Разработка и реализация алгоритмов трехмерной триангуляции сложных пространств.областей. Критерии качества треугольных элементов

(Development and Implementation of Algorithms for Constrained Volume Triangulations: Iterative Algorithms
Preprint, Inst. Appl. Math., the Russian Academy of Science)

Галанин М.П., Щеглов И.А.
(M.P.Galanin, I.A.Sheglov)

ИПМ им. М.В.Келдыша РАН

Москва, 2006
Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 06-01-00421)

Аннотация

Рассмотрены итерационные методы трехмерной дискретизации пространственных областей (построения тетраэдрических сеток): методы граничной коррекции, методы на основе критерия Делоне и методы исчерпывания. Приведены варианты алгоритмов для каждого из указанных методов. Обсуждены особенности построения сеток в сложных областях.

Abstract

Three main families of iterative algorithms for free and constrained simplicial volume triangulation are described: boundary correction (including "octree" algorithm), Delaunay-based methods and advancing front approach. For each method type an example algorithm is given.

1. Введение 3

2. Методы граничной коррекции4

2.1 Построение первичной сетки4

2.2 Коррекция первичной сетки6

3. Методы на основе критерия Делоне9

3.1 Построение триангуляции Делоне на заданном наборе точек 12

3.2. Триангуляция Делоне с ограничениями17

3.3 Особенности технической реализации алгоритмов на основе
критерия Делоне 22

4. Методы исчерпывания23

4.1 Пример алгоритма исчерпывания26

Список литературы3 0


1. Введение

Среди двух классов методов триангуляции - прямых и итерационных - последние обладают достаточной универсальностью и поэтому, в отличие от прямых, могут быть использованы для триангуляции областей довольно произвольного вида. За эту универсальность приходится расплачиваться существенно большим потреблением ресурсов и более трудоемкой реализацией метода в конкретном алгоритме.

В настоящее время разработано большое количество программных пакетов на основе того или иного итерационного метода, реализующих построение сеток (частично или полностью) в автоматическом режиме. В основном эти пакеты коммерческие, что вполне оправдано с учетом затрачиваемых на их создание усилий, ведь трехмерное пространство имеет ряд неприятных особенностей, существенно затрудняющих жизнь разработчику .

Сетки, построенные итерационными методами, как правило, неструктурированы и неоднородны. Неструктурированность обусловлена тем, что топология сетки формируется в процессе построения, и поэтому естественно может варьироваться даже в пределах одной подобласти. По этой же причине однородность если и может возникнуть, то только случайно.

Поскольку перед построением сетки ничего нельзя сказать о ее будущей структуре, нельзя гарантировать и ее качества. Часто построенную сетку можно существенно улучшить с помощью одного из многочисленных методов оптимизации . Этой возможностью обычно не пренебрегают, благо что время, затрачиваемое на оптимизацию, как правило, существенно меньше времени, затрачиваемого на построение.

Целью данной работы является рассмотрение и классификация существующих методов построения тетраэдрических сеток в трехмерных областях. Ввиду значительного объема информации ниже рассматриваются только так называемые "итерационные методы". Прямые методы описаны в .

Работа выполнена при частичной финансовой поддержке Российского фонда фундаментальных исследований (проект № 06-01-00421).



Рис. 11. Триангуляция области, представляющей собой объединение додекаэдра и икосаэдра (триангуляция Делоне с ограничениями)

Качество сеток, построенных данным методом, находится на среднем уровне (тетраэдры у границ могут иметь очень плохую форму), поэтому обычно дополнительно прибегают к одному из методов оптимизации.

В работах Б. Джо предложены другие варианты алгоритма, не использующие дополнительных точек и полностью основанные на локальных трансформациях, аналогичных "трейду".

4) объем тетраэдра не больше максимально допустимого ().

Из всех тетраэдров () выбирается тетраэдр наилучшего качества и производится переход к п. 5; если же тетраэдров, удовлетворяющих указанным условиям, не оказалось, то осуществляется переход к п. 4.

4. Находится такая точка внутри еще неисчерпанной области, что:

1) тетраэдр () удовлетворяет всем условиям п. 3;

2) в шаре нет ни одной удаленной точки F (это предотвращает размещение узла p слишком близко от граней и вершин существующих тетраэдров).

Вариант алгоритма поиска узла p рассмотрен ниже.

5. Удаляются все вершины F , попавшие внутрь (и на границы) сформированного тетраэдра. Затем фронт обновляется по следующей схеме: рассматривается каждая грань сформированного тетраэдра и

1) если грань является гранью фронта, то она удаляется из фронта;

2) если грань НЕ является гранью фронта, она добавляется во фронт.

6. Если еще остались неудаленные точки F или (что эквивалентно) фронт не пуст (то есть область еще не исчерпана полностью), осуществляется переход к п. 1, иначе процесс окончен.

Таким образом, массив F используется сразу для нескольких целей: для оценки величины телесного угла, для контроля правильности построения и для контроля размещения новых узлов. Также массив F удобно использовать для индикации процесса выполнения. Отношение числа удаленных во время работы алгоритма точек F к начальному числу существующих точек F фактически показывает, какая часть области уже исчерпана.

Вернемся к вопросу нахождения координат нового узла для построения тетраэдра (п. 4 описанного алгоритма). Пусть заданы три узла - .

1. На первом шаге находятся - центр масс треугольника (как среднее арифметическое координат его узлов) и единичная нормаль к плоскости грани (через нормированное векторное произведение).

2. Далее определяется первое приближение для расстояния от до искомой точки p (H ), исходя из максимального объема тетраэдра: . Заметим, что площадь грани S фактически найдена на предыдущем шаге (результат векторного произведения двух ребер равен удвоенной площади грани), а максимальный объем обусловлен значением контрольной функции.

3. Проверяется точка . Если тетраэдр () удовлетворяет всем требованиям, происходит переход к п. 6, иначе - к п. 4.

4. Проверяется точка . Если тетраэдр () удовлетворяет всем требованиям, происходит переход к п. 6, иначе - к п. 5.

5. Полагают и переходят к п. 3.

6. Искомый узел найден.

Заметим, что в 99% случаев искомая точка находится на 1 или 2 итерации данного алгоритма.

В описанном выше алгоритме исчерпывания на каждом шаге из области изымается один тетраэдр. Сотрудник НАСА Ш. Пирзаде (Shahyar Pirzadeh ) предложил другой вариант алгоритма, в котором за один раз из области изымается сразу целый слой тетраэдров (то есть на каждой итерации тетраэдры строятся сразу для всех граней текущего фронта) . Вопреки ожиданию, этот вариант не позволяет сколько-нибудь существенно ускорить процесс построения (т.к. все новые тетраэдры все равно необходимо проверять на корректность), однако он избавляет от необходимости искать наиболее подходящую для построения тетраэдра грань. Это, однако, скорее минус, чем плюс, так как из-за этой особенности вариант Пирзаде менее надежен и может дать сбой на геометрически сложных областях. Вместе с тем на сравнительно простых областях он показывает неплохие результаты.

Сетки, построенные методами исчерпывания, как правило, обладают неплохим качеством, а последующая оптимизация положения узлов дает дополнительную прибавку к качеству. Подводя итог, заметим, что методы исчерпывания наиболее эффективны, если изначально задана триангуляция границы области. В этом и состоит их основное отличие от методов на основе критерия Делоне, для которых ситуация прямо обратная.

Список литературы

1. Шайдуров В.В. Многосеточные методы конечных элементов. - М., Наука, 1989. - 288с.

2. Скворцов А.В. Обзор алгоритмов построения триангуляции Делоне // , 2002, №3, c . 14-39.

3. Скворцов А.В. Алгоритмы построения триангуляции с ограничениями // Вычислительные методы и программирование , 2002, №3, c . 82-92.

4. I.Babushka, W.C. Rheinboldt. A-posteriori Error Estimates for Finite Element Method // Int. J. Numer. Meth. Eng. , Vol. 12, p.p. 1597-1615, 1978.

5. T.J. Baker. Automatic Mesh Generation for Complex Three-Dimensional Regions Using a Constrained Delaunay Triangulation // Engineering With Computers , Springer-Verlag, № 5, p.p. 161-175, 1989.

6. M. Bern, D. Eppstein. Mesh Generation and Optimal Triangulation // Computing in Euclidean Geometry , World Scientific Publishing Co., p.p. 23-90, 1995.

7. D.K. Blandford, G. Blelloch, D. Cardoze, C. Kadow. Compact Representations of Simplicial Meshes In Two and Three Dimensions // Proceedings of 12th International Meshing Roundtable , Sandia National Laboratories, p.p.135-146, Sept. 2003.

8. H. Borouchaki, S.H. Lo. Fast Delaunay Triangulation In Three Dimensions // Computer Methods In Applied Mechanics And Engineering , Elsevier, Vol. 128, p.p. 153-167, 1995.

9. E.K. Buratynski. A Three-Dimensional Unstructured Mesh Generator for Arbitrary Internal Boundaries // Numerical Grid Generation in Computational Fluid Mechanics , Pineridge Press, p.p. 621-631, 1988.

10. P.R. Cavalcanti, U.T. Mello. Three-Dimensional Constrained Delaunay Triangulation: A Minimalist Approach // Proceedings of the 8th International Meshing Roundtable , p.p. 119-129, 1999.

