Устройство для определения электрических и магнитных свойств эритроцитов. Структурный анализ движущейся крови Чижевский электрические магнитные свойства эритроцитов

Данный урок рекомендуется проводить в специализированных (биолого-химических или медицинских) классах после прохождения тем «Кровь» и «Кровообращение» по биологии и «Движение жидкостей и газов» и «Уравнение Бернулли» по физике.

Цели урока: познакомить учащихся со структурным анализом движущейся крови, дать представление о тромбогемморагическом синдроме.

Оборудование и материалы: плакаты «Схема динамики кровотока и кинематики эритроцитов», «Схема поступательного и вращательного движения радиально-кольцевых систем эритроцитов в кровотоке», «Схема движения эритроцитов («монетных столбиков») в артериальном сосуде»; одна из модификаций электроэффлювиальной люстры А.Л. Чижевского. (Возможна замена плакатов на пленки и кодоскоп, а вместо электроэффлювиальной люстры можно продемонстрировать ее фотографию.)

ХОД УРОКА

Учитель биологии. Сегодня мы с вами познакомимся со структурным анализом движущейся крови. Но сначала вспомним, что нам известно о системе кровообращения. Для этого вам надо ответить на следующие вопросы.

1. Какие форменные элементы крови вы знаете?

2. Какими свойствами обладают эритроциты человека?

3. Какова взаимосвязь крови, лимфы и тканевой жидкости?

4. Что вы знаете о значении кровообращения?

5. Каковы строение и функции органов системы кровообращения?

6. Как происходит движение крови по сосудам?

Давно было известно, что эритроциты в образцах крови склонны слипаться и образовывать структуры, напоминающие столбики монет. Такие «монетные столбики» образуют одинаковые по размерам эритроциты. Считалось, что эритроциты образуют «монетные столбики» только вне кровеносных сосудов (например, на предметном стекле, в капле крови, в растворе) под влиянием встряхивания, изменения температуры, при длительном хранении и т.п.

Эритроциты отдают тканям кислород, а из тканей в кровь поступает углекислота

Однако в 1951 г. выдающийся российский ученый Александр Леонидович Чижевский экспериментально доказал, что «монетные столбики» эритроцитов образуются и в движущейся по сосудам крови здоровых людей и животных (рис. 1). Проведенные им математические расчеты подтвердили, что такие структуры образуются вполне закономерно. Это свойство эритроцитов называется «феноменом Чижевского».

Рис. 1. Схема динамики кровотока и кинематики эритроцитов

Оказалось, что ориентация «монетных столбиков» и скорость их движения зависят от строения и свойств сосудов, а также от состояния организма. «Монетные столбики» из эритроцитов малого диаметра быстро движутся в потоке крови вблизи оси сосуда, а столбики из крупных эритроцитов располагаются ближе к стенкам сосуда и перемещаются гораздо медленнее. Схема поступательного и вращательного движения радиально-кольцевых систем эритроцитов в кровотоке представлена на рис. 2.

Рис. 2. Схема поступательного и вращательного движения радиально-кольцевых систем эритроцитов в кровотоке

Учитель физики. Для того чтобы в движущейся крови эритроциты могли образовать структуры в виде «монетных столбиков», нужно, чтобы эритроциты были одного диаметра, чтобы между ними возникали силы, сближающие их друг с другом вогнутыми сторонами, и чтобы эритроциты в столбиках фиксировались на всем протяжении «монетного столбика» по его геометрической оси. Образованию «монетных столбиков» способствует также отрицательный заряд на поверхности эритроцитов, который создает между ними равномерное электростатическое отталкивание.
Для того, чтобы разобраться в физической природе образования структур из эритроцитов, надо вспомнить некоторые физические законы и явления. Ответьте, пожалуйста, на следующие вопросы.

1. Как зависит скорость течения жидкости в трубе от площади ее поперечного сечения?

2. В чем состоит закон Бернулли?

3. Каковы особенности движения вращающегося цилиндра или мяча?

