Устойчивость функционирования объектов экономики в условиях чс. Устойчивость работы объекта экономики в условиях чс Устойчивость объектов экономики в чрезвычайных ситуациях

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

Под устойчивостью функционирования (работы) отрасли, объекта, объединения в условиях ЧС понимается их способность производить продукцию в установленных объеме и номенклатуре, а для отраслей и объектов, непосредственно не производящих продукцию, - выполнять свои функциональные задачи. Устойчивость заключается в способности предупреждать возникновение аварий, катастроф, противостоять разрушительному воздействию поражающих факторов с целью предотвращения или ограничения угрозы жизни и здоровью персонала и проживающего вблизи объекта населения, снижения материального ущерба, а при получении слабых и средних разрушений инженерно-технического комплекса и частичного нарушения системы снабжения и связей по кооперации, восстанавливать свое производство в максимально короткие сроки.

Различают следующие понятия:

Устойчивость инженерно технического комплекса объекта;

Устойчивость работы объекта экономики.

Инженерно технический комплекс (ИТК) любого предприятия включает в себя здания и сооружения, технологическое оборудование и коммунально-энергетические сети электричества, водоснабжения, канализации, теплофикации и газоснабжения.

Устойчивость работы объекта в основном зависит от сохранности его инженерно-технического комплекса. Однако прекращение или резкое сокращение выпуска продукции во ЧС может произойти по другим причинам , а именно:

Поражение производственного персонала;

Нарушение снабжения поставок по кооперации;

Нарушение надежности управления производством.

На устойчивость работы ОЭ в ЧС влияют следующие факторы :

Надежность защиты персонала;

Способность противостоять поражающим факторам основных производственных фондов (ОПФ);

Технологического оборудования (ТО), систем энергообеспечения, материально-технического обеспечения и сбыта;

Подготовленность к ведению спасательных и других неотложных работ (СиДНР) и работ по восстановлению производства

Надежность и непрерывность управления.

Перечисленные факторы определяют и основные требования к устойчивому функционированию ОЭ и изложены в Нормах проектирования инженерно-технических мероприятий (ИТМ-ГО).

Оценка устойчивости ОЭ к воздействию поражающих факторов различных ЧС заключается в :

В выявлении наиболее вероятных ЧС в данном районе;

Анализе и оценке поражающих факторов ЧС;

Определении характеристик объекта экономики и его элементов;

Определении максимальных значений поражающих параметров;

Определении основных мероприятий по повышению устойчивости работы ОЭ (целесообразное повышение

предела устойчивости).

Считаются вышедшими из строя: промышленные здания – при сильных разрушениях; гражданские (жилые) – при средних разрушениях; личный состав – при поражениях средней тяжести.

Факторы, от которых зависит устойчивость работы промышленных объектов в условиях ЧС :

1. Условия расположения объекта – удаленность от городов и других целей, по которым возможно непосредственное нанесение ракетно-ядерных ударов, зона, в которой находится объект, наличие рядом объектов повышенной опасности (удаленность объекта от АЭС и места хранения СДЯВ, максимальная масса СДЯВ), возможность затопления объекта при стихийных бедствиях и авариях.

2. Характеристика инженерно-технического комплекса объекта – плотность застройки, степень огнестойкости зданий и сооружений, их конструктивные особенности.

3. Характеристика производственных процессов, их категория по пожаровзрывоопасности.

Характеристика веществ и материалов, находящихся в помещении

взрывопожаро-опасная

Горючие газы, легковоспламеняющиеся жидкости с температурой вспышки не более 28оС в таком количестве, что могут образовывать парогазовоздушные смеси, при воспламенении которых в помещении развивается избыточное давление взрыва более 5 кПа. Вещества и материалы, способные взрываться и гореть при взаимодействии с водой, кислородом воздуха или друг с другом в таком количестве, что расчетное избыточное давление взрыва в помещении превышает 5 кПа.

взрывопожаро-опасная

Горючие пыли или волокна, ЛВЖ с температурой вспышки более 28оС, горючие жидкости в таком количестве, что могут образовывать взрывоопасные пылевоздушные или паровоздушные смеси, при воспламенении которых развивается избыточное давление взрыва в помещении, превышающее 5 кПа.

пожароопасные

Горючие и трудногорючие жидкости, твердые горючие и трудногорючие вещества и материалы (в том числе пыли и волокна), вещества и материалы, способные при взаимодействии с водой, кислородом воздуха или друг с другом только гореть, при условии, что помещения, в которых они имеются в наличии или обращаются, не относятся к категориям А или Б.

Негорючие вещества и материалы в горячем, раскаленном или расплавленном состоянии, процесс обработки которых сопровождается выделением лучистого тепла, искр и пламени; горючие газы, жидкости и твердые вещества, которые утилизируются или сжигаются в качестве топлива.

Негорючие вещества и материалы в холодном состоянии

Наиболее опасными являются предприятия категории А и Б. Пожары в них возможны даже при слабых разрушениях. при этом происходит практически мгновенный охват огнем территории объекта.

Здание относится к категории А, если суммарная площадь помещений категории А превышает 5% от площади всех помещений или 200 м2. Если помещение оборудуется установками автоматического пожаротушения, то норма 5% увеличивается до 25% или до 1000 м2.

Здание относится к категории Б, если оно не относится к категории А и суммарная площадь помещений категорий А и Б превышает 5% или 200 м2, а если помещения оборудованы автоматическими установками пожаротушения, то здание можно не относить к категории Б, если суммарная площадь помещений категории А и Б не превышает 25% или 1000 м2.

К категории В относятся здания, если, во-первых, они не отнесены к категориям А или Б, во-вторых, если суммарная площадь помещений категорий А, Б и В превышает 5% суммарной площади всех помещений (10% при отсутствии в здании помещений категорий А и Б). Допускается не относить к категории В здания, если площадь помещений категорий А, Б, В при наличии в них установок автоматического пожаротушения не превышает 25% площади здания (но не более 3500 м2).

Г: ----(25% при оборудовании авт. пожар-ем, но не более 5000 м2).

4. Характер производственных связей по кооперации.

5. Полнота выполнения требований инженерно-технических мероприятий ГО по защите людей, производственных фондов, энергетики, а также инженерно-технических и организационных мероприятий, направленных на повышение устойчивости, разработанных в результате исследований.

Указанные факторы, влияющие на устойчивость работы объектов в ЧС, должны быть оценены при проектировании или при проведении исследований, и на основе этого разработаны соответствующие организационные и инженерно-технические мероприятия.

Совокупность мероприятий, направленных на ограничение возможного ущерба в результате ЧС называется задачей по повышению устойчивости работы объекта в этих условиях.

Основные направления (пути и способы) повышения устойчивости работы объектов в ЧС:

1. Рациональное размещение объекта, его зданий и сооружений :

Комплексное развитие регионов;

Размещение и строительство объекта в соответствии с требованиями СНиП П-01-51-90 (Нормы проектирования ИТМ ГО);

Использование подземных пространств для нужд мирного времени и обороны;

Формирование в загородной зоне производственной инфраструктуры;

2. Обеспечение защиты производственного персонала и населения в условиях ЧС :

Совершенствование системы связи и оповещения;

Комплексное применение основных способов защиты;

Совершенствование организации эвакомероприятий;

Разработка режимов деятельности населения на зараженной территории;

Подготовка к проведению работ по обеззараживанию;

Защита продовольствия.

3. Подготовка промышленного производства объекта к работе в условиях ЧС :

Дублирование выпуска продукции;

Технологическая подготовка производства к выпуску продукции в ЧС, перевод на выпуск продукции в ЧС (военное время);

Внедрение безопасных стройматериалов и технологий производства;

Снижение запасов СДЯВ;

Строительство зданий из облегченных материалов и др.

4. Подготовка к выполнению работы по восстановлению нарушенного производства :

Прогнозирование возможной обстановки в ЧС; определения ущерба, а также сил и средств для восстановления;

Создание и поддержание в готовности сил и средств для восстановительных работ;

Разработка и надежное хранение плановой, проектной и другой документации;

Создание органов управления восстановительными работами и др.