11. Dey, K. Tamal, K. Sugihara, C.L. Bajaj. Delaunay Triangulations In Three Dimensions With Finite Precision Arithmetic // Computer Aided Geometric Design , North-Holland, № 9, p.p. 457-470, 1992.

12. H.N. Djidjev. Force-Directed Methods For Smoothing Unstructured Triangular And Tetrahedral Meshes // Proceedings of 9th International Meshing Roundtable , Sandia National Laboratories, p.p. 395-406, October 2000.

13. L. Durbeck. Evaporation: A Technique For Visualizing Mesh Quality // Proceedings of 8th International Meshing Roundtable , South Lake Tahoe, CA, U.S.A., p.p. 259-265, October 1999.

14. D.A. Field. Laplacian Smoothing And Delaunay Triangulations // , vol. 4, p.p. 709-712, 1988.

15. P.J. Frey, H. Borouchaki, P.-L. George. Delaunay Tetrahedralization Using an Advancing-Front Approach // Proceedings of 5th International Meshing Roundtable , Sandia National Laboratories, p.p. 31-46, October 1996.

16. L.A. Freitag, C. Ollivier-Gooch. A Comparison of Tetrahedral Mesh Improvement Techniques // Proceedings of 5th International Meshing Roundtable , Sandia National Laboratories, p.p. 87-106, October 1996.

17. L.A. Freitag, C. Ollivier-Gooch.Tetrahedral Mesh Improvement Using Swapping and Smoothing // , vol. 40, p.p. 3979-4002, 1995.

18. L.A. Freitag, C. Ollivier-Gooch. The Effect Of Mesh Quality On Solution Efficiency // Proceedings of 6th International Meshing Roundtable , Sandia National Laboratories, p.p.249, October 1997.

19. P.L. George. TET MESHING: Construction, Optimization and Adaptation // Proceedings of 8th International Meshing Roundtable , p.p.133-141, 1999.

20. N.A. Golias, T.D. Tsiboukis. An Approach to Refining Three-Dimensional Tetrahedral Meshes Based on Delaunay Transformations // , John Wiley, № 37, p.p.793-812, 1994.

21. C. Hazlewood. Approximating Constrained Tetrahedralizations // Computer Aided Geometric Design , vol. 10, p.p. 67–87, 1993.

22. B. Joe. Delaunay Triangular Meshes in Convex polygons, SIAM J. Sci. Stat. Comput ., Vol. 7, p.p. 514-539, 1986.

23. B. Joe. Construction Of Three-Dimensional Delaunay Triangulations Using Local Transformations // Computer Aided Geometric Design , Vol. 8, p.p. 123-142, 1991.

24. B. Joe. Construction of Three-Dimensional Improved-Quality Triangulations Using Local Transformations // Siam J. Sci. Comput. , vol. 16, p.p. 1292-1307, 1995.

25. R.W. Lewis, Yao Zheng, D.T. Gethin. Three-Dimensional Unstructured Mesh Generation: Part 3. Volume Meshes // Computer Methods In Applied Mechanics And Engineering , Elsevier, Vol 134, p.p.285-310, 1996.

26. A.Liu, B. Joe. On The Shape Of Tetrahedra From Bisection // Mathematics of Computation , vol. 63, №207, 141–154, 1994.

27. S.H. Lo. Volume Discretization into Tetrahedra-I. Verification and Orientation of Boundary Surfaces // Computers and Structures , Pergamon Press, Vol. 39, № 5, p.p. 493-500, 1991.

28. S.H. Lo. Volume Discretization into Tetrahedra - II. 3D Triangulation by Advancing Front Approach // Computers and Structures , Pergamon, Vol. 39, № 5, p.p. 501-511, 1991.

29. R. Lohner. Generation Of Three-Dimensional Unstructured Grids By The Advancing Front Method //Proceedings of the 26th AIAA Aerospace Sciences Meeting , Reno, Nevada, 1988.

30. S.J. Owen. A Survey of Unstructured Mesh Generation Technology // Proceedings of 7th International Meshing Roundtable , p.p. 239-269, Dearborn, MI, 1998.

31. V.N. Parthasarathy, C.M. Graichen, A.F. Hathaway. A Comparison of Tetrahedron Quality Measures // Finite Elements in Analysis and Design , Elsevier, №. 15, p.p. 255-261, 1993.

32. S. Pirzadeh. Unstructured Viscous Grid Generation by Advancing-Layers Method // AIAA-93-3453-CP, AIAA, p.p. 420-434, 1993.

33. V.T. Rajan. Optimality of Delaunay Triangulation in // Proc. 7th ACM Symp. Comp. Geometry , p.p. 357-363, 1991.

34. A.Rassineux. Generation and Optimization of Tetrahedral Meshes by Advancing Front Technique // International Journal for Numerical Methods in Engineering , Wiley, Vol. 41, p.p. 651-674, 1998.

35. S. Rebay. Efficient Unstructured Mesh Generation by Means of Delaunay Triangulation and Bowyer-Watson Algorithm // Journal Of Computational Physics , vol. 106, p.p. 125-138, 1993.

36. M.-C. Rivara. Selective Refinement/Derefinement Algorithms For Sequences Of Nested Triangulations // International Journal for Numerical Methods in Engineering , №28, p.p. 2889-2906, 1998.

37. M.-C. Rivara, C. Levin. A 3D Refinement Algorithm Suitable For Adaptive And Multigrid Techniques // Communications in Applied Numerical Methods , № 8, p.p. 281-290, 1998.

38. J. Ruppert. A Delaunay refinement algorithm for quality 2-dimensional mesh generation // Journal of Algorithms , №18, p.p. 548-585, 1995.

39. M.S. Shephard, M.K. Georges. Three-Dimensional Mesh Generation by Finite Octree Technique // International Journal for Numerical Methods in Engineering , vol. 32, p.p. 709-749, 1991.

40. M.S. Shephard, F. Guerinoni, J.E. Flaherty, R.A. Ludwig, P.L. Baehmann. Finite octree mesh generation for automated adaptive 3D Flow Analysis // Numerical grid generation in computational Fluid mechanics , Miami, 1988

41. K. Shimada, D.C. Gossard. Bubble Mesh: Automated Triangular Meshing of Non-manifold Geometry by Sphere Packing // Proceedings of 3rd Symposium on Solid Modeling and Applications , p.p. 409-419, 1995.

42. K. Shimada, A. Yamada, T. Itoh. Anisotropic Triangular Meshing of Parametric Surfaces via Close Packing of Ellipsoidal Bubbles // Proceedings of 6th International Meshing Roundtable , p.p. 375-390, 1997.

43. D.F. Watson. Computing the Delaunay Tessellation with Application to Voronoi Polytopes // The Computer Journal , Vol. 24(2), p.p. 167-172, 1981.

44. M.A. Yerry, M.S. Shephard. Three-Dimensional Mesh Generation by Modified Octree Technique // International Journal for Numerical Methods in Engineering , Vol. 20, p.p. 1965-1990, 1984.

45. Галанин М.П., Щеглов И.А. Разработка и реализация алгоритмов трехмерной триангуляции сложных пространственных областей: прямые методы. Препринт ИПМ им. М.В. Келдыша РАН, 2006, в печати. points , т.е. узлы Штейнера - дополнительные узлы, не входившие в изначальный набор

Может показаться, что из условия 3 следует условие 2, но на самом деле это не так. Например, существующий тетраэдр может целиком оказаться внутри проверяемого тетраэдра.

ТЕПЛОВ А.А. , бакалавр, МГТУ имени Н.Э. Баумана, кафедра «Программное обеспечение ЭВМ и информационные технологии», Москва, [email protected]

МАЙКОВ К.А. , д.т.н., профессор, МГТУ имени Н.Э. Баумана, кафедра «Программное обеспечение ЭВМ и информационные технологии», Москва, [email protected]

Модифицированный алгоритм
триангуляции Делоне

Приведены результаты сравнительного анализа методов триангуляции Делоне, обладающих высоким быстродействием и низкой ресурсоемкостью. Обосновывается выбор прототипа для последующей модернизации применительно кпостроению динамических трехмерных объектов в реальном времени с практически необходимой степенью детализации. Предложен алгоритм интервального разбиения массива точек триангуляции в соответствии с плотностью распределения, позволяющий избежать ошибок при аппаратной реализации. Проведен анализ предложенного модифицированного алгоритма триангуляции Делоне

Введение

Одним из этапов, определяющих ресурсоемкость построения динамических 3D объектов с заданной степенью детализации, является триангуляция . На практике возникает необходимость определения прототипа метода триангуляции, удовлетворяющего требованию высокого быстродействия и низкой ресурсоемкости с последующей модификацией для конкретного класса задач.

Постановка решаемых задач

Ряд практических задач характеризуется необходимостью моделирования 3D объектов, описанных соответствующим набором точек с неизвестным законом распределения. Примером подобных задач является моделирование горной гряды или сложных и нерегулярных поверхностных структур, значения высот которых заранее получены средствами дистанционного зондирования. В этом случае необходимо произвести триангуляцию на исходном наборе точек, обеспечивающую наибольшую «степень правильности» треугольников, для которой характерно исключение построения «тонких» треугольников с минимальным значением суммы радиусов описанных окружностей.

