Источники техногенных рисков. Риск техногенный Что такое техногенный риск

В процессе жизнедеятельности человека постоянно сопровождают опасности. Опасность может возникнуть в среде обитания человека или в самом человеке.

Важнейшим показателем опасности является риск.

Риск представляет собой вероятность наступления опасности с конкретными последствиями и неопределенной величиной ущерба. Например, существует риск заболевания, риск получения травмы, риск проживания в сейсмически опасной зоне, риск попадания в ДТП.

В настоящее время значительно возросла агрессивность среды обитания людей. Несмотря на достижения научно-технического прогресса, совершенствование технологии в производственных процессах, способствующие повышению безопасности, возникают новые виды опасностей, которые по своим последствиям превосходят ранее существовавшие. Это обусловлено:

· структурными и технологическими сдвигами в экономике, связанными с развитием принципиально новых производств, распространением микроэлектроники, робототехники, освоением космического пространства и др.;

· ростом потребления всех видов энергии и природных ресурсов (их труднее добывать и транспортировать; приходится переходить на альтернативные виды ресурсов – водородное топливо);

· глобальными изменениями природной среды (потепление климата, образование «озоновых дыр» в атмосфере);

· увеличением концентрации и возникновением новых загрязнителей окружающей среды, в частности высокотоксичных химических соединений, мутагенных и канцерогенных органических веществ и др.;

· возрастанием информационного давления на психику человека, приводящего к распространению большого числа психических расстройств;

· появлением новых заболеваний (наркомания, СПИД, атипичная пневмония, птичий грипп и др.);

· усилением военного противостояния в локальных и межнациональных конфликтах и обострением криминогенной обстановки.

В России на уровень риска гибели человека оказывают существенное влияние следующие обстоятельства:

1) около 70 % территории страны находится в условиях холодного климата – в районах Сибири и Севера. При этом показатели надежности и безопасности в природной и техногенной сферах снижаются в 2…3,5 раза, а затраты на восстановительные работы увеличиваются в еще большей степени. Ущерб от аварий и катастроф возрастает вследствие систематических наводнений и землетрясений.

2) произошла смена социально-политической и экономической системы. Это вызвало общее снижение научно-технического потенциала России в опасных областях деятельности, привело к старению основных фондов из-за отсутствия средств на их обновление и модернизацию в соответствии с новыми критериями природно-техногенной безопасности. Были разрушены традиционные системы мониторинга и защиты от опасных природных процессов и техногенных угроз. Возникающие и реализующиеся новые угрозы безопасности России становятся постоянно действующими факторами жизни человека, общества и государства.

Повсеместно в мире в результате эволюции среды обитания увеличиваются масштабы и количество рисков как в природной, так и в техногенной и в социальной сферах. Причём, риск гибели в различных сферах жизнедеятельности человека в развитых странах составляет:

Природная сфера............................ 10-5

Техногенная сфера.......................... 10-3

Социальная сфера........................... 10-4

Риски в природной сфере связаны с действием сил природы. Особенно опасны стихийные бедствия и природные катаклизмы, проявляющиеся в больших масштабах.

В природной сфере потенциальные опасности для человека сопряжены с медленно протекающими (на протяжении миллионов и миллиардов лет) процессами на Земле и в космосе, приводящими к глобальным изменениям состояния земной поверхности, Мирового океана и климата на Земле.

Дополнительно к этому возникают планетарные природные катастрофы, обусловленные изменениями солнечной активности, прохождениями планет через астероидные и метеоритные пояса с возможными их столкновениями.

Такие процессы земного и космического характера приводят к кардинальным изменениям условий жизни на Земле. Степень защищенности человечества от общепланетарных природных катастроф чрезвычайно мала, и вероятность уничтожения жизни на Земле, если такая катастрофа произойдет, приближается к 100 %. Общепланетарные природные катастрофы могут возникать с вероятностью 10 -6 …10 -9 в год.

Наряду с общепланетарными природными катастрофами могут возникать природные катастрофы, затрагивающие отдельные страны (землетрясения, извержения вулканов, цунами, ураганы). Необратимый ущерб живому при этих катастрофах наносится на ограниченных территориях. Риск уничтожения жизни на 1…2 порядка меньше, чем при общепланетарных природных катастрофах.

Значительное возрастание рисков в природной сфере произошло в последнее столетие из-за участившихся землетрясений, наводнений, селей, цунами и др., что обусловлено изменением климата в результате человеческой деятельности. Это привело к глобальным экологическим проблемам, таким как парниковый эффект (глобальное потепление), подъем уровня Мирового океана, возникновение озоновых дыр, радиоактивное загрязнение ОС, сокращение биоразнообразия на планете.

Группа факторов опасности, относящихся к природной сфере (экологических факторов), характеризует неблагоприятное воздействие природной среды на человека и все другие живые организмы. Опасностям в природе подвергается любой человек: сельский житель, горожанин, выезжающий за город на отдых, турист, геолог, моряк и т. д. Но наибольшая степень воздействия факторов опасности приходится на людей, профессия которых непосредственно связана с длительным пребыванием на открытом воздухе.

К факторам опасности природного происхождения относятся климатические, почвенные, геоморфологические и биотические.

Климатические факторы опасности зависят от поступления солнечной радиации на поверхность Земли, циркуляции воздушных масс, способствующих переносу загрязняющих веществ в атмосфере, колебаний атмосферного давления, распределения тепла и влаги, вызывающих резкие похолодания и наступления жары, засухи, ливни, наводнения и пр.

Почвенные факторы опасности определяются особенностями различных типов почв, возможностями возникновения эрозии, оврагообразования. Разрушение почвы может создавать угрозу для сельского хозяйства, путей сообщения, водопользования, жилых и производственных объектов и т. д.

Геоморфологические факторы опасности вызваны особенностями строения геологических структур недр Земли, рельефом, предрасположенностью к землетрясениям, вулканической деятельности, оползням, селям и проч.

В техногенной сфере реальные угрозы для человека (пожары, взрывы, обрушения) стали значительными только в последние столетия, когда началось активное строительство городов, плотин, дорог и т. д. Особенно резко риск летального исхода при техногенных катастрофах возрос в последние десятилетия. В настоящее время риск гибели для людей в техногенной сфере стал сопоставимым с риском гибели людей при всех видах природных катастроф и даже превосходит его.

Источником рисков в техногенной сфере, т. е. техногенных рисков является производство любого рода. Технический прогресс порождает новые технические решения и технологии, одновременно увеличивая количество опасностей для здоровья и жизни людей. Технические системы не обладают абсолютной надежностью, поэтому довольно часто возникают техногенные аварии и катастрофы, наносящие большой ущерб обществу. Техногенные катастрофы характеризуются исключительно высокой степенью усиления воздействия факторов, поражающих население и окружающую среду в моменты возникновения и развития катастроф. Время непосредственного воздействия поражающих факторов может составлять доли секунд и часы, а негативные последствия могут проявляться сотни и тысячи лет.

К факторам опасности в техногенной сфере относятся технические, технологические и организационные.

Технические факторы опасности связаны с уровнем надежности и степенью совершенства машин, механизмов и оборудования. Уровень надежности будет ниже, а степень опасности - выше, если оборудование устаревшее и имеет высокий износ. Это может вызвать аварии на производстве с тяжелыми последствиями.

Технологические факторы опасности возникают при использовании технологий с повышенным уровнем риска, нарушении последовательности выполнения операций, несоответствии действующей технологии работ нормативным показателям, увеличении нагрузки сверх допустимых значений, отклонении режимов проведения технического обслуживания и ремонта от регламента и низкой квалификации исполнителей.

Организационные факторы опасности характеризуют структуру производственных взаимосвязей, систему правил и условий выполнения работ. При организации проведения работ без учета техники безопасности и правил охраны труда опасность для персонала существенно возрастает.

До настоящего времени в отечественных исследованиях риск как научная категория рассматривался только применительно к техногенной сфере.

Особое положение среди негативных факторов среды обитания людей занимают социальные факторы, зависящие от общественных отношений людей и выражающиеся в виде конфликтов национального и международного масштаба, травмирования психики людей из-за кризисных явлений на государственном уровне, стрессовых ситуаций, резких скачков психических заболеваний и повышенной смертности.

В социальной сфере риск гибели людей также значительно увеличился в современных условиях. Это обусловлено сложившейся в ряде стран мира ситуацией, характеризующейся возросшей криминализацией общества, коррупцией, некомпетентностью властных структур, снижением доверия к власти, снижением уровня жизни людей, духовным кризисом в обществе, ростом преступности, распространением алкоголизма и наркомании, особенно среди молодежи, обострением демографической ситуации.

К факторам опасности в социальной сфере относятся государственно-правовые, этно-социальные, информационные, психологические.