5. Подготовка системы управления хозяйством для решения задач в ЧС :

Дублирование органов управления;

Подготовка к переходу на децентрализованное управление;

Подготовка местных органов к управлению восстановлением хозяйства при нарушении централизованного управления;

Создание резерва кадров;

Подготовка органов управления и кадров к работе в ЧС;

Создание и совершенствование сбора информации;

Подготовка АСУ к работе в ЧС и др.

3.1. Принципы и критерии устойчивости ОЭ в ЧС

Человеческий опыт свидетельствует о том, что ОЭ не могут рассматриваться как абсолютно безопасные или как объекты, которым в процессе функционирования не угрожает опасность. Некоторые ОЭ являются особо опасными, создающими угрозу не только для себя, но и для других ОЭ, а иногда и для региона или даже государства в целом.

В условиях рыночной экономики нарушение нормального функционирования предприятий чревато для них банкротством, а для экономики в целом – кризисом. Особенно велико значение устойчивого функционирования экономики в военное время, когда его нарушение является одной из главных целей противников, а также в условиях ЧС в мирное время.

В этой связи очевидна необходимость обеспечения безопасности ОЭ и сопротивляемости их действию поражающих факторов.

Под устойчивостью ОЭ в ЧС в общем случае понимают их способность в заданных пределах противостоять действию поражающих факторов, то есть выполнять заданные функции.

При этом под выполнением заданных функций понимают способность объекта производить продукцию в запланированном объеме и номенклатуре, а под приспособленностью к восстановлению – его способность восстанавливать производство в кратчайшие сроки.

Основные критерии устойчивости работы ОЭ в условиях ЧС:

Способность выполнять заданные функции в этих условиях;

Возможность восстановления функций при получении повреждений.

В качестве критерия устойчивости может быть также использована удельная величина предотвращенного ущерба.

Основные принципы устойчивости работы ОЭ в ЧС:

Предотвращение возникновения и развития аварий на ОЭ при внешних воздействиях;

Продуманность и всесторонняя обоснованность конструкций, технических решений и технологий, применяемых на ОЭ, с точки зрения возможности его эксплуатации в условиях ЧС;

Высокие качественные показатели оборудования ОЭ (повышенная надежность, прочность, огнестойкость, радиационная стойкостью и т.п.), позволяющие его эксплуатировать при повышенных нагрузках;

Применение мер защиты производственного персонала и технологического оборудования от действия поражающих факторов при ЧС;

Подготовка производственного персонала к работе в условиях ЧС.

Эти принципы в значительной мере реализуются при обеспечении противоаварийной устойчивости ОЭ.

Основные задачи противоаварийной устойчивости ПОО: недопущение аварий, а также сохранение возможности выполнять свои функции, если аварии происходят.

Сложные технические системы, к которым относятся ПОО, всегда имеют определенную степень риска возникновения аварий, опасных для них и окружающей среды. «Цена» аварий возрастает с ростом сложности системы, сосредоточением на ОЭ больших энергетических мощностей и опасных веществ. Поэтому принятие мер, гарантирующих с высокой степенью надежности предотвращение аварий и снижение тяжести их последствий, жизненно необходимо.

Противоаварийная устойчивость ПОО в основном обеспечивается реализацией следующих мероприятий:

Выбор наименее опасных технологий;

Высокое качество и всесторонняя обоснованность проектов;

Высокое качество изготовления и монтажа;

Обслуживание и ремонт технологических установок;

Применение надежных средств предотвращения перехода технологических установок и оборудования в критический режим работы, влекущий за собой аварию;

Квалифицированная эксплуатация ПОО в соответствии нормативно-технической документацией, инструкциями;

Принятие мер по защите технологических установок, производственных систем и оборудования от внешних воздействий и ситуаций, связанных с «человеческим фактором» (низким уровнем квалификации, безответственностью, ошибками производственного персонала, терроризмом);

Поддержание безотказности оборудования и систем, препятствующих возникновению и развитию аварий;

Создание многоэшелонной защиты от опасных последствий аварий.

Основное требование противоаварийной защиты – исключение катастрофических повреждений ПОО реализуется созданием последовательных противоаварийных барьеров:

Предотвращение аварий, т.е. эксплуатация ОЭ в пределах, исключающих возможность их возникновения; достигается отработанностью проектов, высоким качеством изготовления технологических установок и оборудования ПОО, их надежностью, высокой квалификацией обслуживающего персонала;

Предотвращение развития проектных аварий на ранней стадии их возникновения, что обеспечивается противоаварийными системами;

Предотвращение и защита от маловероятных, труднопредсказуемых аварий; ограничение их последствий.

Такие аварии, как правило, являются следствием многократных отказов и множественных ошибок производственного персонала ПОО. Требуется придание опасному оборудованию ПОО свойства самозащищенности, использованием принципов резервирования, разнообразия, физического разделения и независимости.

3.2. Направления государственной политики в области повышения устойчивости потенциально опасных объектов

Основные направления государственной политики в области повышения устойчивости опасных объектов и населения:

· совершенствование государственного регулирования безопасности и нормативной правовой базы в области промышленной безопасности, защиты населения и территорий отЧС;

· усиление защиты объектов от последствий техногенных, природных факторов и террористических проявлений, повышение защищенности населения и окружающей среды от воздействия ЧС различного характера и от неблагоприятных факторов, связанных с эксплуатацией опасных объектов;

· развитие фундаментальной и прикладной науки в области обеспечения безопасности функционирования критически важных объектов;

· развитие и совершенствование систем обеспечения информационной безопасности на критически важных и опасных объектах, реализация единой государственной политики в этой области, включая формы, методы и средства выявления, оценки и прогнозировали угроз безопасности информационно-телекоммуникационной инфраструктуре таких объектов, а также системы противодействия этим угрозам;

· совершенствование систем и средств физической противоаварийной защиты опасных объектов, повышение их антитеррористической устойчивости;

· повышение эффективности мероприятий по предупреждению ЧС природного и техногенного характера и по минимизации их последствий;

· создание системы резервов материальных ресурсов для ликвидации указанных ЧС, а также возможныхтеррористических проявлений;

· совершенствование процессов подготовки населения и управляющих структур к действиям по ликвидации ЧС и обеспечению жизнедеятельности ПОО;

· повышение эффективности международного сотрудничества в области защищенности опасных объектов и населения.

Основные мероприятия в целях повышения защищенности ПОО:

· проведение инвентаризации критически важных и опасных объектов и на этой основе разработка единой методики категорирования опасных объектов Российской Федерации;

· установление уровня приемлемого риска техногенной опасности для населения;

· развитие страхового фонда документации на ПОО;

· повышение эффективности государственного регулирования антитеррористической деятельности, предусматривающей обеспечение защищенности опасных объектов, мест массового скопления людей;

· проведение комплекса мероприятий по развитию систем, средств и методов технической диагностики объектов и оборудования, отработавших расчетный ресурс эксплуатации, но используемых на опасных объектах;

· совершенствование систем контроля и управления, в том числе автоматической противоаварийной защиты технологических процессов, обеспечение эффективного функционирования дежурно-диспетчерской службы объектов;

· разработка и внедрение безопасных современных технологий, материалов, технических устройств, комплектующих и других видов продукции;

· разработка и внедрение систем безопасности для всех видов транспортных средств, используемых при перевозке опасных грузов, обеспечение непрерывного мониторинга их состояния и местоположения;

· проведение комплекса инженерных мероприятий по снижению риска воздействия опасных факторов при проектировании, строительстве, эксплуатации и выводе из эксплуатации опасных объектов;

· введение обязательного лицензирования деятельности (кроме подразделений и частей внутренних войск МВД и Минобороны РФ) на опасных объектах.

3.3. Пути и способы повышения устойчивости работы ОЭ в ЧС

3.3.1. Общие положения

Пути повышения устойчивости работы ОЭ (рис.7):

- предотвращающие потерю устойчивости;

- обеспечивающие устойчивость функционирования;

- восстанавливающие устойчивость функционирования.

Способы повышения устойчивости сводятся к отказу от использования, уничтожению или перепрофилированию потенциально опасного оборудования и технологий; прерыванию цепи событий, ведущих к ЧС; обеспечению безопасности; повышению надежности используемого оборудования и технологий; к быстрому восстановлению устойчивости ОЭ после ее потери в результате ЧС. Наиболее эффективными являются первые два пути. Однако повышение устойчивости ОЭ с их использованием не всегда возможно.