В токе крови эритроциты движутся не только поступательно, но и вращаются вокруг собственной оси. Поскольку эритроциты несут некоторый заряд, то это порождает конвекционные токи и ведет к появлению магнитных полей. Кроме сил электрического и магнитного взаимодействия в потоке крови действуют гидродинамические силы, которые описываются законом Бернулли. Скорость кровотока падает от центра сосуда к его стенкам, поэтому между точками, удаленными от оси течения на разные расстояния, возникает перепад давлений, причем силы направлены от периферии к оси. Таким образом, феномен Чижевского можно отнести к области электрогемодинамики.
В крупных сосудах А.Л. Чижевский допускал разнообразие пространственного положения «монетных столбиков». При переходе в менее крупные сосуды движение «монетных столбиков» упорядочивается, систематизируется и приобретает строго закономерный характер. Чижевский предложил три схемы движения эритроцитов по кровеносному сосуду (рис. 3, а–в).
Согласно первой схеме (а) каждый эритроцит в потоке плазмы движется своей плоской стороной перпендикулярно к направлению движения потока плазмы. Согласно второй схеме (б) эритроцит расположен по касательной к слоям плазмы, движущимся с разными скоростями вдоль кровеносного русла. Согласно третьей схеме (в) эритроцит расположен своей торцевой стороной перпендикулярно к слоям плазмы, образуя радиально-кольцевую систему.

Рис. 3. Схема движения («монетных столбиков») эритроцитов в артериальном сосуде

Учитель биологии. В истории гематологии открытию структуры движущейся крови придается огромное значение.
Чижевский полагал, что при заболеваниях пространственная структура движущейся крови нарушается, т.к. изменение заряда эритроцитов и их количества в крови немедленно отражается на их расположении в кровотоке.
В 1962–1988 гг. группа врачей под руководством М.С. Мачабели, используя идеи А.Л. Чижевского в области электрогемодинамики, разработала теорию тромбогеморрагического синдрома (ТГС), являющегося одним из ярких примеров нарушения пространственной структуры движущейся крови. Авторы этой теории в 1990 г. были удостоены Государственной премии Грузии.
ТГС – это комплекс симптомов, сопровождающий патологию и экстремальные воздействия, обусловленный универсальным и неспецифическим свойством крови, лимфы, тканевой жидкости обратимо и необратимо сгущаться и расслаиваться на компоненты различного агрегатного состояния.
При различных болезнях, хирургическом вмешательстве или экстремальных воздействиях (облучении, ожогах, отравлениях, сдавлениях тканей и др.) клетки поврежденных тканей теряют отрицательные заряды. Это является «спусковым механизмом» для целой серии процессов как в самих клетках, так и на уровне тканей, органов и всего организма. Нарушается перенос (транспорт) ионов в клетках, питание тканей, изменяется структура крови, развивается кислородное голодание.
Из поврежденных клеток высвобождаются так называемые коагуляционно-литические вещества, воздействующие на межтканевую жидкость, лимфу, кровь, другие клетки. Кровь расслаивается на жидкие и густые части. Микросгустки фибрина в густой части крови могут образовывать тромбы в сосудах и приводить к множественным тромбозам. Более жидкая часть крови, лишенная фибрина, теряет способность к свертыванию, поэтому одновременно с тромбозами могут возникать и множественные кровотечения – геморрагии. Далее развиваются тяжелая дисфункция и дистрофия органов, в плазме крови снижается содержание факторов свертывания крови, наблюдается интоксикация продуктами белкового распада.
Как же можно воспрепятствовать развитию ТГС? Для этого надо восстановить отрицательный заряд на поверхностях поврежденных клеток. Восстановлению отрицательного заряда способствуют различные доноры электронов: высокомолекулярный гепарин, витамин C, отрицательно заряженные аэроионы.
Отрицательные аэроионы позволяет получать электроэффлювиальная люстра А.Л. Чижевского (См. «Биология», № /2003).

Вопросы по уроку

1. Что такое «феномен Чижевского»?

2. От чего зависят ориентация и скорость движения «монетных столбиков» эритроцитов?

3. Как образуются «монетные столбики» эритроцитов?

4. Как располагаются «монетные столбики» в сосудах разных диаметров?

5. Какие вы знаете схемы движения эритроцитов по кровеносному сосуду?

6. Что такое ТГС?

7. Как предотвратить развитие ТГС?

Литература

Баркаган З.С. Тромбогемморагический синдром // БМЭ, 3-е изд. – М.: Советская энциклопедия, 1988. – Т. 29.

Мачабели М.С. Чижевского феномен // БМЭ, 3-е изд. – М.: Советская энциклопедия, 1986. Т. 27.

