чистая целлюлоза.

К кислотным реагентам относится сернистая кислота, ее применяют для производства целлюлозы из древесины с малым количеством смолы.

К щелочным реагентам относятся:

  1. натронные реагенты обеспечивают получение целлюлозы из лиственных пород и однолетников (такая целлюлоза стоит довольно дорого);
  2. сульфатные реагенты, из которых наиболее распространен сульфат натрия (основа для производства белого щелока, а уже он применяется в качестве реагента для изготовления целлюлозы из любых растений).

После всех производственных этапов бумага идет на изготовление упаковочной, книжной и канцелярской продукции.

Из всего выше сказанного можно сделать вывод о том, что целлюлоза (клетчатка) имеют важное очищающее и оздоровительное значение для кишечника человека, а также используется во многих областях промышленности.



Просмотров