Способы повышения устойчивости многообразны, но решение задачи может быть достигнуто только при их комплексном применении. Поэтому работу по повышению устойчивости проводят, используя все доступные в данных конкретных условиях пути и способы. Выбор путей и способов основывается на системном анализе значимости влияющих на работу ОЭ поражающих факторов при ЧС и чувствительности элементов ОЭ к их воздействию.

Мероприятия по повышению устойчивости разрабатываются на основе исследований каждого из факторов, оказывающих влияние на работу ОЭ. Большая часть мероприятий осуществляется на объекте заблаговременно, меньшая – в преддверии ЧС, наступление которых известно или заранее спрогнозировано.

При разработке мероприятий руководствуются требованиями ИТМ ГО и результатами реальной оценки устойчивости, полученными в ходе ее исследования.

При этом учитывается, что достижение абсолютной устойчивости и исключение ущерба практически невозможно. Поэтому планируются и осуществляются лишь те мероприятия, которые позволяют уменьшить ущерб, обеспечить защиту производственного персонала и выпуск запланированной продукции при условии экономической целесообразности мероприятий. Обычно мероприятия считаются целесообразными, если суммарные затраты на них не превышают 1–2% стоимости ОПФ. Осуществляемые мероприятия прежде всего направлены на повышение устойчивости тех видов производственных структур, без участия которых невозможен выпуск основной продукции ОЭ.

Важную роль играют мероприятия по рациональному размещению производств на территории ОЭ, которые обычно осуществляются на этапах проектирования и реконструкции предприятия и реже ‒ на этапе его эксплуатации:

Зонирование производств, т.е. размещение однотипных видов производств в отдельных зонах, отделяемых друг от друга широкими магистральными проездами, искусственными водоемами или зелеными насаждениями; использование рельефа местности;

Малоэтажная рассредоточенная планировка производств;

Максимально возможное с учетом производственного и экономического факторов уменьшение плотности застройки;

Перенос в загородную зону вспомогательных и дублирующих производств, складов сырья и готовой продукции;

Размещение оборудования, если это возможно, вне зданий или в зданиях с облегченным покрытием.

Объем мероприятий и их содержание определяются масштабами и характером возможных ЧС, величиной риска их возникновения, характеристиками, степенью важности ОЭ в системе экономики страны и степенью его опасности для окружающей среды и населения при ЧС на самом ОЭ; собственными возможностями и возможностями государственных и иных структур, которые могут оказать помощь объекту в обеспечении необходимой степени его устойчивости.

При выборе путей, способов и мероприятий для повышения устойчивости ОЭ ориентируются на ситуации, определяемые значительной величиной риска их реализации и наибольшими потерями и ущербом.


Конструк- тивное
Физии- ческое


При выборе мероприятий учитывается возможность оптимизации производимых затрат, т.е. главным образом минимально необходимый объем мероприятий и их полезность в условиях повседневной производственной деятельности ОЭ, связанной с улучшением условий труда производственного персонала, увеличением выпуска товарной продукции, улучшением экологической обстановки в районе объекта и т.п.

3.3.2. Обеспечение защиты производственного персонала

Надежная защита производственного персонала в ЧС является важнейшим условием повышения устойчивости ОЭ.

Мероприятия, обеспечивающие защиту персонала, основаны на своевременном обнаружении, оповещении и исключении или ослаблении действия поражающих факторов ‒ путем мониторинга окружающей среды и производственных процессов, использования эффективных систем оповещения и средств защиты, проведения эвакомероприятий. Решение задачи мониторинга достигается оснащением ОЭ приборами и системами, позволяющими обнаруживать опасные концентрации углеводородных топлив и химических веществ, ионизирующие излучения и т.п. ОЭ должны иметь объектовую систему оповещения об опасности , подключенную к городской или региональной системе оповещения, и достаточное для укрытия наибольшей работающей смены количество защитных сооружений. При их недостаточном количестве осуществляется дополнительное строительство убежищ и противорадиационных укрытий соответствующих классов, быстровозводимых убежищ и простейших укрытий. Строительство последних производится в военное время в угрожаемый период. Вся подготовительная работа осуществляется заблаговременно: приобретение проектной документации; выбор конкретных мест, на которых будет осуществляться строительство; их посадка и привязка; заготовка всех необходимых строительных материалов и оборудования, инструмента и технических средств; выделение и обучение производственного персонала.

Каждый рабочий и служащий ОЭ должен иметь СИЗ персонала при возможных авариях и катастрофах. Накопление СИЗ производится ОЭ самостоятельно с хранением их в местах, максимально приближенных к тем, для кого они предназначены. Каждый член производственного коллектива должен уметь пользоваться СИЗ и находиться в них в течение всего времени возможного действия поражающих факторов.

Для вывода персонала с территории и из сооружений ОЭ при возникновении опасных очагов поражения или угрозе применения оружия в военное время планируется проведение эвакомероприятий. Спланированные эвакомероприятия должны постоянно уточняться с учетом изменяющейся обстановки. Их эффективная реализация обеспечивается проведением учений и тренировок, а также хорошей подготовкой руководящего состава ОЭ.

Для уменьшения риска поражения людей при попадании ОЭ в зону радиоактивного заражения в случае аварий на РОО и применении ядерного

оружия в военное время, авариях на ХОО, угрозе бактериального заражения производится герметизация производственных зданий и помещений. При герметизации зданий предполагается заделка всех щелей и трещин в ограждающих конструкциях; уплотнение дверных, оконных и иных проемов, отсутствие которых не нарушает условий эксплуатации; оштукатуривание внутренних поверхностей стен при наличии пустот в швах кладки; герметизация вводов в наружные стены коммуникаций (водопровода, отопления, воздуховодов, канализации, электроснабжения и др.). На воздухозаборных и вытяжных устройствах приточно-вытяжных систем вентиляции устанавливаются герметические задвижки или крышки. Работы по герметизации выполняются по проекту, разрабатываемому проектной организацией в соответствии с заданием на проектирование, выданным ОЭ. Перечень и объем инженерно-технических мероприятий по герметизации определяется в ходе проведения исследования устойчивости ОЭ.

Для защиты от радиоактивных веществ открытых частей машин, агрегатов и пультов управления, с которыми соприкасаются люди во время работы, могут быть использованы полиэтиленовые чехлы, брезенты и другие покрытия.

Для обеззараживания воды, поступающей для хозяйственно-бытовых и производственных нужд из открытых источников, очистные сооружения (отстойники, фильтры, хлоратные установки) оборудуются устройствами для задержки радиоактивных, отравляющих, АХОВ и бактериальных средств.

С целью проведения возможной специальной обработки оборудования и санитарной обработки людей создаются запасы дезактивирующих, дегазирующих и дезинфицирующих веществ, а также необходимых материалов и технических средств. Душевые приспосабливаются для проведения при необходимости полной санитарной обработки производственного персонала. Спецобработка зараженных помещений и оборудования производится личным составом формирований обеззараживания ОЭ.

3.3.3. Повышение устойчивости инженерно-технического комплекса

Повышение устойчивости зданий и сооружений может быть достигнуто за счет их рационального размещения на территории ОЭ, оптимальной конструкции и усиления прочности. Повышение прочностных характеристик, ввиду больших затрат, целесообразно только для зданий особо важных производственных участков и цехов: предел прочности увеличивают, как правило, до общепринятого на данном ОЭ.

По времени мероприятия по повышению устойчивости производственных зданий осуществляются на этапах проектирования, нового строительства, реконструкции и эксплуатации. Одним из основных факторов, вызывающих разрушение зданий, является ударная волна. Предусматривается либо ее пропуск через здание, либо повышение прочностных свойств основных конструктивных элементов здания.