Чижевский А.Л. Структурный анализ движущейся крови. – М.: Изд-во АН СССР, 1959.

Кровь созидается в костном мозгу человека. Здесь непрерывно формируются элементы крови, ее клетки — эритроциты, лейкоциты и тромбоциты.
В кроветворении принимают участие также селезенка и лимфатические узлы.

«Монетные столбики», наблюдаемые в микроскоп: 1 — эритроциты; 2 — лейкоциты; 3 — другие элементы крови.

Жизнь кровяных клеток непродолжительна. Эритроциты живут 80—120 дней, лейкоциты — всего 10—12 дней. Но на смену погибшим, распавшимся клеткам непрерывно поступают новые. Кроветворение регулируется нервной системой. Оно зависит также от присутствия в организме витаминов и многих других веществ. В каждом из нас циркулирует около 5—6 л крови, что составляет примерно 1/11 - 1/13 веса взрослого человека. Кровь состоит не только из так называемых форменных элементов (эритроцитов, лейкоцитов и тромбоцитов). Эти кровяные клетки движутся в жидкой плазме крови.
Эритроциты — мельчайшие красные кровяные тельца поперечником 7—8 микрон — при рассматривании в микроскоп выглядят круглыми, вдавленными с обеих сторон дисками. В объеме крови размером с булавочную головку содержится около 5 миллионов эритроцитов. Лейкоцитов гораздо меньше — на каждые 700 эритроцитов приходится примерно всего 1 лейкоцит.
Состав эритроцитов сложный. Это прежде всего гемоглобин — белковое железосодержащее вещество, придающее крови характерный красный цвет. Кроме того, в состав эритроцитов входят витамины, ферменты и различные соли.
Если каплю крови нанести на предметное стекло микроскопа, поле зрения заполнится огромным количеством эритроцитов. Но вот любопытно — некоторые эритроциты разбросаны не хаотично, а напоминают наполовину рассыпавшиеся столбики из монет. Может быть, эти «монетные столбики» отражают какую-нибудь структурную особенность крови? Или эритроциты сложились в цепочки случайно?
Загадка «монетных столбиков», долгое время мучившая медиков, была объяснена А. Л. Чижевским. В 1959 году издательство Академии наук СССР опубликовало первый том его монографии «Структурный анализ движущейся крови» (второй том готовится к печати). Значение этой работы трудно переоценить. Она была высоко оценена академиком А. Н. Опариным, членом-корреспондентом АН СССР Г. М. Франком, профессором П. А. Коржуевым и другими видными советскими учеными. По мнению гематологов, то, что сделал А. Л. Чижевский, равноценно открытию Гарвеем (XVIII век) кровообращения. Стоит заметить, что к анализу движущейся крови А. Л. Чижевский применил все наиболее совершенные методы современной математики и физики. Суть же этой работы, ее главные идеи и результаты доступны каждому. Подчеркнем, что все, о чем сейчас пойдет речь, было не только теоретически обосновано А. Л. Чижевским, но и проверено им на тысячах лабораторных опытов.
Прежде считалось, что эритроциты в потоке крови движутся совершенно хаотично. Чижевский доказал, что это ire так. Внутри кровеносных сосудов эритроциты образуют стройные кольца, плоскость которых перпендикулярна к оси сосуда. На рисунке изображен в разрезе кровеносный сосуд. Черные, сплюснутые в середине тельца — эритроциты (тоже в разрезе). Все эти концентрические кольца эритроцитов погружены в жидкую, заполняющую весь сосуд плазму крови.
Каждый эритроцит подобен крошечному колесику. Он устанавливается в сосуде так, чтобы быть наилучше обтекаемым плазмой крови, то есть вдоль потока, параллельно стенке сосуда. Слева и справа от него жидкие слои плазмы, как вода в потоке, движутся с разной скоростью — чем ближе к стенке сосуда, тем медленнее. Разница в скоростях «закручивает» эритроцит, и он катится вдоль сосуда. Но что заставляет эритроциты соединяться в кольца, а эти кольца сохранять свою стройность?