Государственно - правовые факторы опасности обусловлены отсутствием или недостаточной проработанностью законодательно-правовой базы, общеобязательных норм поведения, установленных или санкционированных государством, а также слабой государственной гарантией охраны правопорядка. Это приводит к росту противоправных действий, преступности и криминализации общества, выступлениям определенных групп общества в защиту своих прав, локальным военным конфликтам.

Этно - социальные факторы опасности зависят от особенностей быта, нравов, культуры, религии исторически сложившейся этнической общности людей. Недостаточное внимание, притеснения, ограничения в проживании и деятельности отдельных народностей, наций могут способствовать возникновению межнациональных столкновений, которые представляют опасность не только для жизни отдельных людей, но и целостности государства.

Информационные факторы опасности определяются чрезмерной информационной насыщенностью, информатизацией общества, психологическими закономерностями создания, передачи и восприятия информации, а также эффектами, вызываемыми в обществе в результате ее распространения. Этот фактор опасности стал проявлять себя особенно сильно в настоящее время, когда средства массовой информации достигли высокого совершенства.

Психологические факторы опасности проявляются в нарушениях правил поведения и деятельности людей, а также их психологических характеристик. Появление психически неуравновешенных людей, маньяков, сект, социально ориентированных групп людей потенциально опасно для жизнедеятельности общества.

Перечисленные выше факторы опасности представляют собой условия объективного присутствия опасностей различного рода. Установлено существование более 100 разных опасностей. Они могут проявляться в комбинациях друг с другом, при этом их совместное воздействие усиливается.

Наличие природных, техногенных и социальных рисков порождает необходимость разработки мер обеспечения безопасности в единой системе «Природа – человек – общество», являющейся основой существования жизни на Земле.

Признано, что человечеству суждено жить в условиях риска, поэтому управление рисками становится одной из актуальных и сложных проблем.

Исследования причин возникновения рисковых ситуаций и последствий их реализации способствуют выработке защитных мероприятий и организации управления безопасностью жизнедеятельности.

Управление безопасностью и устойчивостью функционирования жизнедеятельности системы зависит от глубины прогноза социально-экономических последствий опасных ситуаций с оценкой степени риска, от своевременного планирования и осуществления предупредительных и защитных мероприятий.

Интенсивным и мощным источником генерирования новых видов рисков является техносфера - часть окружающей среды, создана и превращена человеком для удовлетворения собственных потребностей.

Количество и последствия крупных промышленных катастроф современности свидетельствуют о тенденции к постоянному повышению техногенных рисков.

Техногенный риск - риск для населения, социальных, техногенных и природных объектов, вызванный негативными событиями техногенного происхождения.

Защищаясь от техногенных аварий, общество использует различные правовые, организационные, управленческие, технические, научно-методологические средства. Однако такие катастрофы продолжают угрожать стабильному развитию и могут существенно повлиять на состояние национальной безопасности и жизнедеятельности государства.

Термин "техногенная безопасность" касается практически всех опасных объектов техносферы, в т. Ч. Военных, сельскохозяйственных, искусственных космических объектов и др., Аварии на которых представляют угрозу для населения и окружающей среды.

Техногенная безопасность - степень (уровень) защищенности жизненно важных интересов личности, общества и государства от техногенных чрезвычайных ситуаций на потенциально опасных объектах.

В превентивном смысле технологическую безопасность рассматривается в стратегическом и тактическом измерениях. Стратегический измерение касается развития новых отечественных технологий и импорт зарубежных, а также имплементации принципа защиты от реализации потенциально опасных технологических проектов, тактический - управление технологической безопасностью действующих технологических комплексов и потенциально опасных объектов (ПНО).

Целью системного техногенной безопасности в развитых странах является предотвращении крупных промышленных аварий. Эти вопросы регулируют Директивы Европейского Сообщества 82/501 / ЕЕС "О предотвращении крупных промышленных аварий" (1982), Кодекс практических правил по предотвращению крупных промышленных аварий, директивы ЕС 96/82 / ЕС "О предотвращении крупных аварий на объектах, где используют опасные вещества "(1996).

Поскольку техногенез является процессом изменения природных комплексов под влиянием производственной деятельности человека, существуют определенные средства и способы этой деятельности. В современном понимании они являются аналогами технологических процессов. При реализации технологического процесса на практике уровень комплексной технологической безопасности обусловливают его составляющие:

1. Природа технологического процесса. От методов обработки, изготовления, изменения свойств, формы

сырья, материалов или полуфабрикатов, применяемых в технологическом процессе, зависит уровень его потенциального риска. Например, переход на современные технологии производства взрывчатых веществ позволил снизить вероятную вред. Преимуществом новой взрывчатки (паургелю, украинита, емониту Анемикс) является то, что все ее отдельные компоненты безопасны. Только через 15 мин. после их соединения непосредственно в скважине образуется взрывная смесь, которая в случае неиспользования в течение 30 дней теряет разрушительные свойства и превращается в безопасное вещество. Согласно новейшей технологический процесс безопаснее чем производство тротила.

2. Сооружения, конструкции, оборудование, технические устройства и инженерные сети, с помощью которых реализуют технологический процесс (основные фонды). От надежности и безопасности этих компонентов зависит безопасность технологического процесса. Поскольку показатели безопасности основных фондов меняются на протяжении жизненного цикла, то для поддержания их на определенном нормативном уровне применяют превентивные меры. Уровень безопасности техники, используемой в технологическом процессе, прежде всего зависит от соответствующих конструкционных решений.

3. Ошибочные действия персонала, обслуживающего технологический процесс (человеческий фактор). Ошибки могут быть технические, организационные и управленческие. Сейчас они вызывают такие отклонения параметров рабочего режима оборудования или его повреждения, приводящие к крупным промышленным авариям. Для ослабления негативного влияния человеческого фактора используют различные меры технические средства и системы управления безопасностью опасных объектов.

До недавнего времени управления техногенной безопасностью предусматривало развитие служб и видов обеспечения поставарийных стадии. Главным был принцип гражданской обороны "Вовремя реагировать и ликвидировать". Однако сейчас необходимо разрабатывать превентивную политику, концептуализация которой является основой развития национальных систем управления техногенной безопасностью. Стабилизация техносферы основывается на следующих положениях: управление техногенной риском, системный анализ и применение моделей ПНО как сложных технических систем, организация объектовых систем управления безопасностью (СУ Б).

Невозможность достижения абсолютной техногенной безопасности и применения концепции ненулевого (приемлемого) риска - современные принципы решения проблем безопасной жизнедеятельности. Это означает формирование новой идеологии по противодействию техногенных аварий и катастроф, зарождение области управления техногенным риском.

Концепцию управления техногенным риском реализуют учитывая такие общепризнанные принципы:

Уменьшать риск, насколько это возможно;

Уменьшать риск, насколько это приемлемо;

Принимать все необходимые превентивные меры;

Применять безопасные технологии.

Особое значение приобретает системный анализ,

который рассматривает ПОО как сложную техническую систему и способствует формированию знаний о нем как единый целостный объект, функционирующий в условиях многофакторных рисков. Такой анализ позволяет создать систему моделей и методов для управления безопасностью объекта как в штатных, так и внештатных критических и чрезвычайных ситуациях, технического диагностирования и постоянного мониторинга рисков.

Таким образом, формирование современной методологии управления техногенной безопасностью требует новых принципов и подходов. Так, в государственной научно-технической программе России "Безопасность" для обеспечения надежной и безопасной эксплуатации ПНО предложено применять следующие принципы:

Единичного отказа (независимо от уровня надежности и безопасности система должна оставаться эффективной при отказе любого ее элемента)

Безопасной отказа (вероятные отказа системы противоаварийной защиты должны быть безопасными, то есть способствовать ошибочному включению защиты быстрее, чем опасной отсутствия реагирования)

Многоуровневой защиты (создание последовательных уровней безопасности, которые уменьшают вероятность аварий и их последствия)

Комбинированной защиты (объединение систем жесткого и функционального защиты ПНО от аварий и катастроф)

Самозащищенности систем (создание систем с пассивными и внутришньопритаманнимы характеристиками безопасности);

Обоснованного доказательства нужной безопасности (согласование критериев и методов обеспечения безопасности действующим правовым и нормативно-техническими документами);

Защиты от реализации потенциально опасного проекта (отказ на государственном уровне воплотить в жизнь проект, по результатам экспертизы не имеет надлежащего уровня безопасности).

С целью предотвращения крупных аварий создают СБ, действующих на управленческом и организационном уровнях. Статистика свидетельствует, что в 70% случаев причины аварий организационные, у 20% - технические, 10% - психофизиологические.

СБ должна быть интегрирована с такими системами менеджмента ПНО: управление качеством, экологического управления, обеспечения здоровья работников, технологического управления и тому подобное. Идеология системы управления безопасностью предусматривает организования ее влияния как в течение превентивной стадии, так и после возникновения чрезвычайной ситуации.