Проблема «степени правильности» треугольников решается триангуляцией, удовлетворяющей условию Делоне .

Известные алгоритмы триангуляции Делоне можно разделить на следующие четыре категории : итеративные алгоритмы, алгоритмы слияния, двухпроходные алгоритмы и пошаговые; основные особенности указанных алгоритмов рассматриваются ниже.

Итеративные алгоритмы построения триангуляции Делоне

В итеративных алгоритмах реализуется последовательное добавление точек в частично построенную триангуляцию Делоне . Трудоемкость итеративных алгоритмов Делоне определяется как O(N2) , а для случая равномерного распределения точек – O(N) . Недостатками итеративных алгоритмов Делоне являются большое число итеративных циклов, зависимость алгоритма сортировки от структуры исходных данных, а также необходимость проверки на условие Делоне в каждом цикле. Преимущества итеративных алгоритмов Делоне – простота реализации и высокое быстродействие выбора эффективного алгоритма сортировки, основывающегося на определенном наборе входных данных .

Алгоритмы построения триангуляции Делоне слиянием

Алгоритмы слияния реализуют разбиение исходного множества точек на ряд подмножеств, в которых производится построение триангуляций с последующим объединением ряда решений . Трудоемкость алгоритмов слияния составляет всреднем O(N) . Алгоритмам слияния свойственна избыточность, определяемая необходимостью построения выпуклых областей для «узких» полос , а следовательно, формированием длинных, «узких» треугольников , перестраиваемых при слиянии. Алгоритмы слияния обладают высоким быстродействием, что обуславливает их практическое преимущество.

Двухпроходные алгоритмы построения триангуляции Делоне

Преимущественная особенность двухпроходных алгоритмов состоит в том, что на первом цикле строится некоторая триангуляция без учета условия Делоне, которая на втором этапе модифицируется согласно условию Делоне . Трудоемкость двухпроходных алгоритмов составляет в среднем O(N) , а в наименее благоприятном случае – O(N 2) . Недостатком двухпроходных алгоритмов Делоне является необходимость в большом количестве сортировок длякаждой полосы. В то же время данный алгоритм характеризуется высоким быстродействием, т.к. очередной треугольник, попадающий в триангуляцию, не подвергается проверке на удовлетворение условию Делоне, требующему значительных аппаратных ресурсов.

Пошаговые алгоритмы построения триангуляции Делоне

Алгоритмы пошагового построения реализуют лишь треугольники, удовлетворяющие условию Делоне в конечной триангуляции, а поэтому не требуют перестроения . При большой концентрации точек применение пошагового клеточного алгоритма является нецелесообразным. Трудоемкость данного алгоритма в среднем составляет O(N), а в худшем случае – O(N 2).

Выбор прототипа для модификации триангуляции Делоне

Практические особенности задачи построения динамических 3D-объектов в реальном времени определяют такие требования к алгоритмам триангуляции Делоне, как высокое быстродействие и низкая ресурсоемкость. Как следует изприведенных выше результатов анализа, рассмотренные алгоритмы не удовлетворяют в полной мере этим требованиям. Поэтому возникает необходимость построения алгоритма, который не зависит от разбиения области триангуляции напримитивы, содержащие точки самой триангуляции, и не требует проверки условия Делоне на каждой итерации добавления текущего треугольника в исходную триангуляцию.

Из приведенных выше результатов сравнительного анализа следует, что двухпроходные алгоритмы триангуляции Делоне, в частности двухпроходной веерный алгоритм , лишь частично удовлетворяют критериям высокого быстродействия и низкой ресурсоемкости.

Однако алгоритмы данного типа нуждаются в модификации в целях повышения быстродействия применимо к задачам реального времени. Двухпроходной веерный алгоритм избыточен в определении центра масс точек. Определяя координату точки центр масс по OX или OY, при большом количестве точек нецелесообразно вычислять значение среднего арифметического, и при больших значениях координат точек может произойти переполнение данных, что повлечет за собой ошибку или сбой программы. Поэтому целесообразно все значения точек триангуляции разделить на интервалы по оси X на Δх 1 , Δх 2 , Δх 3 ... Δх n и по оси Y на Δy 1 , Δy 2 , Δy 3 ... Δy n . Также необходимо определить количество точек, принадлежащих соответствующим интервалам по осям X и Y. Результирующие формулы получения центра координат масс точек имеют следующий вид:

  • х c – x-координата точки центра масс;
  • Δх i – i-й интервал на оси X;
  • X max – максимальное значение по оси X среди всех точек триангуляции;
  • X min – минимальное значение по оси X среди всех точек триангуляции;
  • y c – y-координата точки центра масс;
  • n i – количество точек на i-м интервале;
  • Δy i – i-й интервал на оси Y;
  • Y max – максимальное значение по оси Y среди всех точек триангуляции;
  • Y min – минимальное значение по оси Y среди всех точек триангуляции.

Последующие этапы триангуляции реализуются согласно классическому веерному алгоритму . Схема разработанного модифицированного веерного алгоритма триангуляции Делоне представлена на рис. 1.

Наиболее трудоемкими этапами в представленной схеме являются этапы сортировки и построения триангуляции до выпуклой. В качестве алгоритма сортировки был выбран алгоритм слияния , а в качестве алгоритма построения выпуклой триангуляции – алгоритм Грэхема . Оба алгоритма работают за приемлемое время и являются наиболее предпочтительными в практическом аспекте среди своих представителей.

Анализ модифицированного веерного алгоритма триангуляции Делоне

Из приведенной на рис. 1 схемы видно, что значение времени построения триангуляции модифицируемым веерным алгоритмом определяется выражением:

  • T 1 ,T 2 – значения времени вычислений оптимального числа интервалов по осям X и Y соответственно;
  • T 3 ,T 4 – значения времени вычислений X min и X max соответственно;
  • T 5 ,T 6 – значения времени вычислений Y min и Y max соответственно;
  • T 7 ,T 8 – значения времени вычислений величин интервалов по осям X и Y соответственно;
  • T 9 – значение времени вычисления величин полярного угла каждой точки массива относительно точки A(X c ,Y c);
  • T 10 – значение времени сортировки слиянием всех точек по полярному углу относительно точки A(X c ,Y c);
  • T 11 – значение времени построения ребра от каждой точки массива к точке A(X c ,Y c);
  • T 12 – значение времени достроения триангуляции до выпуклой;
  • T 13 – значение времени перестроения триангуляции, удовлетворяющей условию Делоне;
  • n – массив значений координат точек.

Рассмотрим каждую временную зависимость отдельно.

При определении оптимального числа интервалов по оси X и Y, воспользуемся правилом Стерджеса , согласно которому количество интервалов n определяется как:

  • N – общее число наблюдений величины;
  • [x] – целая часть числа x.

Очевидно, что временные зависимости T 1 и T 2 имеют константные представления c 1 и c 2 .

На этапах определения значений X min , X max , Y min , Y max псевдокод будет выглядеть следующим образом:

Xmin ← M

for i ← 1 to lenght(M) – 1

If Xmin › M[i]

Xmin ← M[i]

Xmax ← M

for i ← 1 to lenght(M) – 1

If Xmax < M[i]

Xmax ← M[i]

Ymin ← M

for i ← 1 to lenght(M) – 1

If Ymin › M[i]

Ymin ← M[i]

Ymax ← M

for i ← 1 to lenght(M) – 1

If Ymax < M[i]

Ymax ← M[i]

Из вышеуказанного псевдокода отчетливо видно, что время нахождения максимального или минимального значения величин x или y имеет линейную зависимость O(N), следовательно, T 3 (n), T 4 (n),T 5 (n),T 6 (n), имеют временную характеристику O(N) соответственно.

Схема определения значений интервалов по оси X представлена на рис. 2.

Из выше представленной схемы также видна линейная временная зависимость O(N), т.к. в определении величин участвует весь набор координат значений массива точек. Схема определения величин интервалов по оси Y имеет аналогичную структуру и временные характеристики, следовательно, временная зависимость для T 7 (n) и T 8 (n) имеет вид O(N).

Схема определения значений полярного угла для исходного массива точек представлена на рис. 3.

В виде псевдокода данная схема будет выглядеть следующим образом:

for points to points

# Если точка лежит на оси координат между I и IV четвертями

If point.x ≥ Xc and point.y = Yc

Point.angle ← 0

# Если точка лежит строго в I четверти

Else if point.x > Xc and point.y > Yc

Foundation ← |point.x – Xc|

Point.angle ← arctg(perpendicular/foundation)

# Если точка лежит на оси координат между I и II четвертями

Else if point.x = Xc and point.y > Yc

Point.angle ← p/2

# Если точка лежит строго в II четверти

Else if point.x < Xc and point.y > Yc

Foundation ← |point.y – Yc|

Point.angle ← p/2 + arctg(perpendicular/foundation)

# Если точка лежит на оси координат между II и III четвертями

If point.x < Xc and point.y = Yc

Point.angle ← p

# Если точка лежит строго в III четверти

If point.x < Xc and point.y > Yc

Foundation ← |point.x – Xc|

Perpendicular ← |point.y – Yc|

Point.angle ← p + arctg(perpendicular/foundation)

# Если точка лежит на оси координат между III и IV четвертями

If point.x = Xc and point.y < Yc

Point.angle ← 3p/2

# Если точка лежит строго в IV четверти

If point.x > Xc and point.y < Yc

Foundation ← |point.y – Yc|

Perpendicular ← |point.x – Xc|

Point.angle ← 3p/2 + arctg(perpendicular/foundation)

Очевидно, что временная характеристика определения значений полярного угла для исходного массива координат точек имеет вид O(N), следовательно, T 9 (n) = O(N).