При трении о плазму крови и по другим причинам эритроциты приобретают электрические заряды. Когда же эритроцит вращается, эти заряды образуют круговой ток, в результате чего возникает магнитное поле. Значит, каждый эритроцит — это микроскопически маленький магнитик. При этом эритроциты обращены один к другому одноименными полюсами и между ними существует отталкивание. Но ведь каждый эритроцит отталкивает своего соседа, поэтому эритроцитное кольцо в целом оказывается упругим, устойчивым. Этому способствуют не только электрические и магнитные силы, но и силы гидродинамические, возникающие в движущемся потоке крови.
Прогоняя под давлением кровь по тонкостенным стеклянным капиллярам, Л. Л. Чижевский на этой модели в микроскоп увидел наглядное подтверждение своей теории — стройные кольца эритроцитов, вращение этих телец и другие предсказанные теорией явления. Кольца эритроцитов движутся в сосуде с разной скоростью — чем ближе к оси сосуда, тем быстрее. При разветвлении сосудов кольца на мгновения разрушаются, но затем почти немедленно восстанавливаются и продолжают свое стройное движение. Что касается лейкоцитов, то они хаотично перекатываются по периферии кровотока, у стенок сосуда. Все эти движения управляются и контролируются нервной системой.
Так движется кровь в сосудах здорового человека. Если же человек серьезно болен, эритроцитные кольца становятся неупругими. Такие внешние воздействия, как, скажем, резкие колебания магнитного поля Земли (магнитные бури) могут «расшатать» кольца настолько, что эритроциты соприкоснутся, склеятся, образуют тромб. Ну, а последствия тромба, то есть закупорки сосудов, могут быть самыми плачевными.
Опытные врачи давно подметили, что полное отсутствие «монетных столбиков» в крови, взятой на анализ, является симптомом серьезного заболевания (например, это случается при сильном малокровии). Наоборот, в пробах крови совершенно здорового человека непременно присутствуют «монетные столбики» — остатки разрушенных эритроцитных колец.
Динамическая гематология — так можно назвать новый раздел медицины, созданный трудами А. Л. Чижевского. Его последователи и ученики, в частности доктор физико-математических наук В. И. Данилов, продолжают изучение особенностей движущейся крови. Тут еще есть много неясного.
Часто сравнивают сердце с насосом. Но это сравнение неудачно. Если бы сердце действовало только как насос, оно было бы размером с голову. Меньшее сердце не смогло бы протолкнуть кровь сквозь тончайшие кровеносные сосуды. А оно проталкивает, и притом регулярно на протяжении десятилетий. Значит, здесь принимают участие еще какие-то силы. Надо считать сердце человека не только насосом, но и генератором электрического и магнитного полей — такова точка зрения последователей А. Л. Чижевского. Тогда сердце, как магнитный генератор, формирует из эритроцитов «магнитные нити» крови. А эти нити, имея очень малый коэффициент трения, легко проходят сквозь тончайшие кровеносные сосуды. Предварительные расчеты подтверждают эту смелую гипотезу.
Если и считать сердце «пламенным мотором», то «мотором» сложным, сочетающим в себе качества и насоса, п двигателя, и электрогенератора. Электрические и магнитные силы, создаваемые организмом человека, очень слабы, но это нисколько не снижает их роли в жизни человека. Если от таких слабых сил зависит наше здоровье и жизнь, то тем понятнее становятся воздействия на человека колебаний магнитного поля Земли и солнечных излучений. Ведь напряженность магнитного поля сердца составляет десятимиллионные доли эрстеда, тогда как колебания при магнитных бурях в сотни тысяч раз больше.

Текст статьи

Бочаров Михаил Евгеньевич,Кандидат технических наук, заведующийкафедрой «Электроснабжение сельского хозяйства и теоретических основ электротехники», ФГБОУ ВПО "Волгоградский государственный аграрный университет", г. Волгоград[email protected]

Электрическая составляющая кровообращения

Аннотация.Статья в популярной форме представляет гипотезу механизма кровообращения, в котором основной энергетической составляющей являются силы взаимодействия электрических зарядов. На основе личных исследований автора и анализа известных фактов рассмотрены «электрические» принципы кровообращения и пограничные состояния, такие как, повреждение стенки сосуда или образование тромба. В статье затронуты вопросы взаимодействия электрических зарядов внутри других органов и тканей организма. Работа будет интересна широкому кругу специалистов интересующихся биологией и медициной.Ключевые слова:электростатический коллоид, электропульсация, электрогенез, электрозаряд эритроцита.