При проектировании перекрытий вводят прочные, но легкие материалы и конструктивные решения, позволяющие уменьшить массу перекрытий, что приводит к уменьшению ущерба при их обрушении. Каркасные конструкции, стеновые заполнения, перекрытия, перегородки проектируют из несгораемых или трудно сгораемых материалов, что значительно снижает риск возникновения пожаров и их масштабы. Уменьшается парусность зданий − за счет снижения их высоты и увеличения отношения суммарной площади оконных проемов к общей площади стен. При величине отношения более 50% ударная волна, затекающая в здание, практически не усиливается за счет отражения. Уменьшение парусности повышает устойчивость зданий не только к действию ударной волны, но и к действию ветра при ураганах. Устойчивость зданий к действию ударных и сейсмических волн при землетрясениях повышается при использовании антисейсмических принципов строительства (простая конфигурация в плане, членение на отсеки антисейсмическими швами, сооружении антисейсмических железобетонных поясов в уровнях междуэтажных перекрытий и другие принципы). Поскольку повышенная сложность антисейсмических конструкций увеличивает стоимость здания, антисейсмические принципы используются обычно лишь для зданий и сооружений основных производств. Некоторые типы зданий и сооружений проектируются полузаглубленными, что не только увеличивает их устойчивость, но и позволяет использовать подземные этажи для размещения уникального оборудования и ЗС для укрытия производственного персонала.

Решение задачи повышения устойчивости эксплуатируемых зданий: уменьшение расчетных пролетов существующей сети опорных колонн путем установки дополнительных опор; подведение дополнительных опор вне сетки проектных колонн; усиление опорных колонн металлическим бандажом с заливкой пустот бетоном; введение дополнительных элементов жесткости каркаса и усиление его наиболее слабых узлов дополнительными связями; усиление несущих плит перекрытия нижних этажей; подведение дополнительного ряда опор; усиление опорных колонн ферм перекрытия путем разгрузки части несущей стены; освобождение верхних этажей здания от второстепенного технологического оборудования.

Устойчивость технологического оборудования: обеспечение сохранности особо ценного и уникального станочного парка, без которого невозможно продолжение производства; рациональное размещение оборудования и усиление его наиболее слабых элементов; создание запаса этих элементов, особо ответственных узлов и деталей, материалов и инструментов, необходимых для ремонта; закрепление оборудования на фундаментах, защиты от обломков разрушающихся конструкций зданий.

Для защиты наиболее важного технологического оборудования, от устойчивости работы которого зависит выпуск продукции, применяют металлические сетки, выполненные из арматурной стали, и приспособления, защищающие наиболее ответственные и уязвимые узлы станков.

На практике, как правило, используются все имеющиеся возможности по защите как отдельных видов оборудования, так и их групп, участков, линий с учетом специфики ОЭ.

Наибольшую сложность представляют поточные линии сборочных цехов, имеющие большое количество подвесных конструкций и приспособлений с низкой устойчивостью к действию поражающих факторов.

Здесь оптимальны податливые крепежные элементы, воспринимающие энергию удара.

Действенным способом является постоянная модернизация технологического оборудования с целью повышения надежности его работы.

Надежность технологических процессов обеспечивается за счет устойчивости системы управления и бесперебойного обеспечения всеми видами сырья, материалов и энергии; исключения или ограничения использования горючих, взрывоопасных и АХОВ; возможности переноса производства в другие цехи; разработки эффективных способов безаварийной остановки технологических установок или перевода их на пониженный режим работы, обходных технологических процессов.

Основой для разработки обходных технологических процессов служат: возможные разрушения станочного и технологического оборудования с выходом из строя отдельных станков и целых линий; планируемая эвакуация части оборудования, вызывающая нарушение технологического цикла на основном производстве; нарушение поставок сырья; возможность использования другого вида инструмента, топлива и другие причины. Измененные технологии (не обязательно упрощенные) должны отвечать требованиям выпуска планируемой продукции хорошего качества и в установленные сроки. При разработке обходных технологий должна учитываться возможность получения тем или иным цехом слабых или средних разрушений и продолжения работы с оставшимся оборудованием, инструментом, сырьем, материалами и производственным персоналом. Каждый разработанный технологический процесс обеспечивается необходимой технологической документацией. Предусматривается возможность выпуска продукции, ее узлов и агрегатов упрощенной конструкции.

Обходные технологические процессы и все необходимые для их реализации мероприятия разрабатываются заранее.

Промышленные объекты являются крупнейшими потребителями электроэнергии со сложной и разветвленной системой их электроснабжения. Специфической особенностью энергосистем является большое разнообразие приемников электроэнергии − по мощности и режиму работы. Для уменьшения потерь электроэнергии и увеличения надежности электроснабжения система электроснабжения ОЭ строится таким образом, чтобы все ее элементы постоянно были под нагрузкой.

Схемы распределения электроэнергии внутри ОЭ предприятия строятся ступенчато: от главной понизительной подстанции на 110–220 кВ до распределительного пункта на 6–10 кВ; от распределительного пункта до цеховых подстанций. Внутризаводская распределительная сеть может быть радиальной (с расположением нагрузок в радиальном направлении от центра питания) и магистральной (с подачей электроэнергии от главной понизительной подстанции или теплоэлектроцентрали ОЭ непосредственно к цеховым трансформаторным подстанциям).

Система электроснабжения является определяющей системой ОЭ, точнее от ее работы в значительной мере зависит его устойчивость.

Устойчивость системы электроснабжения достигается совместным выполнением общегородских (региональных) и объектовых инженерно-технических мероприятий. Главные из них следующие:

ОЭ обеспечивается электроэнергией не менее чем от двух линий распределительной сети города (региона) таким образом, чтобы при выходе из строя одной линии электроэнергия поступала бы от другой. Внутри отдельные участки распределительной сети связаны через автоматическую систему, позволяющую выключать их при аварии; кабели электроснабжения прокладываются под землей в траншеях или в общих коллекторах; трассы выбираются наиболее короткими и прямыми под непроезжей частью территории ОЭ или под тротуарами. Наиболее уязвимые элементы системы (наземные сооружения понизительные и трансформаторные станции, подстанции, распределительные пункты) усиливаются до принятого предела устойчивости к механическим воздействиям, обеспечивается их противопожарная устойчивость; защищаются внутрицеховые осветительные и силовые щиты; дублируются воздушные линии внутризаводской распределительной сети, если их невозможно проложить под землей; с учетом технологии производства разрабатывается схема специальных режимов работы системы электроснабжения, позволяющая поэтапно подключать источники питания к цехам и участкам; готовится система аварийного электроснабжения главных производств, с использованием передвижных электростанций и отбором мощности с имеющихся, но не используемых по прямому назначению электросиловых установок, например кранов большой грузоподъемности, энергоустановок морских и речных судов.

Для отопления и различных технологических целей ОЭ широко используются горячая вода и пар. Их источниками являются городские или районные ТЭЦ и котельные, а на очень крупных ОЭ – объектовые ТЭЦ. Подаются горячая вода и пар под давлением 700–2500 кПа с помощью тепловых сетей, которые включают в себя систему подающих и обратных теплопроводов горячего теплоснабжения и сеть паропроводов.

Трубы тепловых сетей обычно прокладываются на надземных эстакадах, а в некоторых случаях – на кронштейнах, закрепленных на стенах зданий и сооружений. Такая прокладка более экономична и проста в эксплуатации, но обладает низкой устойчивостью к действию поражающих факторов.

Устойчивость тепловых сетей достигается за счет обеспечения: равнопрочности ее наземных сооружений и остальных элементов инженерно-технического комплекса ОЭ; защиты распределительных устройств, контрольно-измерительной аппаратуры и приборов автоматики; кольцевания сетей с установкой автоматических отключающих устройств; прокладки трубопроводов в грунте или в подземных коллекторах. При невозможности переноса тепловых сетей с эстакад в подземные коллекторы принимаются меры по повышению устойчивости эстакад и усилению крепления к ним трубопроводов. При прокладке трубопроводов на низких эстакадах их устойчивость повышается обсыпкой грунтом.

Устойчивость системы водоснабжения ОЭ определяется возможностью подачи необходимого количества воды в условиях ЧС.

ОЭ, расположенные в городе, получают воду из городского водопровода. В сеть внутризаводского водопровода она может подаваться от городских магистралей или через местные повысительные насосные станции.

В целях повышения устойчивости вода подается от городских линий не менее чем по двум вводам. Сеть закольцовывается для обеспечения возможности маневра путем обхода поврежденных участков. Для нужд производства и пожаротушения предусматриваются резервные источники водоснабжения − естественные и искусственные водоемы, оборудованные для забора воды; артезианские скважины.