Требованиями к совершенствованию технологий является снижение материало-, ресурсо- и энергоемкости, экологичность и безопасность. Сейчас технологии стали товаром, и к ним, как и к любой продукции, следует применять стандарты безопасности.

Обеспечение устойчивой динамического равновесия государства как системного образования возможно лишь благодаря реализации постоянного и системного мониторинга. Как механизм контроля и корректировки он особенно необходим во время воплощения в жизнь национальной безопасного технологического развития. Согласно этой модели, субъекты управления (Президент Украины; Верховная Рада Украины; Кабинет Министров; Совет национальной безопасности и обороны Украины; министерства и другие центральные органы исполнительной власти, Национальный банк; суды общей юрисдикции; прокуратура Украины; местные государственные администрации и органы местного самоуправления; Вооруженные силы Украины, Служба безопасности Украины и другие военные формирования, образованные в соответствии с законами Украины (Абзац 11 ст. 4 с изменениями, внесенными согласно Закону №3200-IV (3200-15) от 15 декабря 2005 года); граждане и объединения граждан Украины) должны осуществлять управляющие воздействия (концепции, стратегии, законы, указы, подзаконные нормативные акты, постановления, приказы, программы и т.д.) на объекты управления (государство, общество, граждане), которые, согласно управленческого воздействия, меняют количественные и качественные параметры технологической политики в контексте безопасности.

Определение и оценка стратегических техногенных рисков на Украине является сложной проблемой, требующей глубоких исследований. К основным рискам, например, можно отнести архаичность технологического уклада, отсутствие развитых систем управления безопасностью потенциально опасных объектов, старение основных фондов и др.

В 2003-2004 гг. Была разработана Государственная программа обеспечения технологической безопасности в основных отраслях экономики Украины и Государственной научно-технической программы "Ресурс" как ее составляющую. Брак в ближайшей перспективе необходимых финансовых ресурсов для повышения безопасности промышленных объектов путем обновления их технологического парка, обусловил избрания главным научно-техническим подходом прогнозирования остаточного ресурса, установление приемлемого уровня риска и продолжение проектного срока эксплуатации. Это начало в Украине управление техногенной риском функционирования хозяйственного комплекса.

Техногенной безопасности тесно связано с общим управлением отраслями экономики. Управления техногенной безопасностью должно быть интегрировано как в структуры управления отдельными отраслями, так и в общегосударственную систему управления экономикой государства в целом.

Введение

Актуальность. Увеличение количества и расширение масштабов чрезвычайных ситуаций природного и техногенного характера, влекущих значительные материальные и людские потери, - подчеркивается в Концепции национальной безопасности РФ, - делает крайне актуальной проблему обеспечения национальной безопасности в природно-техногенной и экологической сферах».

Проблемы безопасности на объектах нефтегазового комплекса имеют особое значение. Они связаны с физико-химическими свойствами углеводородных веществ, приводящими к их возгоранию или взрыву в случае аварий. Авариям на нефтеперерабатывающих предприятиях характерны большие объемы выброса взрывопожароопасных веществ, образующие облака топливно-воздушных смесей, разливы нефтепродуктов и как следствие - пожары, взрывы, разрушение соседних аппаратов и целых установок. Согласно статистике, ущерб от аварийности и травматизма достигает 5-10% от валового национального продукта промышленно развитых государств, а несовершенная техника безопасности являются причиной преждевременной смерти 10-15% мужчин и 5-10% женщин.

Практика показывает, что полностью исключить аварии и уменьшить до нуля опасность, несущую опасными производственными объектами, невозможно. Поэтому техногенные аварии необходимо предупреждать или ослаблять их вредное воздействие.

Цель данной работы: Изучить техногенные риски нефтеперерабатывающей отрасли и методы их урегулирования.

Основные задачи:

1) Изучить основные опасности предприятий нефтепереработки;

) Проанализировать возможные аварийные ситуации на предприятии ООО «ТехМашСервис», их причины и меры безопасности.

Объектом исследования являются техногенные риски предприятий нефтепереработки.

Предмет исследования - методы урегулирования техногенных рисков и оптимизации предприятий.

Методология исследования включает в себе метод анализа и синтеза полученных данных.

Курсовая работа состоит из введения, четырех глав, четырех параграфов, заключения и списка литературы.

1. Техногенный риск

К настоящему времени сложилась достаточно проработанное направление в теории рисков, связанное с оценкой и управлением, так называемыми техногенными рисками. Этот вид рисков связан с опасностями, существующими при строительстве, эксплуатации технических систем различной сложности. Различают технические устройства и технические системы. Последние представляют собой системы различной сложности, состоящие из технических устройств и операторов, объединенных жесткой или гибкой структурой, правилами функционирования. В пределах технических систем осуществляется целенаправленный обмен веществом, энергией, информацией. Цель функционирования технических систем определена заранее. Функциональная схема технической системы всегда направлена на реализацию поставленной цели и сопутствующих задач. Важной особенностью современных технических систем является их «включенность» в экономику. Помимо технических целей существуют и экономические цели функционирования таких систем.

Практически все технические устройства и технические системы вписаны в окружающую среду и взаимодействуют с ней, обмениваясь веществом, энергией и информацией. Для большинства сложных и сверхсложных технических систем подобный обмен с окружающей природной средой настолько велик, что оказывает на нее существенное влияние и вызывает в ней адаптивные изменения. Эти изменения могут затрагивать и окружающие экосистемы различного масштаба. В этом случае принято говорить о техноэкосистемах. Существование техноэкосистем различного масштаба также является результатом экономической деятельности человечества.

Опасности для человека, связанные с различными техническими устройствами, появились с момента создания и использования этих устройств. Опасности связаны, в первую очередь, с неправильным функционированием этих устройств или неправильным их использованием. Последние опасности связывают с так называемыми ошибками операторов.

Роль техногенных рисков весьма велика. В первую очередь их последствия проявляются в самой технической сфере. Ущербы в этом случае связаны с разрушением технических объектов, гибелью и травмами персонала, упущенной выгодой, штрафами, необходимостью ликвидации последствий в технической сфере и восстановительными работами. Вместе с тем, очевидно, что последствия от этих рисков могут проявляться не только в самой технической сфере. Техногенные риски являются источником опасности для третьих лиц, угрожая им утратой имущества, жизни и здоровья, иными видами ущербов. Часто с ними связаны и экологические риски, поскольку техногенные опасности вызывают появление специфических экологических опасностей. Например, в результате техногенной аварии могут наблюдаться выбросы токсических химических веществ в атмосферу, гидросферу и литосферу. Можно сказать, что генерирование техногенных опасностей для природы и является отличительной чертой человечества как вида живых организмов. Только с человечеством связаны специфические экологические и риски, обусловленные его технической деятельностью в колоссальных объемах. Без оценки и управления техногенными рисками невозможно полноценное управление экологическими и рисками в различных масштабах. Эти масштабы находятся в пределах от индивидуальных до глобальных рисков, влияющих на экономическую деятельность и существование человечества в современном виде в масштабах планеты.

В свою очередь, природа также оказывает свое опасное влияние на технические системы. Природные явления являются источниками соответствующих опасностей для технических систем. Некоторые природные явления влияют на правильность функционирования технических систем и могут приводить к различным нештатным ситуациям в них. Часть этих явлений может влиять на работу операторов и приводить к появлению ошибок операторов. Например, ограничение видимости, связанное с туманом, дождем, метелью, может приводить к ошибкам операторов (водителей автомобилей, пилотов самолетов, рулевых судов и т.п.) и вызвать различные инциденты с техническими средствами и системами.

Масштаб потенциальных ущербов тесно связан с типом технической системы:

технические системы серийного, крупносерийного и массового производства (автомобили, сельскохозяйственные машины, станки, технологические установки и т.п.);

уникальные технические системы единичного и мелкосерийного производства (мощные энергоустановки, атомные реакторы, химические и металлургические установки, летательные аппараты, горнодобывающие комплексы, нефте- и газопроводы, плавучие буровые установки и т.п.).

Для технических систем первого рода широко используются традиционные методы проектирования и эксплуатации, большой объем ремонтно-восстановительных работ, относительно небольшие ущербы при отказе единичных экземпляров.

Для технических систем второго рода характерно отсутствие опыта предшествующей эксплуатации, большой объем конструкторских разработок, стендовых испытаний и большие материальные потери при отказах и авариях, а также значительный экологический ущерб.

Источниками техногенных рисков принято называть различные опасности, приводящие к нештатному функционированию технических систем или к ошибкам операторов. Различают внешние и внутренние источники для каждого технического устройства и каждой технической системы. Обычно при анализе техногенных рисков ограничиваются внутренними и внешними источниками, связанными непосредственно с функционированием рассматриваемой технической системы или техноэкосистемы.