Окружающая живой организм природа (земля и воздух) имеет исторически сложившийся отрицательный электрический заряд. В силу эволюционного развития «…все жидкие среды организма (протоплазма клеток, межклеточная жидкость, лимфа и кровь) являются электростатическими коллоидами, т.к. их частицы имеют отрицательный заряд. Такой же заряд имеют плазма и все форменные элементы крови (эритроциты, лейкоциты и тромбоциты), что создает электрораспор (электроотталкивание изза одноименности зарядов) между ними и препятствует их сталкиванию друг с другом и агрегации (слипаемости), а это создает оптимальные условия для циркуляции крови» . Аналогичный механизм электроотталкивания частиц крови рассмотрен и в работе А.А.Микулина .Гипотеза «Электрические процессы внутри организма» основана на предположении, что взаимным отталкиванием электрическая составляющая процесса кровообращения не заканчивается, при этомсуществующая гидродинамическая модель не в полной мере объясняет механизм кровообращения. Прототипом гипотезы послужили исследования авторапо изучению прохождения ионизированного потока воздуха по воздуховодам. Металлическая поверхность воздуховода поглощает ионы и полностью деионизирует воздушный потокуже через несколько метров. Подавая на металлическую и даже заземленную поверхность воздуховода дополнительный одноименный потенциал был получен эффект сохранения уровня ионизированности воздушного потока .Получаемый эффект объясняется тем, что придание внутренней поверхности воздуховода одноименного с ионным потоком потенциала обеспечивает отталкивание имеющих электрический заряд частиц потока от стенок воздуховода, в соответствии с законом Кулона. Между внутренней поверхностью воздуховода и ионами потока создается деионизированный слой газа, благодаря которому ионный поток электрически изолируется от воздуховода и стабилизируется вдоль оси. Проведем аналогию с системой кровоснабжения.Предположим, что в качестве воздуховодов мы имеем сосуды, по которым циркулирует кровь, состоящая на 92% из воды и содержащая различные элементы, а сами стенки сосудов и элементы крови (преимущественно) имеют отрицательный электрический заряд. Это позволяет элементам крови отталкиваться не только друг от друга, но и от отрицательно заряженной стенки сосуда, создавая деионизированный слой. Этот слой не содержит отрицательно заряженных частиц и обеспечивает электрораспор, тонус сосудов и «смазку», которая позволяет снижать трение и улучшать кровоток. Медицине известны факторы, обеспечивающие движение крови по сосудам. Но, все они вызывают большое сомнение вих энергетических возможностях для обеспечения процесса кровообращения (преодоление трения) и обеспечения капиллярного кровотока (в особенности в мозге). Попробуем добавить недостающее звено, а именно принцип электродинамического продвижения крови за счетклеточной энергии сосудов и электростатическую «смазку», уменьшающую трение частиц крови о стенки сосуда за счет упомянутого принципа действия деионизированного слоя.Рассмотрев единичный сосуд, можно легко представить работу мышц сосуда по проталкиванию крови или картину соотношения давлений, обеспечивающих движение жидкости в капиллярах, межклеточном пространстве и лимфатических сосудах. Принцип единичного сосуда, как правило, переноситься на любой орган, который в своем объеме имеет множество разнонаправленных капилляров, и кровь по которым проходит в разных направлениях. Даже не смотря на слаженную работу сфинктеров предкапиллярных артериол, в такой капиллярной сети присутствуют все виды капиллярного кровотока: от равномернобыстрого до обратного тока. А это, согласно законам гидродинамики, ‬хаос, и неминуемо должно привести к остановке всякого кровотока. Но, ведь на практике этого не происходит. Так широко используемая закономерность про количество протекающей по сосудам крови и скорости её движения в зависимости от разности давления в начале и конце сосуда конечно верна, но только если представить, что сосуд водопроводная труба с жесткими и неподвижными стенками, а разница давлений достаточно высока. В действительности, разница давлений в отдельно взятом сосуде невелика и, кроме того, эластичность стенок или работа мышц полностью нивелируют эту разницу даже в артериях, не говоря уже о капиллярах. Кроме того, факт именно сгибания или даже скручивания, а не «сминания», эритроцитов (7,58,3 мкм) в трубочкупри прохождении по узким капиллярам (47 мкм) с точки зрения гидродинамики вообще необъясним. Скорее можно предположить, что избыточное давление утрамбует эритроциты на сужении сосуда и совсем перекроет кровоток. А теперь давайте представим, что по сосудудвижется кровь, отдельные частички, которой имеют определенный электрический заряд, а сам сосуд окружен поверхностью (базальная мембрана, один из слоев сосуда или окружающие сосуд ткани) имеющей аналогичный по знаку заряд. Этим обеспечивается электрораспор, а заряженные частички крови концентрируются вдоль оси сосуда, чем снижается трение о внутреннюю поверхность сосуда. Кроме того, наличие электрических зарядов у частичек крови предотвращает их слипание и трение между собой и сосудом и соответственно образование тромбов. При этом просвет сосуда, а особенно капилляра, поддерживается в максимально открытом состоянии за счет электрораспора, без дополнительного мышечного напряжения, например, в капиллярах, не имеющих мышц, а также в капиллярах снабжающих стенки средних и крупных артерий и вен кровью. Это особенно важно для сосудосодержащих тканей подверженных механическим воздействиям. Например, при внешних (тесная одежда или различные сдавливания) или внутренних(работа скелетных мышц) давлениях на сосуды, согласно только «гидравлической» теории неминуемо приведет к прекращению или значительному снижению кровотока, чего на самом деле не наблюдается (кроме усилий равных кровоостанавливающемужгуту). Давайте, сравним две силы давления, которые оказывают на руку кровоостанавливающий жгут и манжета