При создании резервных источников водоснабжения обеспечивается их защита от заражения радиоактивными, АХОВ и бактериальными средствами. Наиболее просто эта задача решается при использовании подземных резервуаров и артезианских скважин, оголовки которых герметизируются. Наземные сооружения системы водоснабжения (насосные станции, пункты управления, устройства энергопитания) защищаются от действия механических поражающих факторов. С этой же целью заглубляются в грунт все коммуникации. Переключающие устройства и пожарные гидранты устанавливаются на незаваливаемой территории. Устраиваются перемычки, переключающие устройства и обводные линии (байпасы), значительно повышающие живучесть системы объектового водоснабжения. Осуществляются мероприятия по бесперебойному электроснабжению насосных станций. При отказе основных источников питания предусматривается использование резервных источников.

При новом строительстве и реконструкции целесообразно устройство системы оборотного водоснабжения, более устойчивой к действию поражающих факторов.

Для повышения устойчивости системы канализации устраиваются раздельные сети − ливневой и промышленно-хозяйственной (фекальной). Эти сети имеют не менее двух выпусков в городские и канализационные коллекторы. Предусматриваются аварийные сбросы и перепуски на случай аварий или разрушения городских насосных станций. Обеспечивается защита наземных станций перекачки и их надежное электроснабжение. На объектовых канализационных коллекторах устанавливаются аварийные задвижки в колодцах, располагаемых с интервалом 50 м на незаваливаемой территории.

Снабжение ОЭ газом осуществляется от городской системы. Мероприятия, обеспечивающие устойчивость системы газоснабжения. Питание ОЭ газом должно осуществляться от закольцованной распределительной сети высокого (300–600 кПа) и среднего (5–300 кПа) давления через не менее чем два ввода от разных магистралей. Вводы соединяются на территории ОЭ, образуя закольцованную внутриобъектовую сеть. Все газовые вводы на территорию объекта и в здания цехов оборудуются автоматическими отключающими устройствами. Сеть газопроводов на территории ОЭ должна быть подземной с прокладкой на глубине не менее 2–2,5 м, а наземные сооружения (газорегулирующие пункты, газораспределительные установки) надежно защищены. На сети должны быть предусмотрены байпасы с отключающими устройствами, а сама сеть приспособлена для работы при сниженном давлении в целях уменьшения вероятности возникновения пожаров. Резервные емкости для хранения газа должны располагаться под землей и выдерживать высокое давление газа. Кроме них в качестве автономных источников могут использоваться подземные хранилища или автоцистерны со сжиженным газом.

Существенную роль в повышении устойчивости систем энергоснабжения играет подготовка к использованию при необходимости резервных источников топлива. Объемы резервных запасов топлива должны быть рассчитаны на период времени, необходимый для восстановления пострадавших при ЧС систем энергоснабжения, а технические средства, сооружения, транспортные средства, производственный персонал подготовлены для работы с ними. Подготовка включает организацию хранения, доставки, выделение и обучение производственного персонала, приспособление энергосистем для работы на резервных видах топлива и т.п.

В целом устойчивость работы систем энергоснабжения достигается осуществлением мероприятий регионального и объектового характера. Прорабатываются вопросы возможности использования дублирующих и создания резервных источников энергии. Дублируются, закольцовываются и защищаются сети; защищаются особо ответственные элементы и устройства энергетических систем; повышается их прочность; разрабатываются и используются источники энергии, способные работать на различных видах энергоносителей; создается запас материалов и деталей, необходимых для ремонта; запас энергоносителей. Принимаются меры по предупреждению возникновения вторичных поражающих факторов. Внедряются на энергосетях системы автоматического управления, отключающие поврежденные участки без вмешательства производственного персонала.

Повышение пожароустойчивости ОЭ обеспечивается блокированием факторов, способствующих возникновению и развитию пожаров, а также осуществлением мероприятий, связанных с их своевременным обнаружением, локализацией и тушением.

Прежде всего это строгое выполнение правил и норм пожарной безопасности при проектировании, строительстве, реконструкции и эксплуатации. Для уменьшения вероятности возникновения пожаров необходимо проводить работу по очистке территории, чердачных и подвальных помещений, лестничных клеток и других помещений от всех горючих и особенно легковоспламеняющихся веществ и материалов. Все малоценные деревянные строения, заборы, навесы должны быть снесены. Количество пожаровзрывоопасных веществ в цехах не должно превышать требующегося для осуществления операций, предусмотренных технологическим процессом. Если по технологии возможно, горючие вещества и материалы заменяются негорючими. Емкости с горючими веществами усиливаются, заглубляются или обваловываются, устраиваются стоки и ловушки. На опасных в пожарном отношении технологических аппаратах и линиях устанавливаются устройства подавления взрывов и возгораний, водяных завес, автоматически срабатывающие задвижки, гидрозатворы. Осуществляется подготовка к безаварийной остановке плавильных, нагревательных, закалочных печей и им подобного технологического оборудования.

Ограничение распространения возникших пожаров достигается возведением дополнительных противопожарных стен (брандмауэров), перегородок, дверей, разрывов, полос.

Для эффективной борьбы с пожарами производственные здания и сооружения оснащаются противопожарным инвентарем, ручными средствами пожаротушения, автоматическими системами пожарной сигнализации и тушения, противопожарной техникой. Исправность средств борьбы с пожаром должна периодически, в соответствии с установленными сроками, контролироваться и поддерживаться. Создаются запасы огнетушащих веществ, необходимые для тушения специфических видов пожаров. На территории ОЭ, при отсутствии естественных, строятся искусственные противопожарные водоемы с необходимым запасом воды, дорогами и подъездами к ним, площадками для постановки пожарных машин, мотопомп и другой противопожарной техники. Могут устраиваться артезианские скважины, оборудованные для забора воды пожарными машинами, устанавливаться резервуары с запасом воды для тушения пожаров. Система водоснабжения оборудуется гидрантами. Для беспрепятственного доступа пожарных и техники к местам возникших пожаров проходы в цехах должны быть освобождены от лишнего имущества и материалов, а магистральные проезды и подходы к цехам расчищены.

9.1. Понятие устойчивости объекта экономики в чрезвычайной ситуации

Россия, являющаяся страной с обширной территорией, вмещающей несколько географических поясов и природных зон, обладает чрезвычайно большим разнообразием геологических, климатических и ландшафтных условий. Вследствие этого территория подвержена полному набору всевозможных неблагоприятных и опасных природных явлений и процессов. За год в России происходит 350 – 400 опасных природных явлений.

Вместе с тем развитие техносферы, имевшее в ХХ веке исключительно высокие темпы, привело к увеличению риска возникновения на ее объектах различного рода аварий и техногенных катастроф, имеющих тяжелые последствия. Наибольшую опасность в настоящее время в техногенной сфере России представляют транспортные аварии, взрывы и пожары, радиационные аварии, аварии с выбросом химически и биологически опасных веществ, гидродинамические аварии, аварии на коммунально-энергетических системах.

Возможность возникновения аварий усугубляется высокой степенью износа производственных фондов, невыполнением ремонтных и профилактических работ, падением производственной и технологической дисциплины. В этих условиях должна проводиться серьезная работа по повышению устойчивости действующих экономических объектов в ЧС.

Под устойчивостью функционирования объекта экономики понимают способность его в ЧС выпускать продукцию в запланированном объеме и номенклатуре (для непроизводственных объектов – выполнять свои функции в соответствии с предназначением), а в случае аварии (повреждения) восстанавливать производство в минимально короткие сроки.

Так как современный объект экономики (ОЭ) представляет собой сложный инженерно-экономический комплекс, то его устойчивость будет напрямую зависеть от устойчивости составляющих элементов. К основным из них относятся: здания и сооружения производственных цехов; производственный персонал и защитные сооружения для укрытия рабочих и служащих; элементы системы обеспечения (сырье, топливо, комплектующие изделия, электроэнергия, газ, тепло и т.п.); элементы системы управления производством.

Вышедшими из строя считаются промышленные здания, имеющие сильные разрушения; жилые здания – средние разрушения; рабочие и служащие – поражения средней тяжести.