К внешним источникам обычно относятся:

природные воздействия, связанные с опасными явлениями природы;

внешние пожары, взрывы;

внешние техногенные воздействия (столкновения, аварии и катастрофы на других технических объектах и т.п.);

внешние бытовые воздействия (отключение питания, водоснабжения, протесты населения);

диверсии, акты терроризма;

военные действия;

К внутренним источникам обычно относятся:

ошибки собственных операторов;

внутренний саботаж;

отказы технических устройств в составе технической системы;

разрушения несущих конструкций вследствие дефектов или усталости конструкционных материалов;

внутренние аварии, вызванные отключением питания, водоснабжения, перерывом технологических процессов и т.п.;

внутренние пожары, взрывы;

структура технической системы, наличие узлов и цепочек инцидентов;

Для технических объектов характерно накопление определенных запасов энергии, концентрация энергии на ограниченных пространствах. Освобождение этой энергии порождает специфические опасности, называемые силами или опасностями разрушения. Накопление химической энергии приводит к возрастанию опасностей пожаров и взрывов, выбросов токсических и ксенобиотических веществ в окружающую среду. Накопление потенциальной энергии воды приводит к возрастанию гидродинамической опасности. Накопление электрической энергии приводит к увеличению опасностей взрывов, поражения током, пожаров, электромагнитных поражений. Иногда эти источники опасностей разрушения выделяют в отдельную группу при факторном анализе.

Для технических систем принято отдельно рассматривать и источники опасностей, связанные с поражающими свойствами материалов, накопленных в них. В этом случае говорят о факторах поражения. К ним относят фугасное поражение (поражение взрывной волной), осколочное поражение, термическое поражение, химическое поражение, радиоактивное поражение, гидродинамическое поражение, акустическое поражение и т.д. Естественно, что при указании опасности поражения необходимо указывать и объекты поражения: здания и оборудование, люди, животный мир, растительность и т.п. Для каждой технической системы существует свой набор источников опасности, как направленных на нее, так и исходящих от нее. По мере усложнения технической системы количество источников опасности увеличивается. Обычно источники опасности объединяются в различные группы, которые служат основой для факторного анализа техногенных рисков.

В теории и практике изучения техногенных опасностей сложилось так называемое физико-химическое направление идентификации источников техногенных опасностей при аварийных ситуациях на крупных промышленных объектах. Это направление исходит из того, что при аварии или катастрофе гибель людей вызывается физико-химическими превращениями веществ, вовлеченных в аварию. Эти физико-химические превращения проявляются в виде:

разрушения, обрушения зданий и сооружений;

различных форм пожара;

разлетания осколков и фрагментов оборудования;

удара человека о неподвижные элементы конструкции;

воздействия токсичных продуктов (токсическое поражение);

прямого поражения ударными волнами (фугасное поражение).

2. Оценка потенциальной опасности оборудования установок нефтеперерабатывающих предприятий

риск авария опасность технологический

Основными опасностями, характерными для нефтеперерабатывающих предприятий, являются пожары, взрывы и токсическое заражение, но в большинстве случаев решение задач по повышению безопасности таких предприятий основывается лишь на рассмотрении взрывоопасности оборудования.

Поскольку действующие методики расчета последствий аварий во многом не согласованы и не позволяют однозначно судить об опасности опасных производственных объектов (ОПО), то наиболее перспективным, с точки зрения комплексной оценки, является интегральный параметр опасности . Хотя данный параметр учитывает поражающие факторы различные по физической природе, возникающие на разных стадиях развития аварий и весовые значения этих факторов с учетом компетентности специалистов, основными его недостатками являются разная размерность факторов, его составляющих, невозможность определения по его значениям степени опасности оборудования и отсутствие критических значений данного параметра.

Придать интегральному параметру потенциальной опасности значимость, определить его границы и в итоге реально оценить индивидуальную опасность оборудования нефтегазоперерабатывающего предприятия, используя существующую нормативно-методическую базу, позволит предложенная в виде алгоритма методика определения интегрального параметра потенциальной опасности, представленная на таблице 1.

В качестве поражающих факторов, входящих в состав интегрального параметра согласно выбраны следующие:

воздушная ударная волна, возникающая при разного рода взрывах (взрывоопасность);

тепловое излучение пожара пролива и «огненного шара» при окислительных процессах различных веществ (пожароопасность);

действие токсических веществ, участвующих в технологическом процессе (токсическая опасность). В качестве критических значений рассматриваемых поражающих факторов для приведения интегрального параметра к безразмерной величине были использованы данные работы, что позволило оценивать и сравнивать любые виды опасности и определять границы ее допустимого значения.

В качестве объектов моделирования аварийных ситуаций было выбрано оборудование типовой наружной абсорбционной газофракционирующей установки (АГФУ) газокаталитического производства нефтеперерабатывающих предприятий. Возникновение опасности на АГФУ возможно вследствие высокой плотности размещения технологического оборудования, наличием большого количества воспламеняющихся веществ, а также присутствием источников воспламенения (открытый огонь печей). План расположения оборудования АГФУ представлен на рисунке 2. С учетом рабочих параметров оборудования рассматриваемой установки рассчитаны параметры поражающих факторов, образование которых возможно при авариях на объектах такого типа. В таблице 2 представлены значения данных расчетов. Индексы аппаратов указаны согласно существующей технологической схеме (Т - теплообменное оборудование, Е - емкостное оборудование, К - оборудование колонного типа, П - печное оборудование).

Рисунок 1. Типовой план расположения оборудования АГФУ

Таблица 2. Значения основных поражающих факторов при авариях на АГФУ

Индекс аппаратаИнтенсивность теплового излучения пожара пролива, q, кВт/м2Интенсивность теплового излучения «огненного шара», q, кВт/м2Общий энерго - потенциал взрыво - опасности, кДжОтноси - тельный энерго - потенциал взрыво - опасностиБезраз - мерное давление, РхЭквивалентное количество вещества по первичному облаку, QЭ1, тЕ-82,44109,824,377Е+069,8911565,211354,32Т-150,92102,965,85Е+0850,585919,456466,29Т-19/17,4381,182,669Е+068,392809,119,26Т-197,4370,391,101Е+066,242277,401,67Т-212,9033,761,101Е+066,241246,570,13Т-201,79103,621,49Е+0832,066139,09129,27Т-221,79103,621,49Е+0832,066139,096,38Е-10,85101,891,363Е+0714,455588,6021,19Е-40,6087,575,623Е+0723,173423,054,60Е-100,6810,841,8Е+0834,15718,763,74Е-132,5416,341,8Е+0834,151282,022,29К-10,7788,411,49Е+0832,063511,186,78К-43,29108,8713,6Е+0867,019890,73134,64К-63,92108,742,04Е+0835,69700,321732,80К-73,92108,314,14Е+0845,089161,8016,12П-20,083,007,69Е+0855,41446,810,37Т-100,0957,818,13Е+0856,451972,437,56Т-130,271,015,72+0610,82767,500,88

Каждый фактор опасности, составляющий интегральный параметр, оценивается экспертным путем, согласно исследованиям, проводимым в работах . Для всех аппаратов АГФУ рассчитываются интегральные параметры потенциальной опасности, значения которых представлены в таблице 2.

Из таблицы 2 видно, что значения интегрального параметра потенциальной опасности для аппаратов одной установки изменяются от 0,10 (минимальное значение - для холодильника тощего абсорбента Т-13) до 0,77 (максимальное значение - для десорбера К-4). Таким образом, оценив потенциальную опасность оборудования АГФУ с помощью интегрального параметра можно сказать, что наиболее опасным является колонное оборудование.

Таблица 3. Интегральные параметры опасностиаппаратов АГФУ

Индекс аппарата установкиИнтегральный параметрЕ-80,43Т-150,56Т-19/10,37Т-190,33Т-210,17Т-200,49Т-220,48Е-10,39Е-40,38Е-100,22Е-130,27К-10,43К-40,77К-60,57К-70,64П-20,27Т-100,55Т-130,10Для оценки степени опасности для человека и окружающей среды каждого конкретного аппарата с соответствующим ему значением интегрального параметра необходимо определить границы опасности. За границы опасности берется значение интегрального параметра равное единице. Графически это можно отобразить в виде плоскости в отрезках (рисунок 3), представленной уравнением критической плоскости q1+q2+q3=1, которая будет ограничивать объем значений интегрального параметра от 0 до 1, где q1, q2, q3 - факторы пожароопасности, взрывоопасности и токсической опасности соответственно, при условии, что q1>0, q2>0, q3>0.