устройства по методу измерения кровяного давления основанного на акустической регистрации звуковКороткова. В первом случае кровоснабжение ниже жгута отсутствует полностью, а в случае с манжетой тонометра (сфигмоманометра) кровоснабжение отсутствует в полной мере только в крупных венах и артериях. Соответственно и усилия, оказываемые на руку жгутом и манжетой тонометра различно. Так почему же чтобы остановить капиллярное кровообращение, всетаки необходима сила жгута? Ответ возможно прост. Силы электростатического распора действуют на малых расстояниях и более заметны в сосудах малого сечения ‬в капиллярах. Силе сжатия манжеты тонометра сопротивляется в основном, только гидравлическое давление кровии в основном в крупных сосудах. Это давление меньше чем электрораспор. Для преодоления электрораспора, свойственного больше капиллярам, требуется усилие кровоостанавливающего жгута. Вернемся к факту скручивания эритроцитов при прохождении по капиллярам, и опишем механизм «скручивания» исходя из сил взаимодействия электрических зарядов. Предположим, что при снижении диаметра капилляра до размеров эритроцита каждая из точек поверхности эритроцита будет отталкиваться от внутренних одноименно заряженных стенок. Появятся силы направленные на изгибание приводящие к скручиванию.Причем двояковогнутая форма имеющего электрический заряд эритроцита как нельзя лучше подходит для его электростатического скручивания. Вполне вероятно, что поверхностный электрический заряд эритроцита при этом перераспределяется. Утолщенный край при скручивании располагается ближе к центральной впадине, а обратная зеркальность поверхностей краев и центральной части обеспечивает равноудаленность, что означает равное по силе взаимоотталкивание скрученной поверхности эритроцита. Электростатическое влияние на движение крови увеличивается с уменьшением диаметра сосуда. Электродинамическое продвижение крови по сосудам, основано на изменении величины электрического заряда вдоль сосуда в соответствии с пульсовой волной, что является аналогом мышечного вазомоторного воздействия или потенциала действия связанного с активацией и инактивацией ионных мембранных каналов. Кроме того, наверняка часть проблем электродинамического движения крови в мышечных тканях «возложено» на явление пъезоэффекта, а такжена соматическую нервную систему, с использованием касательных синапсов, организующих в сосудах «волну» потенциала действия, по типу возбуждения распространяемого по нервному волокну или согласно теории «местных токов». Каки электростатика, электродинамическое воздействие оказывает более заметное влияние на периферическую систему кровоснабжения. Действие электрического поля на частички крови, имеющие электрический заряд, аналогично работе устройства под названием линейный электродвигатель, где движение электромагнитного поля по линейному статору перемещает вдоль его корпуса ротор. Причем «бегущее» вдоль сосуда кольцевое электрическое поле оказывает механическое действие не только на электрически заряженные, но и на нейтральные частицы, поляризуя их и вовлекая в движение. Для капиллярного продвижения крови по сосудам может играть роль наклона в разные стороны (по направлению кровотока и против него) расположенных в мембранах клеток стенки капилляра натриевых и калиевых ионных каналов. Но, если принципы электродинамики потенциала в клетках (электрогенез) уже достаточно хорошо изучены, то механизм образования «бегущего» вдоль сосуда электрического поля более сложен и не однозначен. Иногда его нарушения диагностируются как «дефицит пульса». Наряду с известными способами электрическую «бегущую» пульсовую волну сосуда может организовывать и механический градиент потенциала пульсирующей крови, воздействуя непосредственно на потенциалочувствительные ионные каналы стенок. Аналогичные процессы известны на примерах механочувствительных ионных каналов волосковых клеток слухового аппарата и ионных теорий возбуждения (воснове которых лежит предположение отом, чтопричиной возникновения возбуждения является изменение концентрации ионоввнутри ивнеклетки). Процесс организации кровотока в этом случае будет следующим ‬механическийимпульс крови (из более крупного сосуда) запускает механизм, который провоцирует изменение мембранного потенциала (за счет внутренней энергии клетки), а последовательная электропульсация мембран клеток вдоль капилляра обеспечивает и усиливает кровоток по капилляру. Так механическое давление пульсации поступающей крови провоцирует ответную реакцию эндотелиальных клеток по электропульсированию потенциала своей мембраны, обращенной внутрь сосуда. И именно участие внутриклеточной энергии объясняет незначительные энергетические затраты на организацию кровотока на уровне капиллярного кровообращения, в особенности для капилляров безмышечного типа. Получается, что основные энергозатраты на организацию кровотока перекладываются на внутриклеточную энергетику, а не наразницу давлений в конце и начале сосуда или другие факторы известные, как факторы обеспечивающие движение крови. Этот способ дополняет механизмы электроосмоса, электрогенезаи внешнего «бегущего» электрического потенциала, организованного сердцем и нервной системой, для сосудов, не имеющих мускульных слоев и лишенных непосредственного контакта с сосудосуживающими и сосудорасширяющими нервами, и может быть определен как ‬электротаксис крови.Не исключена возможность и обратной связи, а именно спровоцированная пульсацией крови электропульсация клеток сосуда преодолевая потенциальный порог своих внешних (от потока крови) мембран, провоцирует последовательные дополнительные (кроме непосредственного воздействия через сосудорегулирующие нервы) сокращения мышц капилляра (микровибрацию, аналог вибрационная гипотеза Аринчина ). Мышечное сокращение происходит естественно с небольшим временным отставанием от электропульсации, что служит дополнительным продавливающим (скорее додавливающим) фактором движения крови.