Степень и характер поражения объектов зависят от параметров поражающих факторов источника чрезвычайной ситуации, расстояния от объекта до эпицентра формирования поражающих факторов, технической характеристики зданий, сооружений и оборудования, планировки объекта, метеорологических условий. В ходе проведения оценки устойчивости объектов экономики необходимо подготовить следующие данные:


Анализ вероятных явлений, по причине которых на объекте экономики может возникнуть ЧС (стихийное бедствие, авария техногенного характера, применение противником современных средств поражения) с определением наиболее вероятной;

Вероятные параметры поражающих факторов источников чрезвычайных ситуации, которые будут влиять на устойчивость объектов экономики (интенсивность землетрясения, избыточное давление во фронте воздушной ударной волны, плотность теплого потока, высота волны прорыва, максимальная скорость волны прорыва, площадь и длительность затопления, давление гидравлического потока, доза радиоактивного облучения, предельно допустимая концентрация опасных химических веществ);

Параметры вторичных поражающих факторов, возникающих при воздействии основных источников чрезвычайных ситуаций;

Зоны воздействия поражающих факторов;

Принципиальная схема функционирования производственного объекта с обозначением элементов, влияющих на функционирование предприятия;

Значение критического параметра (максимальная величина параметра поражающего фактора, при которой функционирование объекта не нарушается);

Значение критического радиуса (минимальное расстояние от центра формирования источника поражающих факторов, на котором функционирование объекта не нарушается).

Кроме того, должны быть собраны данные по характеристике непосредственно самого объекта (количество зданий и сооружений, плотность застройки, наибольшая работающая смена, обеспеченность защитными сооружениями, конструкции зданий и сооружений, характеристика оборудования, коммунально-энергетических сетей, местности).

Решая вопросы защиты и повышения устойчивости объекта экономики следует соблюдать принцип равной устойчивости по всем поражающим факторам. Принцип равной устойчивости заключается в необходимости доведения защиты зданий, сооружений и оборудования объекта до такого целесообразного уровня, при котором выход из строя от поражающих факторов может возникнуть, как правило, на одинаковом расстоянии.

Повышение устойчивости объектов экономики достигается путем заблаговременного проведения мероприятий, направленных на снижение возможных потерь и разрушений от поражающих факторов источников ЧС, создание условий для ликвидации чрезвычайных ситуаций и осуществления в сжатые сроки работ по восстановлению объектов экономики. Мероприятия в этой области осуществляются заблаговременно в мирное время (период повседневной деятельности), в угрожающий период, а также в условиях военного времени (чрезвычайной ситуации).

Основными направлениями повышения устойчивости объектов экономики являются:обеспечение защиты рабочего персонала; рациональное размещение и защита производительных сил; подготовка объектов экономики к работе в условиях ЧС; подготовка к выполнению работ по восстановлению объекта экономики в условиях ЧС; подготовка системы управления объекта экономики в условиях ЧС.

Таким образом, в условиях возникновения чрезвычайных ситуаций объекты экономики могут оказаться в зоне действия поражающих факторов источников чрезвычайных ситуаций. В этом случае объем и характер потерь и разрушений на них будут зависеть не только от характера воздействия поражающих факторов, но и от своевременности и масштаба заблаговременно осуществленных мер по подготовке объекта экономики к функционированию в условиях чрезвычайных ситуаций.

9.2. Мероприятия, направленные на повышение устойчивости функционирования объектов экономики

Разработка и осуществление мероприятий по повышению устойчивости функционирования объектов экономики в чрезвычайных ситуациях, как правило, проводится заблаговременно, за исключением мероприятий, исполнение которых предусмотрено в режиме ЧС. Они планируются в режиме повседневной деятельности, а выполняются в условиях угрозы и после введения режима ЧС (нападения противника).

При выработке мероприятий по повышению устойчивости необходимо всесторонне оценивать их техническую и экономическую целесообразность. Мероприятия будут считаться экономически обоснованными в том случае, если они максимально увязаны с задачами, решаемыми в безопасный период для обеспечения безаварийной работы объекта, улучшения условий труда, совершенствования производственного процесса.

Повышение устойчивости работы объектов экономики в ЧС достигается заблаговременным проведением комплекса организационных, инженерно-технических и технологических мероприятий, направленных на максимальное снижение воздействия поражающих факторов при ЧС мирного и военного времени.

Организационные мероприятия предусматривают планирование действий руководящего, командного состава, органов управления РСЧС и ГО, служб и формирований по защите рабочих и служащих предприятий, проведению аварийно-спасательных и других неотложных работ, восстановлению производства, а также по выпуску продукции на сохранившемся оборудовании.

Инженерно-технические мероприятия осуществляются преимущественно заблаговременно и обычно включают комплекс работ, обеспечивающих повышение устойчивости производственных зданий и сооружений, оборудования, коммунально-энергетических систем к воздействию поражающих факторов источников ЧС.

Технологические мероприятия обеспечивают повышение устойчивости работы объекта путем изменения технологического процесса, способствующего упрощению производства продукции и исключающего возможность образования вторичных поражающих факторов.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Опасность техносферы для населения и окружающей среды обусловливается наличием в промышленности, энергетике и коммунальном хозяйстве большого количества радиационно-, химически-, биологически-, пожаро- и взрывоопасных производств и технологий. Таких производств в России насчитывается около 45 тыс. Возможность возникновения здесь аварий усугубляется высокой степенью износа основных производственных фондов, невыполнением соответствующих ремонтных и профилактических работ, падением производственной и технологической дисциплины. В этих условиях должна проводиться серьезная работа по повышению надежности действующих экономических объектов при ЧС мирного времени и в условиях военного времени.

Под устойчивостью объекта экономики в ЧС принято понимать его способность производить продукцию установленного объема и номенклатуры в условиях ЧС мирного и военного времени. Для объектов, непосредственно не производящих продукцию (материальных ценностей), это понятие обусловлено выполнением своих функциональных задач в аналогичных условиях.

Так как современный объект экономики представляет собой сложный инженерно-экономический комплекс, то его устойчивость будет напрямую зависеть от устойчивости составляющих элементов.

1. Параметры поражающих факторов источника чрезвычайной ситуации

Степень и характер поражения объектов зависит от параметров поражающих факторов источника чрезвычайной ситуации, расстояния от объекта до эпицентра формирования поражающих факторов, технической характеристики зданий, сооружений и оборудования, планировки объекта, метеорологических условий. В ходе проведения оценки устойчивости объектов экономики необходимо подготовить следующие данные:

Анализ вероятных явлений, по причине которых на объекте экономики может возникнуть ЧС (стихийное бедствие, авария техногенного характера, применение противником современных средств поражения) с выводом наиболее вероятной;

Вероятные параметры поражающих факторов источников чрезвычайных ситуаций, которые будут влиять на устойчивость объектов экономики (интенсивность землетрясения, избыточное давление во фронте воздушной ударной волны, плотность теплового потока, высота волны, максимальная скорость волны, площадь и длительность затопления, давление гидравлического потока, доза облучения, предельно допустимая концентрация);

Параметры вторичных поражающих факторов, возникающих при воздействии основных источников чрезвычайных ситуаций;

Зоны воздействия поражающих факторов;

Принципиальную схему функционирования производственного объекта с обозначением элементов, влияющих на функционирование предприятия;

Значение критического параметра (максимальная величина параметра поражающего фактора, при которой функционирование объекта не нарушается);

Значение критического радиуса (минимальное расстояние от центра формирования источника поражающих факторов, на котором функционирование объекта не нарушается).

2. Мер оприятия по обеспечению устойчивости работы отраслей и всего народного хозяйства в условиях чрезвычайных ситуаций

Устойчивость работы отраслей и всего народного хозяйства страны в условиях чрезвычайных ситуаций достигается:

Накоплением комплектов защитных сооружений для рабочих и служащих объектов экономики в категорированных городах и загородных зонах, созданием в мирное время условий для пребывания и работы людей в районах рассредоточения и эвакуации, обеспечением всех людей средствами индивидуальной защиты;

Повышением устойчивости работы объектов экономики;

Рациональным и рассредоточенным размещением объектов полиграфии (экономики) по территории страны;

Дублированием объектов экономики наиболее важной продукции;

Разработкой мероприятий, позволяющих возместить нарушенные между предприятиями связи по кооперации в ЧС (упрощение технологии производства, использование местных ресурсов и т.п.);

Созданием и рассредоточенным размещением запасов материальных средств (сырья, продовольствия, энергомощностей), необходимых для восполнения возможных потерь;

Развитием всех видов транспорта с обеспечением их устойчивой работы в ЧС (в том числе нефте- и газопроводов);

Устройчивым управлением народным хозяйством;

Развитием энергетики страны, нефте- и газодобывающей промышленности;

Ограничением роста крупных городов путем запрещения строительства в них новых промышленных предприятий (согласно Норм проектирования инженерно-технических мероприятий (ИТМ) ГО);

Подготовленностью объекта экономики и населенного пункта к ведению АС и ДНР;

Подготовкой к быстрому восстановлению нарушенного производства при ЧС за счет создания запасов строительных материалов (в том числе готовых конструкций) и подготовки сил.