Как показано в , сортировка слиянием имеет временную зависимость вида O(N), следовательно, T 10 (n) = O(NlnN).

Схема построения ребра, соединяющего точки исходного массива, представлена на рис. 4.

Псевдокод вышеуказанной схемы будет иметь вид:

for i ← 0 to length(Points) – 1

Draw(Xc,Yc,Points[i].x, Points[i].y)

Временная характеристика также линейна, следовательно, T 11 (n) = O(N).

Достроение получившейся триангуляции до выпуклой осуществляется согласно алгоритму Грэхема . В качестве входных данных процедуры выступает множество точек Q, где |Q|≥3. В ней вызывается функция Top(S), которая возвращает точку, находящуюся на вершине стека S, не изменяя при этом его содержимое. Кроме того, используется также функция NextToTop(S), которая возвращает точку, расположенную в стеке S, на одну позицию ниже от верхней точки; стек S при этом не изменяется.

Graham(Q)

Пусть p 0 – точка из множества Q с минимальной координатой.

Пусть ‹p 1 , p 2 ,...,p N › – точки множества Q, отсортированные

В порядке возрастания полярного угла.

Push(p 0 ,S)

Push(p 1 ,S)

for i=2 to N do

While угол, образованный точками NextToTop(S), Top(S) и pi,

Образуют не левый поворот

# при движении по ломаной, образованной этими

# точками, движение осуществляется прямо или вправо

Do Pop(S)

Push(pi,S)

return S

Время работы процедуры Graham равно O(NlnN), где N=length(Q). Как несложно показать, что циклу while потребуется время O(N), а сортировка полярных углов займет O(NlnN) времени, откуда и следует общая асимптотика процедуры Graham, следовательно, T 12 (n) = O(NlnN).

Временная характеристика перестроения триангуляции, удовлетворяющей условию Делоне, как показано в , имеет линейную зависимость O(N), таким образом, T 13 (n) = O(N).

Если подставить все найденные временные характеристики в выражение (3), то результирующая временная зависимость будет иметь вид:

T(n) = c 1 +c 2 +O(N)+O(N)+O(N)+O(N)+O(N)+O(N)+O(N)+ +O(NlnN)+O(N)+O(NlnN)+O(N)

T(n) = O(NlnN)

Проведенный теоретический анализ временных характеристик модифицированного алгоритма триангуляции Делоне подтверждает работоспособность и высокое быстродействие предложенного алгоритма.

Выводы

В результате проведенного сравнительного анализа практически востребованных алгоритмов триангуляции Делоне, показано, что рассмотренные методы не удовлетворяют требованиям построения в реальном времени динамических трехмерных объектов с заранее определенной степенью детализации, а следовательно, возникает практическая необходимость их модификации. Предложена модификация веерного двухпроходного алгоритма триангуляции Делоне, функциональной особенностью которого является вычисление значений центра масс массива координат точек триангуляции посредством разбиения массива точек на подмножества по оси X и Y. Произведен анализ временных характеристик модифицированного алгоритма триангуляции Делоне. Указанные вычисления позволяют существенно выиграть в производительности на большом массиве точек при определении координат точки центра масс и избежать переполнения данных, а следовательно, ошибки при программной реализации.

  1. Кнут Д.Э. Искусство программирования. Том 1. Основные алгоритмы. – М.: Вильямс, 2008. – 680 с.
  2. Кнут Д.Э. Искусство программирования. Том 3. Сортировка и поиск. – М.: Вильямс, 2008. – 800 с.
  3. Мандельброт Б. Фрактальная геометрия природы. – М.: Институт компьютерных исследований, 2002. – 656 с.
  4. Скворцов А. В. Триангуляция Делоне и ее применение. – Томск: Изд-во Томского университета, 2002. – 128 с.
  5. Скворцов А.В. Построение триангуляции Делоне за линейное время. – Томск: Изд-во Томского университета, 1999. – С.120-126.
  6. Скворцов А.В., Мирза Н.С. Алгоритмы построения и анализа триангуляции. – Томск: Изд-во Томского университета, 2006. – 168 с.
  7. Томас Х. Кормен, Чарльз И. Лейзерон, Рональд Л. Ривест, Клиффорд Штайн. Алгоритмы: построение и анализ, 3-е изд.: Пер. с англ. – М.: Вильямс, 2013. – 1328 с.
  8. Шайдуров В.В. Многосеточные методы конечных элементов. – М.: Наука, 1989. – 288 с.
  9. Sturges H. (1926). The choice of a class-interval. J. Amer. Statist. Assoc., 21, 65-66.

Ключевые слова: виртуальная реальность, триангуляция на заданном массиве точек, триангуляция Делоне, построение динамических трехмерных объектов.

The modified Delaunay’s triangulation algorithm

Teplov A.A. , Bachelor, MSTU Bauman, Department of "Software and Information Technologies", Moscow, [email protected]

Maikov K.A. , Doctor of Technical Sciences, Professor, MSTU Bauman, Department of "Software and Information Technologies", Moscow, [email protected]

Abstract: The results of the comparative analysis of the virtually popular methods of the Delaunay’s triangulation with high performance and low resource consumption are described in this article. The choice of the method for further modernization with the aim of building of dynamic 3-D objects in real time with a certain degree of detail is justified. One of the main stages of a fibered the two-pass algorithm of the Delaunay’s triangulation is modified. There is the proposal of the algorithm for the interval partitioning of the cell array of the triangulation in accordance with the density of distribution, allowing to avoid the errors in the hardware implementation.

Keywords: virtual reality, triangulation on a given cell array, Delaunay’s triangulation, building of dynamic 3-D objects.


Вконтакте

20 августа 2012 в 22:41

Оптимизация алгоритма проверки условия Делоне через уравнение описанной окружности и его применение

  • Обработка изображений ,
  • Программирование

Расскажу секрет о том, как быстро проверить выполнение условия Делоне для двух треугольников.
Собственно сама оптимизация описана немного ниже(см.«Оптимизация алгоритма проверки условия Делоне через уравнение описанной окружности»), но расскажу обо всем по порядку.

В моем случае триангуляция применяется в трассировке изображения, для разбиения плоскости на примитивные сектора (треугольники). Как известно, она делится также на несколько этапов: корректировка, выявление границ, обход границ, заметание контуров. Это в самом общем виде. Я бы хотел остановиться, думаю, на самом сложном этапе: заметание плоскости.

На входе
После обнаружения и обхода границ на выходе я получил множество внешних контуров. Каждые соприкасающиеся контура имеют разные цвета. Внутри каждого такого контура содержится также известное кол-во внутренних контуров.
Таким образом, с точки зрения «заметания плоскости», если рассматривать внешние контура отдельно, имеем множество точек, каждая из которых имеет по одному соседу справа и слева. Т.е. все точки замкнуты в цепи, нет ни одной одиночной «висячей» точки, а так же в каждой из цепей содержится не менее 3-ех точек (Рисунок 1).

Рисунок 1

Что надо сделать
Нужно заметать фигуру треугольниками.
Поиски
Прочитав книгу не нашел ни одного (хотя бы одного) хоть сколько нибудь подходящего к моему случаю способа построения триангуляции Делоне. Искать другие книги не стал. Да и этой хватило, она привела мысли моей головы в порядок. В итоге изобрел свой «велосипед».
Алгоритм
1) Допустим, для начала, что в рассматриваемой фигуре всего одна последовательность. Тогда все сводится к последовательному забиранию треугольников. Берем любую точку и пытаемся построить треугольник с соседними точками. Если треугольник построить не получилось (линия связывающая эти две точки, пересекается с уже построенными или линия проходит в зоне отчуждения (Рисунок 2), двигаемся к соседней точке, допустим вправо. Когда очередной треугольник найден, заносим его в список (Рисунок 3), а точку из которой он строился удаляем (Рисунок 4).


Рисунок 2

Рисунок 3

Рисунок 4

Еще одно но: при сохранении очередного треугольника необходимо записывать вершины в обходе по часовой стрелке (в правой системе координат). Это пригодится в дальнейшем для уменьшения вычислительных ресурсов.

2) Повторяем шаг 1 пока не заметаем всю плоскость.

3) Если последовательностей несколько, т.е. одна, а внутри её еще одна или более внутренних контуров (Рисунок 1). Тут необходимо рассмотреть каждую последовательность отдельно. Возьмем очередной внутренний контур. Из одного внешнего и одного внутреннего сделаем два одиночных контура. Для этого нужно найти два «порта» из одного контура в другой. Условие для «портов»: они не должны пересекаться между собой(не должны соприкасаться даже концами), не должны пересекаться с линиями контуров (Рисунок 5).