Рисунок 2. Графическое представление предельного значения устойчивости оборудования

Представленный в виде пространственной диаграммы интегральный параметр потенциальной опасности позволяет ранжировать оборудование технологической установки по степени его опасности. Основываясь на уравнении, описывающем критическую плоскость, и нормативно обоснованных значениях поражающих факторов в таблице 3, в которой рассчитанный для аппаратов АГФУ интегральный параметр потенциальной опасности расположен по убыванию его значений, выделим четыре области опасности. На рисунке 4 для наглядности области опасности показаны двумерной диаграммой, частично описывающей интегральный параметр потенциальной опасности. Так, значение интегрального параметра от 0 до 0,33 характеризует область низкой опасности, от 0,33 до 0,50 - приемлемой опасности, 0,50-0,70 - область высокой опасности, а значения от 0,70 до 1,00 - предельной опасности.

Аппараты АГФУИнтегральный параметрК-4 (десорбер для извлечения из деэтанизированного абсорбента пропан-пропиленовой и бутан-бутиленовой фракции)0,77К-7 бутановая колонна)0,64К-6 (пропановая колонна)0,58Т-15 (подогреватель сырья)0,56Т-10 (подогреватель сырья)0,55Т-20 (подогреватель сырья)0,49Т-22 (подогреватель сырья)0,49К-1 (абсорбер для извлечения газа пропан - пропиленовой, бутан-бутиленовой фракции) 0,43Е-8 (приемник рефлюкса)0,43Е-1 (отбойник конденсата)0,39Е-4 (емкость тощего абсорбента)0,38Т-19/1 (холодильник жирного газа)0,37Т-19 (холодильник пропановой колонны)0,33Е-13 (емкость орошения бутановой колонны)0,27П-2 (печь горячей струи)0,27Е-10 (емкость орошения пропановой колонны)0,22Т-21 (подогреватель сырья)0,17Т-13 (подогреватель сырья)0,10

Из таблицы 4 в соответствии с предложенной классификацией, видно, что в область низкой опасности попадают аппараты Т-13 (подогреватель сырья), Т-21 (подогреватель сырья) и Е-10 (емкость орошения пропановой колонны), а наиболее опасным оказался десорбер для извлечения пропан-пропиленовой и бутан - бутиленовой фракции, К-4, который находится в области предельной опасности. Подобное распределение аппаратов по областям вполне обосновано и определяется физико-химическими свойствами веществ, участвующих в процессах переработки углеводородов, их количеством, технологическими параметрами процессов, возможностью образования неконтролируемых реакций, способных привести к взрывам, возгораниям.

Так, количественно разграничив области опасности, получаем классификацию оборудования, которая позволяет оценивать опасность объекта по значению его интегрального параметра, что в последующем позволит оперировать опасностью на различных стадиях его жизненного цикла. Это ранжирование также может быть использовано при совершенствовании системы диагностирования и оценки текущего состояния оборудования установок нефтегазопереработки.

Представленный в виде пространственной диаграммы интегральный параметр потенциальной опасности может быть использован для определения границ варьирования значений факторов опасности. Наглядно это можно представить на рисунке 4, в качестве примера возьмем гипотетический аппарат с интегральным параметром 0,95, факторы опасности составляющие его равны

44; 0,31 и 0,20. Рассматриваемый аппарат попадает в область предельной опасности; наиболее весомым с точки зрения опасности является его пожароопасность.

Рисунок 3. Графическое представление потенциальной опасности аппарата в пространстве

Данная графическая интерпретация с разложением факторов, составляющих интегральный параметр опасности, позволяет создать наглядный инструмент для изменения их границ с целью уменьшения риска возникновения аварийной ситуации на ОПО.

Согласно , критерием, по которому максимально рассредоточиваются аппараты на нефтеперерабатывающих предприятиях, являются наибольшие значения их энергетических потенциалов. Энергетический потенциал взрывоопасности характеризует детонационный взрыв, реализация которого для объектов этой отрасли несвойственна. Используя расчетные данные по составлению интегральных параметров потенциальной опасности аппаратов АГФУ, можно визуально представить не только зоны полных разрушений, но и ситуационные планы таких поражающих воздействий аварий, как пожар пролива, «огненный шар», токсическое поражение и дефлаграционный взрыв. На рисунках 6-10 представлены зоны опасности оборудования АГФУ с указанием интегрального параметра опасности и места расположения оборудования, а также его индекса согласно технологической схеме.

Как видно из рисунков 6-10 большинство аппаратов попадают в зоны поражающего воздействия соседних аппаратов при реализации любого из рассмотренной сценариев аварий.

Рисунок 5. Зоны опасности оборудования АГФУ при реализации детонационного взрыва

Рисунок 6. Зоны опасности оборудования АГФУ при реализации дефлаграционного взрыва

Рисунок 7. Зоны опасности оборудования АГФУ при реализации токсического заражения

Рисунок 8. Зоны опасности оборудования АГФУ при реализации «огненного шара»

Рисунок 9. Зоны опасности оборудования АГФУ при реализации пожара пролива

Таблица 5. Интегральный и обобщающий параметр потенциальной опасности оборудования АГФУ

Аппа - раты АГФУИнтегральный параметрСумма интегральных параметров аппаратов, попадающих в зону опасностиОбобща - ющий интеграль ный параметрТоксическое воздейст виеПожар пролив аДефлагра - ционной взрывДетонаци - онный взрыв«Огнен - ному шару»К-40,770,700,273,12,775,0011,84К-70,641,950,585,74,195,7018,12К-60,582,340,645,73,36,918,88Т-150,562,71,024,54,657,1720,04Т-100,551,250,10,325,372,139,17Т-200,491,710,493,391,075,7012,36Т-220,491,710,491,821,135,7010,85К-10,431,04-0,771,041,694,54Е-80,431,910,396,03-5,7014,03Е-10,391,950,433,85-5,7011,93Е-40,382,570,87-0,875,7010,01Т-19/10,372,311,591,76-5,7011,36Т-190,331,701,621,33-5,7010,35Е-130,271,200,77-1,200,773,94П-20,27---1,04-1,04Е-100,221,581,03-2,290,665,56Т-210,173,900,38--3,687,96Т-130,102,410,77---3,18

Данный факт позволяет, установив количество оборудования, попадающего в зоны поражающего воздействия при возникновении различного рода аварий для каждого аппарата и подсчитав их суммарный интегральный параметр потенциальной опасности, рассчитать обобщающий интегральный параметр аппарата, значение которого будет отражать опасность оборудования по степени его влияния на дальнейшее развитие аварийной ситуации.

Анализ данных таблицы 4 позволяет судить о том, что один и тот же аппарат установки может обладать различного рода опасностью, так, колонна К-4, имеющая наибольший индивидуальный интегральный параметр потенциальной опасности, обладает обобщающим интегральным параметром среднего значения, а подогреватель сырья Т-15 с индивидуальным интегральным параметром области высокой опасности 0,56 максимально опасен с точки зрения влияния на продолжительность аварии и усугубления ее последствий. Расчет обобщающего интегрального параметра также отображает зависимость его значения отразмещения технологического оборудования на территории установки - аппараты Т-10, К-1, Е-13 отдалены от основного сосредоточения оборудования АГФУ, что сказывается на значении их обобщающего интегрального параметра, хотя их потенциальная опасность велика.

Использование предложенной в работе оценки потенциальной опасности технологического оборудования позволит заблаговременно снизить риск возникновения аварий уже на стадии его проектирования, а также разработать комплекс мероприятий по снижению потенциальной опасности на любом этапе его жизненного цикла.

3. Возможные аварийные ситуации и меры безопасности

.1 Перечень основных опасностей производства

Процесс переработки углеводородного сырья связан с обращением взрывопожароопасных сред при повышенных температурах и избыточном давлении.

Продуктами, определяющими взрывоопасность технологической установки, являются пары бензиновой, керосиновой, дизельной фракций, которые в смеси с кислородом воздуха образуют смеси, взрывающиеся при наличии огня или искры, а также нагретый выше температуры вспышки мазут.

Процесс ведется в герметичной системе под избыточным давлением и подсос воздуха в систему в рабочем состоянии невозможен.

Взрывоопасная ситуация возможна лишь при разрушении оборудования или трубопроводов в результате какого-либо повреждения, механического износа или коррозии.

Потенциальная опасность технологических блоков, где обращаются взрывопожароопасные продукты, заключается в возможности разгерметизации аппаратов и трубопроводов, проливе горючих жидких продуктов, выбросе парогазовой взрывоопасной среды, что является причиной наиболее часто встречающихся аварий при эксплуатации аналогичных установок.

Разгерметизацию системы может вызвать нарушение технологических параметров (температура, давление) с выходом их за критические значения, например, перегрев труб в трубчатой печи, превышение давления сверх расчетного в емкостном или колонном оборудовании. В свою очередь, нарушение норм технологического режима может произойти из-за отказа схем регулирования и защиты, а также в результате ошибок персонала.

Установка обеспечена в достаточной степени средствами контроля, управления и защиты при незначительной вероятности отказа защитных систем.