чрезвычайный ситуация экономика объект

3. Факторы, определяющие устойчивость работы объектов экономики в чрезвычайных ситуациях

Устойчивость работы объектов экономики в ЧС определяется следующими основными факторами:

Надежной защитой рабочих и служащих объекта экономики от поражающих факторов ЧС;

Устойчивостью зданий и сооружений, обрудования, систем и приборов, имеющихся на объекте (физическая устойчивость ОЭ), т. е. способностью элементов ОЭ противостоять определенным численным значениям поражающих факторов;

Устойчивостью системы управления производством;

Устойчивостью материально-технического снабжения и производственных связей;

Подготовленностью объекта к восстановлению нарушенного производства.

Улучшая показатели всех указанных факторов, можно рассчитывать на большую надежность функционирования ОЭ в ЧС и на выпуск запланированной продукции.

Выводы

Защита рабочих и служащих объекта экономики и членов их семей от поражающих факторов ЧС достигается сочетанием всех способов защиты (укрытием в защитных сооружениях ГО, рассредоточением и эвакуацией и использованием средств индивидуальной защиты) с учетом конкретной обстановки. Важным условием защиты людей является обучение их правилам действий по сигналам оповещения ГО, применению способов и средств защиты, оказанию самопомощи и взаимопомощи.

Физическая устойчивость зданий, сооружений, оборудования и систем объекта должна находиться на возможно высоком уровне и отвечать условиям равнопрочности, равнозащищенности элементов объекта экономики к воздействию поражающих факторов ЧС.

Устойчивость системы управления производством ОЭ обеспечивается созданием на объекте устойчивой системы связи, высокой подготовкой руководящего состава к выполнению функциональных обязанностей, в том числе по ГО. Устойчивость материально-технического снабжения и производственных связей определяется: степенью защиты коммунально-энергетических сетей, транспортных коммуникаций и источников снабжения, возможностью использования продукции поставщиков, расположенных в пределах данного экономического или административного района; созданием необходимых запасов топлива, сырья, полуфабрикатов, комплектующих изделий и т.п.

Подготовка к проведению АС и ДНР предполагает подготовку сил (НФГО), создание необходимого запаса материалов и оборудования.

Устойчивость работы как вновь строящихся объектов, так и всех действующих в значительной степени определяется их соответствием определенным требованиям.

Особое значение в настоящее время приобретают требования к устойчивости функционирования промышленных производств в условиях чрезвычайных ситуаций мирного времени.

Эти требования заложены в Нормах проектирования ИТМ ГО, а также в разработанных на их основе ведомственных нормативных документах, дополняющих и развивающих требования действующих норм применительно к отрасли.

Список использованной литературы

1. Федеральный закон № 28 от 12.02.1998 г. «О гражданской обороне».

2. Федеральный закон № 68-ФЗ от 21.12.1994г. «О защите населения и территорий от чрезвычайных ситуаций природного и техногенного характера».

3. Организация и ведение гражданской обороны и защиты населения и территорий от чрезвычайных ситуаций природного и техногенного характера / Учебное пособие; Под общ. ред. Г.Н. Кириллова. - М.: Институт риска и безопасности, 2005. - 512 с.

4. Типовое положение основных структур РСЧС и ГО объектового звена. Функциональные обязанности по ГО и ЧС работников объекта.

Размещено на Allbest.ru

...

Подобные документы

    Задачи гражданской обороны объекта народного хозяйства (на примере сельскохозяйственного производства). Защита населения в чрезвычайных ситуациях: противорадиационные укрытия и требования к ним. Оценка устойчивости работы объекта в чрезвычайных ситуациях.

    курсовая работа , добавлен 24.12.2010

    Разработка предложений по размещению организаций гражданской обороны технической службы города на маршруте эвакуации населения. Анализ функционирования автотранспортного предприятия и мероприятия по повышению его устойчивости в чрезвычайных ситуациях.

    курсовая работа , добавлен 22.12.2011

    Оценка устойчивости работы объектов строительства и строительной индустрии в чрезвычайных ситуациях: к воздействию воздушной ударной волны; к воздействию светового излучения; устойчивость объекта к радиоактивному заражению. Расчет убежища и вентиляции.

    контрольная работа , добавлен 05.03.2010

    Сущность и классификация чрезвычайных ситуаций, их разновидности и предпосылки возникновения. Принципы защиты населения от чрезвычайных ситуаций природного и техногенного характера, оказание помощи правила поведения. Порядок и средства оповещения людей.

    реферат , добавлен 23.01.2015

    Общие сведения о чрезвычайных ситуациях; локальные, местные, территориальные, региональные, федеральные и трансграничные чрезвычайные ситуации. Подготовка объекта, обслуживающего персонала, служб гражданской обороны и населения к действиям в условиях ЧС.

    контрольная работа , добавлен 19.05.2010

    Организация неотложной медицинской помощи населению при чрезвычайных ситуациях. Медицинская служба гражданской обороны. Санитарно-гигиенические и противоэпидемические мероприятия в комплексе медицинской защиты населения при чрезвычайных ситуациях.

    реферат , добавлен 08.09.2009

    Оценка поражающих факторов ядерного взрыва и химической обстановки при аварии на химически опасном объекте. Определение основных параметров. Прогнозирование степени опасности в очаге поражения взрывов твердых взрывчатых веществ и газопаровоздушных смесей.

    курсовая работа , добавлен 10.06.2011

    Причины возникновения чрезвычайных ситуаций техногенного характера, их классификация и типы, статистика. Мероприятия по предупреждению возникновения чрезвычайных ситуаций техногенного характера: организационные, инженерно-технические, технологические.

    курсовая работа , добавлен 23.08.2012

    Чрезвычайные ситуации (ЧС) техногенного характера, мероприятия по предупреждению возникновения и развития. Силы и средства Единой государственной системы предупреждения и ликвидации чрезвычайных ситуаций (РСЧС). Мероприятия по защите населения от ЧС.

    курсовая работа , добавлен 28.07.2013

    Определение возможных поражающих факторов ядерных взрывов и их максимальных значений на территории судоремонтного завода (СРЗ). Оценка инженерной защиты производственного персонала (СРЗ). Режим ядерной защиты и производственной деятельности цеха.

Современный промышленный объект представляет собой инженерно-технический комплекс, включающий совокупность отдельных элементов:

Зданий и сооружений, в которых размещены цехи и технологическое оборудование;

Сооружений энергетического хозяйства;

Сооружений водоснабжения и канализации, технических и транспортных коммуникаций;

Сооружений складского хозяйства;

Зданий, сооружений административного, хозяйственного и бытового назначения.

Различают понятия «устойчивость объекта» и «устойчивость функционирования объекта».

Устойчивость объекта - это способность всего инженерно-технического комплекса противостоять разрушающему действию поражающих факторов в условиях ЧС (это физическая и механическая устойчивость всего комплекса и его отдельных элементов).

Устойчивость функционирования объекта - это его способность в условиях ЧС мирного и военного времени выпускать продукцию в запланированных объеме и номенклатуре, а также готовность объекта к восстановлению в случае повреждения. Устойчивость функционирования объектов непроизводственной сферы - это способность этих объектов выполнять свои функции в условиях ЧС в соответствии с предназначением.

Сходство и однотипность основных элементов объектов экономики (здания цехов, сооружения энергохозяйства, водоснабжения, сети внутреннего транспорта, системы связи и управления, складское хозяйство и т.д.) позволяют выделить факторы, определяющие устойчивость функционирования объектов:

Наличие надежной системы защиты рабочих и служащих от поражающих факторов в ЧС;

Способность инженерно-технического комплекса объекта в определенной степени противостоять поражающим факторам в ЧС;

Защищенность объектов от поражения вторичными факторами (пожары, взрывы, загазованность продуктами горения и ОХВ, затопление территории и т.д.), которые могут возникнуть на данном или близлежащем объекте;

Надежность системы обеспечения всем необходимым для производства продукции (сырьем, топливом, комплектующими изделиями, электроэнергией, водой, газом, теплом);

Надежность системы управления;

Возможность восстановления производства в случае его нарушения;

Наличие подготовленных формирований ГО.