Рисунок 5

Рисунок 6
4) Далее следует ввести поочередно все внутренние последовательности в уже образованные, отделенные друг от друга (пункт 3) последовательности. Сливать нужно с той, которая содержит новую. По определению ни одна внутренняя последовательность не касается и не пересекается с другими(как одной внешней, так и всеми возможными внутренними), так что все пройдет гладко.
Найдя порты (Рисунок 6) легко построить новые последовательности и обойти их пунктами 1 и 2 текущего алгоритма (Рисунок 7).

Рисунок 7

5) После 4-его этапа имеем список треугольников(Рисунок 8). Как бы с задачей уже справились, но осталось сделать картинку красивой: проверить выполнение условия Делоне (Рисунок 9).

Рисунок 8

Рисунок 9

6) Забегая вперед расскажу про шестой пункт. Он заключается в последовательном прогоне по списку полученных треугольников пунктом №5. Сначала метим все треугольники «грязными». В каждом цикле проверяем для каждого треугольника условие Делоне. Если условие не выполняется, то делаем перестроение и помечаем соседей и текущий треугольник «грязными». Если условие выполняется, то метим его чистым. В моей реализации алгоритма, каждый треугольник имеет ссылку на соседей. В этом случае 6-ой пункт работает наиболее быстро.

Подробнее о пятом этапе
Сейчас, на сколько я знаю, существуют два возможных способа определить удовлетворяют треугольники условию Делоне или нет: 1) Проверить сумму противоположных углов. Она должны быть меньше 180. 2) Вычислить центр описанной окружности и посчитать расстояние до 4-ой точки. Всем известно, условие Делоне выполняется, если точка находится за пределами описанной окружности.

Мощность вычислений №1: 10 операций умножения/деления и 13 операций сложения/вычитания.
Мощность вычислений №2: 29 операций умножения/деления и 24 операций сложения/вычитания.

С точки зрения вычислительной мощности, которая высчитывается к примеру в книге , выгоднее вариант №1. Его и реализовал, если бы не… (Рисунок 10). Как оказалось после постановки данного метода на «конвейер», получилась неопределенность. Это вариант, когда сам угол А больше 180 градусов. Он рассматривается в книге как один из отдельных частных методов. А с этим пропадает вся его элегантность, прозрачность и производительность. А так же в последствии оказалось, что метод №2 можно очень существенно оптимизировать.


Рисунок 10

Оптимизация алгоритма проверки условия Делоне через уравнение описанной окружности

Далее чистая математика.

Итак имеем:
Проверка условия для точки M(X, Y) уравнением окружности, проходящей через точки A(x1, y1), B(x2, y2), C(x3, y3), можно записать в виде:

(a ⋅ (X^2 + Y^ 2) − b ⋅ X + c ⋅ Y − d) ⋅ sign a ≥ 0

Подробности можно взять в великолепной книге . (Нет, не я ее автор)
Итак, sign a - это знак направления обхода, с самого начала я строил треугольники по часовой стрелке, так что его можно опустить (он равен единице).

A(x1 - X, y1 - Y), B(x2 - X, y2 - Y), B(x3 - X, y3 - Y);

D >= 0

Рисунок 11

Просто не правда ли?

Согласно книге, опять же,

(x1^2 + y1^2)*(y2*x3 - x2*y3) + (x2^2 + y2^2)*(x1*y3 - y1*x3) + (x3^2 + y3^2)*(y1*x2 - x1*y2) <= 0

Имеем: 15 операций умножения/деления и 14 операций сложения/вычитания.

Спасибо за внимание. Жду критики.

Список используемой литературы
1. Скворцов А.В. Триангуляция Делоне и её применение. – Томск: Изд-во Том. ун-та, 2002. – 128 с. ISBN 5-7511-1501-5

Триангуляция представляет собой аппроксимацию поверхности моделируемого объекта треугольными пластинами, отстоящими от нее на расстоянии, не превышающем некоторой заданной величины 6. Все треугольные пластины должны стыковаться между собой. Их вершины лежат на поверхности. С набором треугольных пластин легче работать, чем с поверхностью общего вида. Треугольные пластины будем называть треугольниками. Для треугольника достаточно быстро вычисляются расстояние до заданной точки или точка пересечения с заданной прямой в пространстве. Триангуляция граней выполняется для визуального восприятия геометрической модели, поэтому стороны треугольников выбираются, такими, чтобы глаз не мог заметить изломы.

При отображении геометрических объектов по треугольникам на параметрических плоскостях поверхностей должна быть построена пространственная триангуляция граней тела путем вычисления массива точек в пространстве и массива нормалей к граням тела в этих точках по массиву двухмерных точек Для быстрого отображения тел их грани аппроксимируют треугольными пластинами, построенными на точках Нормали требуются для определения поведения световых лучей, взаимодействующих с гранями тела. Тоновые рисунки в предыдущих главах и в данной главе выполнены с использованием триангуляции.

Результатом триангуляции поверхности мы хотим иметь массив двухмерных точек на параметрической плоскости и массив троек целых чисел, являющихся номерами точек в первом упомянутом массиве. Таким образом, каждый треугольник будет представлен тремя номерами его вершин в массиве параметров. По каждой двухмерной точке параметрической области могут быть вычислены пространственная точка на поверхности и нормаль поверхности в ней. Пространственные точки и нормали могут храниться в массивах, аналогичных массиву двухмерных точек.

Остановимся на некоторых способах триангуляции. Для плоских поверхностей существуют экономичные методы триангуляции, в которых треугольники строятся на граничных точках поверхности и не требуется искать точки внутри параметрической области.

Триангуляция Делоне.

Рассмотрим некоторую область на плоскости. Область будем называть выпуклой, если при движении вдоль ее границы приходится поворачивать только в одну сторону (только влево или только вправо). Для триангуляции выпуклых плоских областей можно использовать алгоритм Делоне. Мы не сможем напрямую применить этот алгоритм для триангуляции поверхностей произвольной формы, но мы будем использовать его метод построения треугольников.

Рис. 9.7.1. Выпуклая область с заданными точками внутри

Пусть даны некоторая выпуклая двухмерная область, ограниченная замкнутой ломаной линией, и набор точек внутри этой области (рис. 9.7.1).

Требуется разбить указанную область на треугольники, вершинами которых являются заданные точки внутри области и вершины ограничивающей ее ломаной линии. Треугольники не должны накрывать друг друга, а их стороны могут пересекаться только в вершинах.

Можно построить несколько различных наборов треугольников, заполняющих указанную область. Во всех случаях число треугольников равно , где К - число вершин ограничивающей ломаной, I - число заданных точек внутри области.

Рис. 9.7.2. Выбор третьей точки алгоритма Делоне

Триангуляция области будет триангуляцией Делоне, если внутри описанной вокруг каждого треугольника окружности отсутствуют вершины других треугольников. Триангуляция Делоне строит треугольники по возможности близкие к равноугольным (не допускает построение неоправданно вытянутых треугольников).

Ее можно назвать сбалансированной. Триангуляция Делоне будет уникальной, если никакие четыре вершины не лежат на одной окружности.

Рассмотрим триангуляцию Делоне. Вершины ограничивающей область ломаной и заданные точки внутри области будем называть вершинами триангуляции. Стороны треугольников будем называть ребрами. Среди ребер выделим отрезки ограничивающей ломаной, которые будем называть граничными ребрами. Сориентируем все граничные ребра так, чтобы выпуклая область лежала слева от каждого ребра. Пусть требуется построить треугольник, стороной которого является граничное ребро АВ, показанное на рис. 9.7.2.

Через вершины А, В и любую, не лежащую с ними на одной прямой, вершину можно провести окружность. В качестве третьей вершины треугольника выберем вершину V, соответствующая которой окружность, не содержит других вершин с той же стороны относительно отрезка АВ, с которой лежит точка V. Для граничного ребра в общем случае можно найти одну такую вершину. Будем называть ее ближайшей. Центр окружности, проходящей через точки А, В и V, лежит на пересечении перпендикуляров к серединам отрезков АВ, BV и VА. Положение центра окружности будем характеризовать параметром t отрезка MN, перпендикулярного ребру АВ, равного с ним по длине и проходящего через середину ребра АВ.

Рис. 9.7.3. Процесс триангуляции Делоне

Для всех вершин, лежащих слева от отрезка АВ, ближайшая вершина имеет наименьший параметр t. Соответствующая ближайшей вершине окружность не содержит других вершин слева от отрезка АВ. Пусть вершины А, В и V описываются двухмерными радиус-векторами соответственно. Радиус-векторы середин отрезков АВ и BV будут равны

Значение параметра t прямой , соответствующее положению на ней центра окружности, проходящей через точки А, В и V, равно

Для ближайшей слева к отрезку АВ вершины параметр t имеет минимальное значение.

Сориентируем все граничные ребра так, чтобы подлежащая триангуляции область лежала слева от каждого из них. Построение треугольников начнем с любого граничного ребра. Найдем для него ближайшую вершину, соответствующая окружность которой не содержит других вершин. Пусть для граничного ребра АВ найдена ближайшая вершина V. Тогда построим треугольник ABV и переведем ребро АВ в разряд неактивных. Неактивными будем называть ребра и вершины, которые не участвуют в алгоритме триангуляции. Если среди граничных ребер отсутствует ребро BV, то на отрезке VB построим новое граничное ребро. Если же среди граничных ребер есть ребро BV, то переведем его и вершину В в разряд неактивных. Если среди граничных ребер отсутствует ребро VA, то на отрезке AV построим новое граничное ребро. Если же среди граничных ребер есть ребро VA, то переведем его и вершину А в разряд неактивных. Процесс триангуляции показан на рис. 9.7.3.