Существует вероятность механической разгерметизации технологических систем вследствие износа оборудования, поэтому главной задачей системы контроля, управления и защиты, включая контроль технологического персонала, является своевременное обнаружение повреждения и оперативная локализация предаварийных состояний.

Безопасность производства обеспечивается следующими мероприятиями: - оборудование имеет Разрешения Ростехнадзора России на его применение на опасном производственном объекте;

внедрена комплексная автоматизация технологического процесса с выносом информации о параметрах, характеризующих безопасную работу оборудования, на щит КИП в операторную. Кроме параметров технологических процессов на дисплеи операторов вынесена и информация, характеризующая работу оборудования;

для защиты аппаратуры от возможного превышения давления, предусмотрена установка предохранительных клапанов со сбросом среды на установку улавливания паров углеводородов через емкость Е21;

для защиты емкостного оборудования от возможности распространения пламени на дыхательных линиях установлены огнепреградители;

для исключения замерзания продуктов в зимнее время, что может явиться причиной разгерметизации трубопроводов, повреждения арматуры, насосного оборудования на установке выполнен обогрев трубопроводов с легкозастывающим продуктом (мазутом) при помощи пароспутника в общей изоляции с трубопроводом;

материальное исполнение всего оборудования, трубопроводов и их элементов соответствует условиям их эксплуатации;

для перекачки взрывопожароопасных жидкостей применены специальные насосы с уплотнениями, позволяющими в значительной степени снизить или исключить утечки перекачиваемой жидкости;

выполнено заземление всего оборудования и трубопроводов для защиты от статического электричества и вторичных проявлений молнии;

для изоляции печи при авариях печь оборудована «паровой завесой», которая автоматически включается после срабатывания сигнализации о загазованности на установке. Паровая завеса предотвращает проникновение облака взрывоопасной смеси в зону открытого огня печи; эксплуатация технологического оборудования, трубопроводной арматуры и трубопроводов, выработавших установленный ресурс, допускается при получении технического заключения о возможности его дальнейшей работы и получения разрешения в порядке, устанавливаемом Ростехнадзором;

в процессе эксплуатации установки должно быть обеспечено строгое соблюдение графиков осмотра, ремонта и технического освидетельствования аппаратов и трубопроводов в соответствии с Положением о планово-предупредительном ремонте, действующем на предприятии, а также нормативными документами Ростехнадзора.

.2 Возможные инциденты и аварийные ситуации, причины их возникновения и действия по их устранению

Основными причинами возможных аварийных ситуаций являются:

отказ в работе контрольно-измерительных приборов и системы противоаварийной защиты и, как следствие, выход параметров за пределы регламентных;

нарушение герметичности оборудования и трубопроводов или их полное разрушение;

нарушение требований норм техники безопасности при эксплуатации установки или проведении ремонтных работ;

несвоевременная ревизия и неправильная регулировка предохранительных клапанов;

неисправность заземления оборудования;

несоблюдение графиков осмотра и планово-предупредительных ремонтов;

преднамеренные действия физических лиц (диверсии).

При возникновении аварийной ситуации дежурный оператор оценивает степень аварии и принимает решение об аварийной остановке процесса или о продолжении работы. При этом оповещается руководящий инженерно-технический персонал, несущий ответственность за безопасную эксплуатацию производства. Аварийное состояние установки может возникнуть в следующих случаях:

прекращение подачи пара;

прекращение подачи электроэнергии;

прекращение подачи оборотной воды;

прекращение подачи топливного газа;

прогар труб в печи;

нарушение герметичности трубопроводов и аппаратов.

Прекращение подачи пара

При прекращении подачи пара на установку прекратится подача пара в нагревательные элементы резервуаров и аппаратов, на пароспутники и систему паротушения нагревательных печей.

выяснить причину прекращения подачи пара и, в случае невозможности возобновления подачи пара, приступить к остановке установки в соответствии с подразделом 6.2;

при длительной остановке (зимой более 1 часа) сдренировать конденсат из пароспутников, обогревов, открыть дренажи на паропроводах;

опорожнить трубопровод подачи мазута на сливо-наливной стояк и трубопровод мазута технологической установки в емкость Е21;

линии транспортирования мазута прокачать дизельным топливом. Некондиционный мазут от технологической установки собрать в емкость Е5 или другую свободную емкость пункта приема сырья, от участка сливо-наливных операций - в емкость Е21.

Прекращение подачи электроэнергии

В случае прекращения снабжения установки электроэнергией останавливаются насосы, прекращается электроснабжение приборов КИПиА, средств противоаварийной защиты, прекращается подача топлива к нагревательным печам. Останавливается паровой котел и прекращается подача пара на установку.

Остановка насосов оборотного водоснабжения и установки улавливания паров углеводородов приведет к залповому выбросу паров углеводородов и загазованности территории предприятия, что может привести к взрыву.

Для ликвидации аварийной ситуации необходимо:

проконтролировать отключение подачи топлива к горелкам нагревательных печей, вручную подать пар в камеры сгорания и на паровую завесу блока печей;

открыть вручную арматуру на сливе сырья из змеевика нагревательной печи и продуктов из кубовых емкостей;

при продолжительном отсутствии электроэнергии принять меры по опорожнению и продувке трубопроводов с высокозастывающими продуктами инертным газом (азотом) в заглубленные емкости.

Прекращение подачи оборотной воды

Оборотная вода подается на охлаждение в дефлегматор Дик холодильнику X. Прекращение снабжения установки оборотной водой приводит к резкому повышению температуры отходящих продуктов с установки, нарушению процесса конденсации паров углеводородов, к нарушению режима работы установки улавливания паров углеводородов.

Для ликвидации аварийного положения необходимо:

аварийно потушить горелки печей;

во избежание закоксовывания продуктов в печах насосы подачи сырья Н35 и Н54 использовать максимально возможное время, остановить его и затем несколько раз прокачать печи включением насоса на несколько минут;

при длительном отсутствии воды приступить к остановке технологической установки.

Прекращение подачи топливного газа

Прекращение снабжения печи установки топливным газом ведет к прекращению процесса нагрева сырья. Кроме того, прекращается выработка пара в котельной.

Проконтролировать закрытие запорной арматуры на линиях подачи газа к горелкам.

При продолжительном отсутствии топливного газа принять меры по остановке технологического оборудования в регламентированном режиме.

Прогар труб в печи

При прогаре труб в печи установка должна быть аварийно остановлена, для чего необходимо:

проконтролировать отсечку подачи топливного газа в соответствующую печь. Остановить насос, подающий продукт в печь. Перекрыть задвижку на нагнетании насоса, затем закрыть задвижки на входе и выходе из печи;

освободить змеевик печи по аварийному сбросу в емкость Е21. Продуть змеевик и камеру печи паром;

приступить к остановке технологического оборудования, если дальнейшая работа установки невозможна, или переключить работу установки на резервную печь.

Нарушение герметичности аппаратов и трубопроводов

При нарушении герметичности аппаратов и трубопроводов, выбросе жидких продуктов или их паров, грозящем пожаром и отравлением обслуживающего персонала, установка должна быть аварийно остановлена, для чего необходимо:

отключить поврежденный трубопровод или аппарат от остальной системы, откачать, если возможно, из него продукт или слить продукт в заглубленную емкость Е21;

если без отключенного аппарата или участка трубопровода нормальная работа установки невозможна, приступить к нормальной остановке установки. Если работа установки при этом возможна, продолжить работу при постоянном контроле содержания паров взрывоопасных продуктов в рабочей зоне. При достижении 20% НКПР на открытой площадке приступить к остановке установки;

ликвидировать последствия разлива или выброса продукта. Подготовить поврежденный участок к ремонту.

.3 Меры безопасности при эксплуатации производственного объекта

.3.1 Меры безопасности при продувке оборудования инертным газом

Для продувки горелочного устройства печи П47 и установки улавливания паров углеводородов Х29 используется азот от стационарной баллонной установки Х53. Для продувки оборудования и трубопроводов при выводе установки на рабочий режим после длительной остановке или после ремонта необходимо использовать азот из временно устанавливаемых баллонов. Возможно получение азота от арендуемой передвижной газификационной установки.

При длительной остановке производства, а также при остановке, выполняемой с целью проведения осмотра и ремонта оборудования, после освобождения оборудования и трубопроводов от продуктов выполняется продувка острым паром давлением 65 кПа. Перед проведением ремонтных работ после продувки паром выполняется продувка азотом из баллонов до получения отрицательного результата на взрываемость.

3.2 Требования к надежности электроснабжения, системе управления, сигнализации и противоаварийной автоматической защите технологического процесса

Электроснабжение установки выполнено от двух независимых источников: рабочего - от комплектной трансформаторной подстанции и аварийного - от дизельной электростанции АД-20С-Т400-2РМ со второй степенью автоматизации (с автоматическим пуском).