По всей видимости, именно этот процесс заметен на добавочной дикротической волне сфигмограммы периферического пульса. Тогда становится ясен процесс взаиморегуляции. Чем сильнее первичный механический импульс с более крупной артерии (например, при резком увеличении нагрузки), чем сильнее вторичный потенциал электропульсации и последующего за ним мышечного сокращения. Здесь необходимо еще раз вернуться к факту сгибания или сворачивания эритроцита при прохождении в тонком капилляре. Тогда можно предположить,что механическое давление края эритроцита при касании стенок вызывает дополнительный ответный отталкивающий электрический импульс внутренней поверхности сосуда(пьезоэффект), направленный на «электростатическое» сгибание или скручивание, а величина этого ответного импульса будет зависеть от силы механического давления эритроцита. Более сложные процессы, с точки зрения взаимодействия электрических зарядов, происходят в поврежденном сосуде при гемостазе с последующим заживлением и регенерацией тканей. Повреждение стенки, а тем более полный разрыв сосуда приводит к нарушению эквипотенциальной поверхности внутренней поверхности его стенок, что естественно резко снижает электрораспор просвета сосуда и приводит к электростатическому притяжению поврежденных его краев. Так как для организации нормального кровообращения созданный отрицательный заряд стенок сосуда (внутренних мембран эндотельных клеток) за счет поляризации обеспечивает нейтральный или даже положительный заряд на внешней стороне клеток эндотелия или базальной мембраны. Разрыв или повреждение сосуда приводит к появлению кулоновских сил взаимодействия между отрицательно заряженными частицами крови (в том числе и тромбоцитами), краем разрыва в эндотелии или положительно заряженными окружающими тканями (т.к. положительный заряд имеют внешние слои кровеносного сосуда). Т.е. возможно,что электрические притяжение тканей имеющих различный электрический заряд «стягивает» края разорванного сосуда. Вероятно, это проявление электротаксиса крови провоцирует спазм сосуда (ангиоспазм).Несмотря на выше приведенные утверждения об общей электроотрицательности крови, фактом остается то, что в крови, а также в отдельных органах, есть и в большом количестве положительные ионы. Но согласно тому, же закону Кулона, единичный положительный ион, находясь внутри отрицательно заряженной окружности (возьмемсрез сосуда малой толщины) будет испытывать притяжение к каждой точке на его внутренней поверхности, что уравновесит силы притяжения от каждой точки окружности. При наличии внутри уже сосуда сконцентрированного вдоль оси отрицательного потока ионов, положительные ионы будут располагаться как внутри потока между отрицательными ионами, так и внутри деионизированного (от отрицательных ионов) слоя плазмы. Ионами в данном случае, также являются все частицы, имеющие определенный электрический заряд (за счет присоединенного или отнятого электрона) или поверхностный электрический заряд нейтральной частицы (за счет объемного перераспределения электрических зарядов). Конечно же, при столкновениях происходит рекомбинация зарядов путем передачи электрона. Кроме того, положительные ионы могут сохранять свой заряд, находясь внутри различных объемно поляризованных молекул, например, того же гемоглобина. Приведенные механизмы достаточно условны, но, тем не менее, благодаря ним положительные ионы сосуществуют и играют свою роль в кровотоке наряду с отрицательными ионами. Это позволяет объяснить общую отрицательность организма и одновременность сосуществования в нем отрицательных и положительно электрически заряженных частиц, что и является принципом электробаланса организма. Так внутри некоторых органов в силу выполняемых ими функций, электроотрицательность может быть ослаблена или полностью отсутствовать, а сам орган или его часть может иметь даже положительный заряд. По всей видимости, это сердце, легкие, потовые и сальные железы, почки, мочевой пузырь и ЖКТ, а также венозная система, в которой описываемые выше механизм кровообращения может на отдельных этапах происходить с обратной полярностью.