Рис. 9.7.4. Триангуляция Делоне

Триангуляцию закончим, когда все вершины и ребра станут неактивными. Результат триангуляции заданной области приведен на рис. 9.7.4.

Триангуляция методом коррекции.

Рассмотрим триангуляцию некоторой поверхности с прямоугольной областью определения параметров Разобьем область определения параметров поверхности на прямоугольные ячейки двухмерными линиями Эти линии образуют прямоугольную сетку. Параметрические расстояния между соседними линиями в соответствии с формулой (9.4.7) возьмем равными

Параметрические расстояния между соседними линиями в соответствии с формулой (9.4.8) возьмем равными

Построив диагонали во всех прямоугольных ячейках, мы получим триангуляцию поверхности (получим набор треугольников, удовлетворяющий предъявленным требованиям). На рис. 9.7.5 приведена триангуляция поверхности вращения описанным способом.

Рассмотрим триангуляцию поверхности с произвольной границей. Метод триангуляции построим на коррекции граничными контурами описанной выше триангуляции поверхности с прямоугольной областью определения параметров.

Рис. 9.7.5. Триангуляция поверхности с прямоугольной областью определения параметров

Пусть граница поверхности в области определения параметров описывается несколькими непересекающимися двухмерными контурами (2.12.7). Один из контуров является внешним и содержит остальные контуры. За положительное направление для каждого контура примем направление, при движении вдоль которого область определения поверхности находится всегда слева от контура, если смотреть навстречу нормали поверхности. Построим полигоны в положительном направлении граничных контуров области определения поверхности. Для построения граничных полигонов нужно пройти по граничным контурам поверхности с некоторым переменным шагом и заполнить массив двухмерных точек, координатами которых являются параметры поверхности. Полигон будем строить из точек на параметрической плоскости, но шаг при переходе от одной точке к другой будем определять из пространственной геометрии, а именно, из условия, чтобы прогиб дуги кривой между соседними точками был бы не более заданной величины . Параметрические шаги построения полигона для кривой граничного контура поверхности вычислим по формуле (9.4.4).

Каждый полигон состоит из упорядоченного набора двухмерных точек Каждый участок полигона можно рассматривать как отрезок двухмерной прямой линии, построенный на двух соседних точках. Будем использовать такие участки в качестве граничных ребер, а точки полигонов, на которых базируются ребра, будем использовать в качестве вершин триангуляции. Так как область определения параметров поверхности лежит слева от граничных полигонов, то при построении треугольников для каждого граничного ребра триангуляции следует искать третью вершину треугольника слева от ребра.

Определим, какие узлы лежат внутри граничных полигонов, а какие лежат на границе или вне области определения поверхности. Используя эту информацию, рассортируем прямоугольные ячейки сетки на две группы. К первой группе отнесем ячейки, целиком лежащие внутри области определения параметров поверхности (ячейки не должны касаться граничных полигонов). Ко второй группе отнесем остальные ячейки (лежащие вне области определения поверхности или пересекаемые граничными полигонами).

Рис. 9.7.6. Незаконченная триангуляция поверхности

Внутри каждой ячейки первой группы с помощью диагонали построим два треугольника. Тем самым мы получим незаконченную триангуляцию. Пример построения треугольников в ячейках первой группы для ограниченной контурами поверхности вращения приведен на рис. 9.7.6.

На непересеченных сторонах ячеек второй группы построим граничные ребра и направим их так, чтобы соответствующая ячейка находилась слева от ребра. Вокруг ячеек первой группы построим замкнутую ломаную линию (возможно несколько замкнутых линий) так, чтобы при движении по ней не разбитая на треугольники часть области лежала слева, если смотреть навстречу нормали поверхности. Прямолинейные участки этой ломаной линии также будем использовать в качестве граничных ребер. Мы будем считать все ребра равноправными. Для завершения триангуляции нам необходимо построить треугольники между граничными ребрами. Для каждого ребра будем искать вершину, которая лежит слева от него и может быть использована для построения треугольника. Поиск вершины будем осуществлять только среди тех вершин, которые лежат в одной ячейке с ребром. Для выбора вершины используем метод Делоне, описанный выше, и проиллюстрированный на рис. 9.7.2. Если такая вершина найдена, то следует проверить, не пересекаются ли два новых ребра треугольника с каким-либо граничным ребром. Пусть для граничного ребра АВ найдена ближайшая вершина V и проверено, что отрезки BV и VА не пересекают другие граничные ребра. Тогда построим треугольник ABV и переведем ребро АВ в разряд неактивных. Если среди граничных ребер отсутствует ребро BV, то на отрезке VВ построим новое граничное ребро, если же среди граничных ребер есть ребро BV, то переведем его и вершину В в разряд неактивных. Если среди граничных ребер отсутствует ребро VA, то на отрезке AV построим новое граничное ребро, если же среди граничных ребер есть ребро VA, то переведем его и вершину А в разряд неактивных.

Если отрезок или VA пересекает другие граничные ребра, то перейдем к поиску ближайшей вершины для другого граничного ребра. Триангуляция будет закончена после перевода всех ребер и вершин в разряд неактивных.

Рис. 9.7.7. Триангуляция методом коррекции

На рис. 9.7.7 приведена триангуляция поверхности методом коррекции треугольников в ячейках, пересеченных граничными контурами. На рис. 9.7.8 с помощью полученной триангуляции отображена сама поверхность.

Если граничные полигоны и поверхность обладают некоторой симметрией, то триангуляция методом коррекции будет обладать аналогичной симметрией.

Триангуляция методом поглощения.

Рассмотрим еще один метод триангуляции. По скорости он уступает триангуляции Делоне и ее модификациям. Для начала процедуры триангуляции необходимо представить границу поверхности в виде замкнутых полигонов. В процессе триангуляции нам потребуется определять шаги по параметрам поверхности . При известном направлении движения эти шаги определяются формулами (9.4.6). Приближенно шаги по параметрам поверхности можно найти следующим образом. Определим область на плоскости параметров вокруг некоторой точки таким образом, чтобы любой пространственный отрезок из точки в точку этой области отстоял бы от поверхности не дальше заданной величины S.

Для этого вычислим допустимые приращения параметров вдоль координатных линий

где - коэффициенты первой и второй квадратичных форм поверхности в точке . За границу искомой области примем эллипс с центром в точке и полуосями . Этот эллипс имеет уравнение

Если требуется на плоскости найти точку рядом с точкой в направлении, заданном углом с осью и, то ее параметрами будут

Сначала рассмотрим более простой случай, когда область параметров поверхности ограничена одним внешним контуром. Аппроксимируем границу поверхности замкнутым полигоном на параметрической области. При построении триангуляции будем использовать рабочий полигон, за который в данном случае примем полигон внешнего контура. Точки полигона занесем в результирующий массив двухмерных точек. Треугольники будем строить от края рабочего полигона, сужая его до тех пор, пока в рабочем полигоне не останется всего три точки.

Найдем в рабочем полигоне вершину, в которой он поворачивает внутрь области. Такая точка всегда существует и угол поворота в ней меньше . Обозначим эту точку через О, а ее параметры - через Около этой точки построим один или два треугольника в зависимости от угла поворота. Если угол меньше то построим один треугольник на этих трех точках (рис. 9.7.9). В противном случае построим два треугольника на данной, двух соседних и одной новой точках (рис. 9.7.11). Новая точка обозначена через Р. Точку Р будем искать на диагонали параллелограмма В ОС Р. Если вершина параллелограмма лежит внутри эллипса (рис. 9.7.10), то примем ее за точку Р. В противном случае за точку Р примем пересечение эллипса и диагонали параллелограмма. В последнем случае совсем не обязательно искать пересечение эллипса и отрезка.

Координаты точки Р определяются через координаты точек О ВС

Угол отрезка ОР с горизонталью определяется равенством

(9.7.8)

Эти данные позволяют определить положение точки Р относительно эллипса (9.7.5).

В случае, показанном на рис. 9.7.9, построим треугольник (запомним номера его вершин) и в рабочем полигоне удалим точку О. В случае, показанном на рис. 9.7.11, построим два треугольника и в рабочем полигоне точку О заменим точкой Р и поместим последнюю в результирующий массив точек. На рис. 9.7.12 приведен полигон, полученный после построения двух треугольников и ликвидации точки О. В обоих случаях точка О будет удалена из рабочего полигона и рабочий полигон сузится. Заметим, что треугольники можно строить только тогда, когда рабочий полигон после сужения не будет сам себя пересекать.

Рис. 9.7.9. Построение треугольника

Рис. 9.7.10. Результирующий полигон

Рис. 9.7.11. Построение двух треугольников

Рис. 9.7.12. Результирующий полигон

Такие ситуации показаны на рис. 9.7.13. Они могут возникнуть, когда стороны построенных треугольников пересекут несмежные с ними стороны рабочего полигона. Перед построением нового треугольника как в случае, показанном на рис. 9.7.9, так и в случае, показанном на рис. 9.7.11, должна быть выполнена проверка на отсутствие самопересечения результирующего полигона.