При аварийном режиме (отсутствии напряжения с ТП) мощность ДЭС достаточна для электроснабжения потребителей котельной и исполнительных механизмов запорной арматуры, входящей в состав системы противоаварийной защиты.

При прекращении подачи электроэнергии от основного источника срабатывает автоматическое включение резерва (АВР) и двигатели автоматически переключаются на питание от второго источника.

Электродвигатели насосов на период работы АВР могут останавливаться. Эти электродвигатели персонал обязан включать повторно.

Второй источник электроснабжения обеспечивает работу технологического процесса в режиме ожидания, а при длительном отсутствии напряжения на ТП - безаварийную остановку производства.

Кроме того, по первой категории по надежности обеспечивается электроснабжение системы контроля аварийных параметров состояния технологической системы.

Технологический процесс предусматривает:

комплексную механизацию, автоматизацию, применение дистанционного управления технологическим процессом и операциями;

автоматическую систему противоаварийной защиты ПАЗ, предупреждающую образование взрывоопасной среды, обеспечивающую возможность дистанционного отключения насосов и электрозадвижек. Система ПАЗ выдает световой и звуковой сигналы при максимально и минимально аварийных параметрах процесса на узлах. Световой сигнал сообщает о состоянии электрозадвижек (открыто, закрыто).

.3.3 Основные требования по пожарной безопасности производства

Обслуживающий персонал установки должен знать и выполнять следующие правила противопожарной безопасности:

территория предприятия должна постоянно содержаться в чистоте и порядке. Горючие отходы должны собираться в металлические контейнеры, размещаемые на площадке временного складирования отходов, и систематически вывозиться с территории предприятия;

в летнее время вся территория должна убираться от травы с последующим удалением ее с территории;

системы пожаротушения перед наступлением холодов должны проверяться на исправность и проходимость;

в зимнее время огнетушители должны находиться в отапливаемых помещениях, но вдали от отопительных приборов;

не допускать загромождения и загрязнения дорог, проездов, подъездов, подступов к противопожарному оборудованию, средствам пожаротушения, сигнализации и связи;

обслуживающий персонал должен знать правила пользования огнетушителями, помнить, что электрооборудование можно тушить только углекислотными огнетушителями;

разведение огня (костра), выжигание травы, сжигание мусора на территории установки запрещается;

для курения на территории установки отводится специально оборудованное для этой цели место с урнами и бочками с водой и песком;

отогревание застывших трубопроводов и аппаратуры при помощи огня запрещается. Отогревание разрешается проводить только паром или горячей водой на отключенных участках;

колодцы должны быть закрыты крышками и засыпаны слоем песка не менее 10 см;

запрещается въезд автомашин, тракторов и других видов транспорта на территорию предприятия без письменного разрешения начальника установки, старшего оператора с записью в вахтовом журнале;

в период ремонта огневые работы проводятся по специальному наряду-допуску, утвержденному главным инженером, только после выполнения подготовительных мероприятий и получения положительных анализов воздуха в местах проведения огневых работ. Содержание углеводородов не должно превышать допустимых концентраций по санитарным нормам. При возникновении загорания тушить его огнетушителями, песком, кошмой и другими имеющимися средствами пожаротушения;

обслуживающий персонал установки должен следить за наличием и исправностью средств пожаротушения и обязательно при приеме и сдаче смены передавать их по вахте.

Возможные пути распространения пламени и пути эвакуации персонала:

Пропитанная нефтепродуктом изоляция, розливы нефтепродукта по территории установки, пропуски нефтепродукта через уплотнения запорной арматуры, насосов, фланцевых и резьбовых соединений являются причиной распространения огня, как в закрытых помещениях, так и на открытых площадках.

При разгерметизации насоса (пропуск уплотнения, прокладки на трубопроводе и т.п.) или трубопровода (пропуск фланцевого соединения, разрыв сварного шва и т.п.) и при наличии источника огня, пламя может распространяться и на другие трубопроводы, насосы, электродвигатели, оказавшиеся в зоне высоких температур, что может привести к деформации указанного оборудования, которое может стать новым источникам огня и способствовать распространению пожара на все производственные участки.

Основным фактором распространения пламени является давление в источнике, в результате разгерметизации которого происходит поступление нефтепродукта в зону загорания. На открытых площадках определяющими факторами распространения пламени являются направление ветра и источник нефтепродукта.

При аварийной ситуации с установки удаляются все присутствующие, за исключением технологического персонала, который извещает соответствующие службы об аварии и действует в соответствии с ПЛАС (принимает меры к ликвидации аварии, пожара, встречает пожарную часть, знакомит их с создавшейся ситуацией на объекте и т.д.).

Для эвакуации людей с открытых технологических установок имеются маршевые лестницы по всей высоте оборудования.

Наличие двух подъемов и спусков на обслуживающих площадках емкостного парка обеспечивает безопасную эвакуацию людей с объекта во время аварии.

.3.4 Методы и средства защиты работающего персонала от производственных опасностей

Для предупреждения взрыва и пожара на производственных площадках установлены газосигнализаторы, реагирующие на наличие паров углеводородов в воздухе рабочей зоны. Предусмотрен непрерывный автоматический контроль и сигнализация достижения 20% НКПР паров углеводородов на открытых площадках и 10% НКПР паров углеводородов и метана в помещении 102 корпуса 15 (печное отделение).

В помещении 102 корпуса 15 выполнен контроль содержания окиси углерода с сигнализацией при достижении 1ПДК СО.

При выборе методов и средств контроля содержания токсичных веществ в воздухе рабочей зоны следует руководствоваться требованиями раздела 4 ГОСТ 12.1.005-78*.

При выборе методов и средств контроля содержания взрывоопасных веществ в воздухе рабочей зоны следует руководствоваться спецификой возможных утечек и ТУ-ГАЗ-86 «Требования к установке сигнализаторов и газоанализаторов».

Все средства контроля и измерения должны проходить метрологическую поверку в установленные сроки (не реже одного раза в год) в соответствии с методиками, установленными Федеральной службой по техническому регулированию и метрологии (Госстандартом РФ).

.3.5 Дополнительные меры безопасности при эксплуатации производства

Выброс продуктов в рабочие зоны возможен при нарушении технологического режима, неисправности оборудования, арматуры, средств контроля и автоматики, в результате разгерметизации фланцевых соединений, разрывов трубопроводов, что является аварийной ситуацией.

Для ограничения разлива продуктов в случае аварийной разгерметизации оборудования предусмотрены следующие устройства:

твердое покрытие с ограждающими бортиками высотой 200 мм и приямками на наружных установках;

твердое покрытие с ограждающими бортиками высотой 600 мм и приямком на установке гидроочистки сырья;

твердое покрытие с ограждающими стенами высотой 1000 мм и приямками в резервуарном парке;

свободные емкости для приема продуктов из рабочих емкостей в случае их разгерметизации.

При значительном разливе на наружных установках жидкость откачивается из приямка поддона при помощи переносного насоса ГНОМ в бочку или в свободную емкость резервуарного парка для последующей переработки.

Незначительный пролив нефтепродуктов дважды засыпается песком. После каждой засыпки место пролива зачищается с уборкой загрязненного песка в закрывающуюся металлическую тару и направляется на утилизацию в специализированную организацию.

Природный риск - вероятная мера соответствующей природной опасности, установленная для определенного объекта в виде возможных потерь за определенное время или потенциальная возможность такого протекания природных процессов, которые оказывают негативное влияние на жизнедеятельность человека, общества и государства.

Техногенный риск - обобщенная характеристика возможности реализации опасности в техногенной сфере, определяемая через вероятность возникновения техногенной аварии или катастрофы и математическое ожидание негативных последствий от них.

Экологический риск – оценка на всех уровнях от точечного до глобального вероятности появления негативных изменений в ОС, вызванных антропогенным или иным воздействием.

Риск – вероятность реализации опасности и величина ожидаемого ущерба, связанная с каким-либо действием.

Общепринята следующая зависимость при оценке риска :

– вероятность i-го фактора на j-ом объекте,

Ущерб i-го фактора на j-ом объекте

Управление риском – заблаговременное предвидение риска и принятие мер по его снижению.

Управление ведется на основе оценки риска, т.е. на основе зависимости, что риск есть функция от a (подвержение объекта риску), b (чувствительности или уязвимости), с (защищенности).

Наиболее распространенными методами количественного анализа риска являются статистические, аналитические, метод экспертных оценок, метод аналогов .

Суть статистических методов оценки риска заключается в определении вероятности возникновения потерь на основе статистических данных предшествующего периода и установлении области (зоны) риска, коэффициента риска и т.д.

Аналитические методы позволяют определить вероятность возникновения потерь на основе математических моделей и используются в основном для анализа риска инвестиционных проектов.