Реализация этих факторов обеспечит надежное функционирование объектов экономики.

Оценка устойчивости функционирования объекта экономики в условиях ЧС может быть выполнена путем моделирования уязвимости объекта при воздействии поражающих факторов на основе использования расчетных данных (метод прогнозирования). При этом учитывают несколько положений.

а) Наиболее вероятными источниками, вызывающими ЧС, являются стихийные бедствия (землетрясения, наводнения, ураганы), аварии техногенного характера и применение противником современных средств поражения.

б) Основными поражающими факторами источников ЧС являются интенсивность землетрясения, высота подъема и скорость воды при наводнениях, скоростной напор ветра при ураганах (штормах), ударная волна, световое излучение, проникающая радиация, радиоактивное заражение и электромагнитный импульс при ядерных взрывах, избыточное давление при взрывах обычных боеприпасов.

в) При воздействии перечисленных поражающих факторов могут возникать вторичные поражающие факторы: пожары, взрывы, заражения местности и атмосферы ОБ и ОХВ, катастрофические затопления. Их следует учитывать при оценке устойчивости объекта экономики.

г) Площадь зон воздействия поражающих факторов в десятки и сотни раз превышает площадь объектов. Это позволяет при проведении оценочных расчетов допускать, что все элементы объекта подвергаются почти одновременному воздействию поражающих факторов, а параметры поражающих факторов считать одинаковыми на всей территории объекта.

д) Для оценки устойчивости объекта к воздействию поражающих факторов можно задавать разные значения их параметров и по отношению к ним анализировать обстановку на объекте. Однако когда требуется представить возможную обстановку в экстремальных условиях или определить целесообразность предела повышения физической устойчивости объекта, можно использовать вероятные максимальные значения параметров поражающих факторов, ожидаемых на объекте. Экстремальные условия на объекте возникнут при применении ядерного оружия, поэтому оценку устойчивости целесообразно начать с оценки устойчивости к поражающим факторам ядерного взрыва.

е) На каждом объекте имеются главные, второстепенные и вспомогательные элементы. Например, на металлургическом предприятии главными элементами являются плавильные и прокатные цеха, в целлюлозно-бумажном цехе - агрегаты для варки целлюлозы и бумагоделательные машины, на объектах химической промышленности - реакционные, ректификационные колонны, прессы и т.д. Однако в обеспечении функционирования объектов немаловажную роль могут играть вспомогательные элементы. Например, ни один объект не может обходиться без некоторых элементов системы снабжения. Поэтому анализ уязвимости объекта предполагает обязательную оценку роли и значения каждого элемента, от которого в той или иной мере зависит функционирование предприятия в условиях ЧС.

ж) Решая вопросы защиты и повышения устойчивости объекта, необходимо соблюдать принцип равной устойчивости ко всем поражающим факторам.

Принцип равной устойчивости заключается в необходимости доведения защиты зданий, сооружений и оборудования объекта до такого целесообразного уровня, при котором выход из строя от поражающих факторов может возникнуть, как правило, на одинаковом расстоянии (например, от центра ядерного взрыва). При этом защита от одного поражающего фактора является определяющей, а к ней приравнивается защита и от других поражающих факторов. Такой определяющей защитой, как правило, принимается защита от ударной волны. Нецелесообразно, например, повышать устойчивость здания к воздействию светового излучения, если оно находится на таком расстоянии от центра (эпицентра) взрыва, где под действием ударной волны происходит его полное или сильное разрушение.

з) Для оценки физической устойчивости элементов объекта необходимо иметь показатель (критерий) устойчивости. В качестве таких показателей используются критический параметр (Пкр) и критический радиус (Rкр).

Критический параметр - это максимальная величина параметра поражающего фактора, при которой функционирование объекта не нарушается. Это может быть максимальное значение ударной волны, светового излучения ядерного взрыва, максимальное значение интенсивности землетрясения, максимальное значение волны прорыва при катастрофическом затоплении и т.д.

Критический параметр позволяет оценить устойчивость объекта при воздействии любого поражающего фактора без учета одновременного воздействия на объект других поражающих факторов.

Критический радиус - это минимальное расстояние от центра (источника) поражающих факторов, на котором функционирование объекта не нарушается. Это может быть расстояние до центра ядерного взрыва, эпицентра землетрясения, разрушенной плотины.

Критический радиус позволяет оценить устойчивость объекта при одновременном воздействии нескольких поражающих факторов и выбрать наиболее опасный из них.

и) Исходными данными для оценки устойчивости функционирования промышленного объекта являются:

Характеристика объекта и его защитных сооружений (количество зданий и сооружений, плотность застроек, наибольшая работающая смена, ее обеспеченность защитными сооружениями и СИЗ);

Конструкции зданий и сооружений, их прочность и степень огнестойкости;

Характеристика оборудования, наличие и характеристика ценного уникального оборудования, установок, автоматизированных систем и аппаратуры управления;

Возможность прекращения работы отдельных цехов и перехода на технологию военного времени, время, необходимое для частичной или полной безаварийной остановки производства по сигналу «Воздушная тревога»;

Характеристика коммунально-энергетических сетей;

Характеристика местности (наличие рек, водоемов, лесов и др.) и соседних объектов.

При рассмотрении устойчивости функционирования объектов экономики следует также учесть возможность совершения террористических (диверсионных) актов. С этой целью проводится анализ уязвимости объекта. При анализе выделяются критические элементы, воздействуя на которые, потенциальный нарушитель или террорист может вывести объект из строя. Анализ уязвимости направлен в первую очередь на изучение технической специфики аварийности, вызванной теми или иными видами умышленных разрушительных воздействий на важнейшие элементы защищаемого объекта, и на исследование эффективности реагирования технологических систем контроля и блокировок на такие воздействия. Его целесообразно проводить в три этапа:

Выделение критических (жизненно важных) элементов объекта;

Оценка устойчивости критических элементов объекта к наиболее вероятным видам разрушительных воздействий (механическим воздействиям, взрыву, поджогу и др.);

Отбор критических элементов, отличающихся повышенной уязвимостью в условиях умышленных разрушительных воздействий.

Результаты анализа уязвимости используются при планировании и реализации мер физической защиты и охраны объектов.

Эффективным механизмом осуществления предупредительных мер по снижению рисков ЧС и повышению безопасности производства служит паспортизация. Разрабатываются паспорта безопасности территорий субъектов РФ, муниципальных образований и опасных объектов. В паспорте приводятся показатели степени риска для наиболее опасного и вероятного сценария развития ЧС. Особо выделяются вопросы охраны опасных объектов, несанкционированного проникновения на них посторонних лиц, а также внедрения технических средств предотвращения террористических актов.

Рассматривается осуществление предупредительных мер, направленных на снижению рисков и повышение безопасности производства, а также проведение мероприятий по ограничению масштабов возможных последствий аварий и других неблагоприятных событий. Предусматривается создание необходимых резервов материальных и финансовых ресурсов для ликвидации ЧС.

Важное место в системе защиты от ЧС занимает страхование, которое было и остается наиболее доступным методом управления риском во всем мире. В ст. 15 Федерального закона от 21 июля 1997 г. № 116-ФЗ с изменениями и дополнениями от 22 августа 2004 г. № 122-ФЗ «О промышленной безопасности опасных производственных объектов» предусмотрено обязательное страхование ответственности за причинение вреда при эксплуатации опасного производственного объекта. Страхование способствует решению вопросов модернизации производства, соблюдению требований безопасности при разработке проектной документации и строительства объекта, использованию безопасных материалов и технологий при эксплуатации, эффективных систем контроля за технологическими процессами, соблюдению правил эксплуатации, обучения и переподготовке персонала, созданию систем оповещения о ЧС, внедрению технических средств, ограничивающих действия поражающих факторов (системы пожаротушения, аварийной вентиляции и др.), организации оперативного медицинского обеспечения, подготовки средств и мероприятий по защите людей.



Просмотров