Более того, при определении положения точки Р важно, чтобы она находилась на достаточном расстоянии от других точек рабочего полигона и не подходила близко к отрезкам, соединяющим точки полигона. Иначе могут возникнуть трудности в дальнейшем при построении треугольников. Поэтому прежде, чем сузить рабочий полигон, следует проверить на самопересечение результирующий полигон. Если около точки О нельзя построить треугольник (треугольники), то вместо нее следует найти другую точку, в которой полигон более, чем в других, заворачивает внутрь контура, и выполнить в ней описанные действия.

Далее с измененным рабочим полигоном выполним те же действия, которые мы только что описали. Найдем в рабочем полигоне точку, в которой он более, чем в других, точках поворачивает внутрь области, выполним проверку на возможность сужения в ней полигона путем построения одного или двух треугольников и сузим полигон.

Рис. 9.7.13. В данном углу строить треугольники нельзя

Продолжая этот процесс, мы будем расширять массив двухмерных точек и массив треугольников, и одновременно мы будем сужать рабочий полигон, уменьшая охватываемую им площадь и число его точек. На некотором этапе этих действий мы получим рабочий полигон, состоящий из трех точек. Построим на этих точках последний треугольник, ликвидируем рабочий полигон и закончим триангуляцию. В описываемом способе триангуляции область, ограниченная рабочим полигоном, как бы ликвидируется путем отрезания от нее треугольников.

Рассмотрим общий случай, когда область параметров поверхности ограничена одним внешним контуром и несколькими внутренними контурами, целиком лежащими внутри внешнего контура. Аппроксимируем границу поверхности замкнутыми полигонами на параметрической области. Для каждого контура построим свой полигон. Так же как и для контуров, для полигонов, построенных на них, должно быть выполнено правило их взаимной ориентации. Ориентация внутренних полигонов должна быть противоположной ориентации внешнего полигона. Построение триангуляции начнем с полигона внешнего контура. Положим его точки в результирующий массив двухмерных точек, а сам полигон сделаем рабочим.

Построение треугольников выполним так же, как и в случае односвязной области. Найдем в рабочем полигоне точку О, выполним проверку на возможность сужения в ней рабочего полигона и сузим полигон. При наличии внутренних контуров усложняется проверка возможности сужения рабочего полигона в выбранной точке. Кроме описанных проверок на пересечение сторон треугольников со сторонами рабочего полигона нужно выполнить проверку на пересечение сторон треугольников со сторонами всех внутренних полигонов.

Пусть мы проверяем возможность построения двух треугольников в точке О (рис. 9.7.11), и обнаружили, что новая точка Р, будучи построенной, попадет внутрь одного из внутренних полигонов или окажется в недопустимой близости от его отрезков. В этом случае мы не будем строить точку Р, а вместо этого включим в рабочий полигон данный внутренний полигон, построив два треугольника, показанных на рис. 9.7.14.

Для того чтобы точки одного из внутренних полигонов включить в рабочий полигон, найдем среди точек внутреннего полигона точку, ближайшую к точке С (смежную с точкой О) рабочего полигона.

Построим треугольники на точках OCF и CEF и между точками О и С рабочего полигона вставим точки внутреннего полигона, начиная с точки F и кончая точкой Е. Тем самым мы разорвем рабочий полигон на отрезке ОС, разорвем внутренний полигон на отрезке EF и объединим их отрезками OF и ЕС.

Рис. 9.7.14. Построение двух треугольников

Рис. 9.7.15. Слияние внешнего и внутреннего полигонов

Результат слияния приведен на рис. 9.7.15. Конечно, перед объединением внешнего и внутреннего полигонов должны быть выполнены проверки на корректность этой операции.

Далее будем продолжать сужать рабочий полигон описанным способом до тех пор, пока не окажемся в непосредственной близости с другим внутренним полигоном и не включим его в рабочий полигон. В итоге, все внутренние полигоны будут включены в рабочий полигон, который должен быть сужен до последних трех точек. В результате, вся многосвязная область определения параметров поверхности будет покрыта треугольниками.

Рис. 9.7.16. В данном углу строить треугольники нельзя

Возможны ситуации, когда нельзя построить ни одного треугольника на заданных полигонах. На рис. 9.7.16 приведена область ограниченная двумя полигонами, каждый из которых состоит из четырех отрезков. Для внешнего полигона мы не можем продолжить триангуляцию, так как мешает внутренний полигон. В такой случае найдем две соседние точки В и С полигона, для которых можно построить треугольник ВСР. Точка Р проецируется на середину стороны ВС и находится на таком расстоянии от нее, чтобы новый треугольник не пересекал полигоны.

Другие способы триангуляции.

Существуют и другие способы триангуляции. Например, после построения полигонов внешнего и внутренних контуров области определения поверхности может быть выбрана иная стратегия построения треугольников. В другом варианте можно перед началом триангуляции объединить внешний и внутренние полигоны в один полигон. Можно внутри области определения параметров по определенному алгоритму «набросать» точки и по ним и точкам полигонов граничных контуров выполнить триангуляцию Делоне. Существуют алгоритмы, строящие сначала крупные треугольники, а затем делящие их до приемлемых размеров.

Триангуляция тела.

Триангуляция тела представляет собой совокупность треугольников, полученных путем триангуляции поверхностей его граней. Триангуляция отдельных поверхностей отличается от триангуляции граней тела тем, что в последнем случае должны быть согласованы граничные полигоны для смежных граней (рис. 9.7.17).

Рис. 9.7.17. Согласованность граничных полигонов граней тела

Участки полигонов смежных граней, проходящие по общим ребрам, будут согласованными, если их точки совпадают в пространстве.

Применение триангуляции.

Построенные в результате триангуляции треугольники используются для получения тоновых изображений. На рис. 9.7.18 и 9.7.19 приведены триангуляции грани листового тела, тоновое изображение которого показано на рис. 6.5.1.

Рис. 9.7.18. Триангуляция грани тела методом коррекции

Разбиение области определения параметров поверхности на треугольники может быть использовано в интегралах (8.6.2), (8.6.3), (8.6.12), (8.7.17)-(8.7.22) при вычислении геометрических характеристик тел. При численном интегрировании параметрический шаг для кривых следует вычислять по формуле (8.11.5), а для поверхностей параметрические шаги следует вычислять по формулам (8.11.1) и (8.11.2).

Пространственная триангуляция Делоне

Задача построение сети неперекрывающихся треугольников является одной из базовых в вычислительной геометрии и широко используется в машинной графике и геоинформационных системах для моделирования поверхности и решения пространственных задач.

Впервые задача построения сети неперекрывающихся треуголь­ников была поставлена в 1934 году в работе советского математика Б. Н. Делоне, который сформулировал и соответствующие условия.

В математике задачей построения триангуляции по заданным точкам называют задачу их попарного соединений непересекающимися отрезками так, чтобы образовалась сеть треугольников. Основными ее элементами являются (рис.5.3): узлы (вершины треугольников), ребра (стороны) и грани (собственно треугольники). Построенная три­ан­гуляция может быть выпуклой (если таковым будет минимальный многоугольник, охватывающий область моделирования), невыпуклой (если триангуляция не является выпуклой) и оптимальной (если сумма длин всех ребер минимальна).

Сеть таких треугольников называется триангуляцией Делоне, если она удовлетворяет некоторым условиям:

Внутрь окружности, описанной вокруг любого треугольника, не попадает ни одна из исходных точек (рис. 5.3);

Триангуляция является выпуклой и удовлетворяет сформулиро­ванному выше условию Делоне;

Сумма минимальных углов всех треугольников максимальна из всех возможных триангуляций;

Сумма радиусов окружностей, описанных около треугольников, минимальна среди всех возможных триангуляций .

Первый из названных выше критериев построения триангуляции Делоне, называемый круговым, является одним из основных и проверяется для любой пары треугольников с общими гранями. Математическая интерпретация критерия вытекает из рис. 5.3:

(5.2)

Существует множество способов построения триангуляции Делоне, которая является одним из самых популярных в последнее время способов построения триангуляционной сетки. Она применяется во многих ГИС системах для построения моделей рельефа.

В приложении к двумерному пространству она формулируется следующим образом: система взаимосвязанных неперекрывающихся треугольников имеет наименьший периметр, если ни одна из вершин не попадает внутрь ни одной из окружностей, описанных вокруг образованных треугольников (рис. 5.4).

Рис. 5.4. Триангуляция Делоне

Это означает, что образовавшиеся треугольники при такой триангуляции максимально приближаются к равносторонним, а каждая из сторон образовавшихся треугольников из противолежащей вершины видна под максимальным углом из всех возможных точек соответствующей полуплоскости. Это именно та оптимальная триангуляция, по ребрам которой делается обычно линейная интерполяция для построения изолиний.

Многие алгоритмы построения триангуляции Делоне используют следующую теорему .