Метод экспертных оценок представляет собой комплекс логических и математико – статистических методов и процедур по обработке результатов опроса группы экспертов, причем результаты опроса являются единственным источником информации.

Метод аналогов используется в том случае, когда применение иных методов по каким – либо причинам неприемлемо. Метод использует базу данных аналогичных объектов для выявления общих зависимостей и переноса их на исследуемый объект.

10. Основные направления снижения загрязненности гидросферы. Технологические пути минимизации образования загрязняющих веществ и методы очистки сточных вод. Регулирование пространственно-временного распределения сбросов.

Для защиты поверхностных вод от загрязнения предусматриваются следующие экозащитные мероприятия:

  • Развитие безотходных и безводных технологий, внедрение систем оборотного водоснабжения – создание замкнутого цикла использования производственных и бытовых сточных вод, когда сточные воды все время находятся в обороте, и попадание их в поверхностные водоемы исключено.
  • Очистка сточных вод.
  • Очистка и обеззараживание поверхностных вод, используемых для водоснабжения и других целей.

Главный загрязнитель поверхностных вод – сточные воды, поэтому разработка и внедрение эффективных методов очистки сточных вод является актуальной и экологически важной задачей.

Источники техногенных рисков

К настоящему времени сложилась достаточно проработанное направление в теории рисков, связанное с оценкой и управлением так называемыми техногенными рисками. Этот вид рисков связан с опасностями, существующими при строительстве, эксплуатации технических систем различной сложности. Различают технические устройства и технические системы.


Последние представляют собой системы различной сложности, состоящие из технических устройств и операторов, объединенных жесткой или гибкой структурой, правилами функционирования. В пределах технических систем осуществляется целенаправленный обмен веществом, энергией, информацией. Цель функционирования технических систем определена заранее.


Функциональная схема технической системы всегда направлена на реализацию поставленной цели и сопутствующих задач. Важной особенностью современных технических систем является их «включенность» в экономику. Помимо технических целей существуют и экономические цели функционирования таких систем. Зачастую в современных условиях технические цели существования этих систем являются подчиненными экономическим целям и сверхцелям.


В любом случае, функционирование технической системы требует материального и финансового обеспечения. Этим технические системы отличаются от природных экосистем, которые способны функционировать самостоятельно, без финансового и материально-технического обеспечения. Вместе с тем, экономическая «подчиненность» современных технических систем экономическим, финансовым и материально-техническим условиям оказалась практически вне поля зрения специалистов по техногенным рискам


Практически все технические устройства и технические системы вписаны в окружающую среду и взаимодействуют с ней, обмениваясь веществом, энергией и информацией. Для большинства сложных и сверхсложных технических систем подобный обмен с окружающей природной средой настолько велик, что оказывает на нее существенное влияние и вызывает в ней адаптивные изменения. Эти изменения могут затрагивать и окружающие экосистемы различного масштаба. В этом случае принято говорить о техноэкосистемах. Существование техноэкосистем различного масштаба также является результатом экономической деятельности человечества


Опасности для человека, связанные с различными техническими устройствами, появились с момента создания и использования этих устройств. Опасности связаны, в первую очередь, с неправильным функционированием этих устройств или неправильным их использованием. Последние опасности связывают с так называемыми ошибками операторов


Роль техногенных рисков весьма велика. В первую очередь их последствия проявляются в самой технической сфере. Ущербы в этом случае связаны с разрушением технических объектов, гибелью и травмами персонала, упущенной выгодой, штрафами, необходимостью ликвидации последствий в технической сфере и восстановительными работами.


Вместе с тем, очевидно, что последствия от этих рисков могут проявляться не только в самой технической сфере. Техногенные риски являются источником опасности для третьих лиц, угрожая им утратой имущества, жизни и здоровья, иными видами ущербов. Часто с ними связаны и экологические, и энвиронментальные риски, поскольку техногенные опасности вызывают появление специфических экологических и энвиронментальных опасностей.


Например, в результате техногенной аварии могут наблюдаться выбросы токсических химических веществ в атмосферу, гидросферу и литосферу. Можно сказать, что генерирование техногенных опасностей для природы и является отличительной чертой человечества как вида живых организмов. Только с человечеством связаны специфические экологические и энвиронментальные риски, обусловленные его технической деятельностью в колоссальных объемах.


Без оценки и управления техногенными рисками невозможно полноценное управление экологическими и энвиронментальными рисками в различных масштабах. Эти масштабы находятся в пределах от индивидуальных до глобальных рисков, влияющих на экономическую деятельность и существование человечества в современном виде в масштабах планеты


В свою очередь, природа также оказывает свое опасное влияние на технические системы. Природные явления являются источниками соответствующих опасностей для технических систем. Некоторые природные явления влияют на правильность функционирования технических систем и могут приводить к различным нештатным ситуациям в них.


Часть этих явлений может влиять на работу операторов и приводить к появлению ошибок операторов. Например, ограничение видимости, связанное с туманом, дождем, метелью, может приводить к ошибкам операторов (водителей автомобилей, пилотов самолетов, рулевых судов и т.п.) и вызвать различные инциденты с техническими средствами и системами


Переход технической системы в нештатное функционирование в такой дисциплине, как БЖД, принято называть инцидентом. Последствия этих инцидентов с техническими системами могут быть различной тяжести, определяемой суммой материального ущерба, количеством погибших, раненных и заболевших людей, площадью поражения окружающей среды, затронутостью субъектов территориального деления социума.


При этом масштаб потенциальных ущербов тесно связан с типом технической системы:


Технические системы серийного, крупносерийного и массового производства с единичной стоимостью 10000-100000 руб. (автомобили, сельскохозяйственные машины, станки, технологические установки и т.п.);

Уникальные технические системы единичного и мелкосерийного производства с единичной стоимостью порядка 10 7 -10 10 руб. (мощные энергоустановки, атомные реакторы, химические и металлургические установки, летательные аппараты, горнодобывающие комплексы, нефте- и газопроводы, плавучие буровые установки и т.п.)


Для технических систем первого рода широко используются традиционные методы проектирования и эксплуатации, большой объем ремонтно-восстановительных работ, относительно небольшие ущербы (1000- 10000 руб.) при отказе единичных экземпляров


Для технических систем второго рода характерно отсутствие опыта предшествующей эксплуатации, большой объем конструкторских разработок, стендовых испытаний и большие материальные (до 10 10 руб.) потери при отказах и авариях, а также значительный энвиронментальный, экологический ущерб


В данном пособии рассматриваются преимущественно техногенные опасности и риски, связанные с техническими системами второго рода. Интересно отметить, что имеющиеся данные по фактической частоте крупных аварий на технических объектах второго рода существенно превышают аналогичные расчетные величины, получаемые методами теории безопасности технических систем


Например, фактическая вероятность тяжелых аварий на АЭС с повреждением активной зоны составляет 0,005, вместо требуемых значений 10 -6 -10 -7 . На ракетно-космических кораблях фактическая вероятность аварий, связанных с неудачными пусками, составляет (3-7) 10 -2 , что на порядок превышает требуемые величины


Источниками техногенных рисков принято называть различные опасности, приводящие к нештатному функционированию технических систем или к ошибкам операторов. Различают внешние и внутренние источники для каждого технического устройства и каждой технической системы. Обычно при анализе техногенных рисков ограничиваются внутренними и внешними источниками, связанными непосредственно с функционированием рассматриваемой технической системы или техноэкосистемы


К внешним источникам обычно относятся:


Природные воздействия, связанные с опасными явлениями природы;

Внешние пожары, взрывы;

Внешние техногенные воздействия (столкновения, аварии и катастрофы на других технических объектах и т.п.);

Внешние бытовые воздействия (отключение питания, водоснабжения, протесты населения);

Диверсии, акты терроризма;

Военные действия;


К внутренним источникам обычно относятся:


Ошибки собственных операторов;

Внутренний саботаж;

Отказы технических устройств в составе технической системы;

Разрушения несущих конструкций вследствие дефектов или усталости конструкционных материалов;

Внутренние аварии, вызванные отключением питания, водоснабжения, перерывом технологических процессов и т.п.;

Внутренние пожары, взрывы;

Структура технической системы, наличие узлов и цепочек инцидентов;


Для технических объектов характерно накопление определенных запасов энергии, концентрация энергии на ограниченных пространствах. Освобождение этой энергии порождает специфические опасности, называемые силами или опасностями разрушения. Накопление химической энергии приводит к возрастанию опасностей пожаров и взрывов, выбросов токсических и ксенобиотических веществ в окружающую среду.


Накопление потенциальной энергии воды приводит к возрастанию гидродинамической опасности. Накопление электрической энергии приводит к увеличению опасностей взрывов, поражения током, пожаров, электромагнитных поражений. Иногда эти источники опасностей разрушения выделяют в отдельную группу при факторном анализе



Просмотров