Теорема 1. Триангуляцию Делоне можно получить из любой другой триангуляции по той же си­стеме точек, последовательно перестраивая пары соседних треугольников ABC и BCD, не удовлетво­ряющих условию Делоне, в пары треугольников ABD и ACD (рис. 5.5).

Рис. 5.5.. Перестроение треугольников, не удовлетворяющих условию Делоне

Такую операцию перестроения часто называют флипом. Данная теорема позволяет строить три­ангуляцию Делоне последовательно, вначале строя некоторую триангуляцию, а потом последовательно улучшая ее в смысле условия Делоне. При проверке условия Делоне для пар соседних треугольников можно использовать непосредственно определение, но иногда используются другие способы, основанные на условиях, перечисленных выше.

В данных условиях фигурирует суммарная характеристика всей триангуляции (сумма мини­мальных углов или сумма радиусов), оптимизируя которую можно получить триангуляцию Делоне.

Как было сказано выше одна из важнейших операций, выполняемых при построении три­ангуляции, является проверка условия Делоне для заданных пар треугольников. На основе определения триангуляции Делоне и соответствующих условий на практике обычно используют несколько способов проверки:

– проверка через уравнение описанной окружности;

– проверка с заранее вычисленной описанной окружностью;

– проверка суммы противолежащих углов;

– модифицированная проверка суммы противолежащих углов.

В многих системах выполняется проверка с заранее вычисленной описанной окружностью. Основная идея алгоритма проверки через за­ранее вычисленные окружности заключается в предварительном вычислении для каждого построенного треугольника центра и радиуса описанной вокруг него окружности, после чего проверка условия Делоне будет сводиться к вычислению расстояния до центра этой окружности и сравнению результата с ради­усом. Центр и радиус r окружности, описанной вокруг можно найти как , , , r 2 = (b 2 + с 2 - 4аd)/4а 2 , где значения а, b, с, d определены по формулам (5.3)

(5.3)

Другая запись уравнения этой окружности имеет вид:

(5.5.)

(5.6)

Тогда условие Делоне для будет выполняться только тогда, когда для любой другой точки триангуляции будет:

(x 0 – x C) 2 + (y 0 – y C) 2 ≥ r 2 . (5.7)

В настоящее время существует множество алгоритмов построения триангуляции Делоне. Многие из известных алгоритмов используют определение триангуляции Делоне как вторичный признак триангуляции. Поэтому в таких алгоритмах отмечаются следующие слабости:

– алгоритмы используют постоянно вычисляемые тригонометрические функции, что резко замедляет процесс;

– при исследовании взаимоотношения точек и базового отрезка возникают очень малые углы, и при использовании тригонометрических функций постоянно появляется опасность исчезновения порядка и деления на 0 в связи с ограниченной точностью представлений данных в компьютере, эта ситуация требует постоянной дополнительной обработки .

Наиболее известные программные продукты строят триангуляцию Делоне, используя теорему о пустом шаре как основной, первичный принцип построения треугольников. Алгоритм выглядит так:

– все множество точек делится на треугольники, т.е. создаются комбинации из трех точек;

– для каждой комбинации находится описанная окружность и координаты ее центра;

– если внутри окружности текущей комбинации не находится ни одной точки из оставшихся то эта комбинация есть треугольник – часть триангуляции Делоне.

К достоинствам этого алгоритма можно отнести:

– отсутствие использования тригонометрических функций, что не замедляет процесс построений;



– непосредственное построение триангуляции Делоне, без каких – либо предварительных построений;

– простота всех вычислений и преобразований;

– в итоге триангуляционная сетка представлена множеством треугольников, а не отдельных линий.

Построенная таким образом триангуляция является геометрической основой для построения изолиний.

Алгоритмы построения триан­гу­ляции Делоне можно разделить на ряд групп, различающиеся структурой используемых входных данных, объемом вычис­ли­тель­ных операций, исходными пред­по­сылками и др. Рассмотрим некоторые из них.

Алгоритмы слияния предполагают разбиение множества исход­ных точек на подмножества, построение на каждом из них триан­гуляции и последующее их объединение в единую сеть. Сущ­ность одного из таких алгоритмов сводится к следующему.

Множество исходных точек делится вертикальными линиями на две или более частей, после чего каждая из них разделяются горизонтальными и вертикаль­ными линиями на примерно равные части. В результате вся область исходных точек оказывается разделенной на примитивы по три – четыре точки (рис. 2.4), по которым строятся один – два треугольника.

Слияние этих треугольников в единую сеть выполняется путем построения двух базовых линий (P 0 P 1 и P 2 P 3 , рис. 5,7.а), проведении окружностей переменного радиуса с центром на серединном перпендикуляре к базовой линии (рис. 5.7, б), поиску попадающего на окружность узла (точка A , рис. 5.7. в) и построению нового треугольника (P 0 P 1 A). При этом может возникнуть необходимость удаления уже существующего треугольника (например, P 0 AB) .


Итеративные алгоритмы основаны на идее последовательного добавления точек в частично построенную триангуляцию с одновременным ее улучшением и перестроением в соответствии с критериями Делоне. В общем виде они включают несколько шагов и сводятся к построению треугольника на первых трех исходных точках и исследованию нескольких вариантов размещения очередной точки. В частности, рассматриваются варианты ее попадания за границу области моделирования, на существующий узел или ребро, внутрь построенного треугольника и др. Каждый из этих вариантов предполагает выполнение определенной операции: разбивки ребра на два, грани – на три и т.д.; после чего выполняется проверка полученных треу­голь­ников на соответствие условию Делоне и необходимые перестроения.

Двухпроходные алгоритмы, предусматривают вначале построение некоторой триангуляции, игнорируя условия Делоне, а затем – ее перестроение в соответствии с этими условиями. Пример при­менения алгоритма приведен на рис. 5.8.

Для приближения создаваемой модели рельефа к реальной в нее внедряются дополнительные элементы, обеспечивающие учет и отображение ее линейных и площадных структурных элементов. Такими дополнительными элементами являются широко используе­мые в топографии структурные линии, определяющие «скелет рельефа»: водоразделы, тальвеги, хребты, обрывы, уступы, озера, овраги, береговые линии, границы искусственных сооружений и др., совокупность которых создает как бы каркас триангуляции Делоне. Эти структурные линии внедряются в триангуляцию в качестве ребер треугольников, чем и достигается моделирование реальных элементов рельефа на фоне общих неровностей земной поверхности. Такие ребра называются структурными (фиксированными, неперестраиваемыми), не пересекают ребра других треугольников и в последующем не изменяются.

Задача построения модели поверхности с учетом структурных линий называется триангуляцией Делоне с ограничениями, если условия Делоне выполняются для любой пары смежных треугольников, которые не разделяются структурными линиями. Наиболее эффективно, считают исследователи, выполняется построение такой триангуляции с помощью итеративных алгоритмов.


Фрагмент триангуляции Делоне с включенными в нее дополнительными элементами приведен на рис. 5.9, где справа показаны узлы, ребра, грани и структурные линии, а слева – структурные линии местности (береговые линии, бровки оврага и др.) и точки с известными отметками.

Алгоритмы построения триангуляции Делоне реализуются с вещественным или целочисленным представлением координат узлов, что позволяет существенно повысить скорость и точность обработки, но порождает проблемы поиска и исключения совпадающих узлов.

Модель TIN легко редактируется путем перемещения узлов, вставки новых, удаления имеющихся, изменения положения одного или нескольких ребер, внедрения новых структурных линий и др. Такие изменения всегда затрагивают небольшую группу смежных треугольников, не требуют перестроения всей сети и осуществляются в режиме on-line, по указанию курсором на соответствующий элемент .

О точности:

Располагая пикеты на характерных элементах рельефа (например, водоразделах и тальвегах), мы игнорируем более мелкие элементы в промежутках. При построении горизонталей1 по таким ребрам треугольников возникает ошибка, которая зависит от величины неровности рельефа и угла наклона местности. Например, средняя погрешность съемки рельефа, не должна превышать 1/3 сечения рельефа при углах наклона поверхности от 2 до 10 градусов. Можно рассчитать, что при сечении рельефа 0,5 м предельная величина пропущенной неровности (то есть отклонения поверхности земли от прямой, проходящей через соседние пикеты) не должна превышать (0,5/3)*cos10°=0,16 м.

Для точности определения объема перемещаемого грунта важна также площадь, занимаемая не учитываемой деталью рельефа. Допустим, в квадрате 20х20 м между двумя парами пикетов имеется цилиндрическая выпуклость с максимальной высотой 0,15 м. Нетрудно подсчитать, что ее неучет при представлении данной поверхности только двумя треугольниками приведет к ошибке приблизительно в 40 м3. Не так уж много, но для участка в 1 га, расположенного на холме или верхней (как правило, выпуклой) части склона, получится уже 40*25=1000 м3 лишнего грунта. Если же брать пикеты в два раза чаще (то есть через 10 м), ошибка уменьшится вчетверо и составит 250 м3 на гектар. Этот фактор можно учесть заранее, поскольку положительные формы равнинного рельефа обычно имеют выпуклую форму, а отрицательные – вогнутую. Если на подлежащий съемке участок имеются приближенные данные о рельефе, то радиус кривизны поверхности и необходимую густоту пикетов легко рассчитать по величинам заложения горизонталей или отдельным высотным отметкам.



Просмотров