Условия принятия или отдачи электрона для ионов Na+, K+, Ca2+ и Mg2+ известны, а вот их направление и интенсивность в организме и его органах могут регулироваться с помощью различных механизмов, в том числе и вегетативной нервной системой. Процесс отдачи электрона (ионизация) может происходить внутри органа, которому необходимы определенные положительные ионы. Например, для деятельности сердца необходимы ионы калия и магния. Вполне вероятно, что атомарный (или в виде доступного для ионизации соединения) калий и магний, попадая внутрь сердца (имеющего положительный электрический заряд)ионизируется, отдавая электрон. Чем больше положительный заряд сердца, тем больше ионов калия и магния может «выделиться» из проходящей через него крови. А что такое увеличение положительного заряда в сердце? Это по какойто причине «попытка» создания «электрического тромба». Т.е. сердечной мышце для преодоления нагрузки необходимы больше K+ и Mg2+ и концентрация этих ионов тут же увеличивается пропорционально увеличению положительного электрического заряда сердца. Таким образом, локальное изменение напряженности электрического поля в органе или в сосуде позволяет «выделять» путем ионизации из крови необходимое количество нужных органу ионов. Особенностью работы сердца является замкнутый электрический принцип работы организованный локализованными электрическими импульсами. Поэтому особенно важно внешне влияние посторонних (для сердца) электрических полей и зарядов. Так действие дефибриллятора основано на деполяризации мембран мышечных клеток (сарколеммы) обеспечивающих при последующих поляризациях их синхронную работу. Иными словами дефибриллятор устраняет «электрический тромб» (локализированное увеличение положительного электрического заряда в области грудном отделе нарушающее установившийся электрообмен между сердцем и легкими, вплоть до остановки сердца) вразличных степенях его проявления, от нарушения ритма, до остановки сердца. Сосуды организма и кровь в большинстве случаев электроотрицательней остальных тканей организма. Но есть и исключения, например, органы выделения, в которых кровь и сосуды могут быть нейтральны или иметь положительный заряд особенно там, где организм сбрасывает положительное «электричество». Такой «сброс» происходит с помощью придания положительного заряда выделяемым из организма веществам. Например, выдыхается положительно заряженный углекислый газ, почки удаляют не только продукты метаболизма и лишнюю воду, но и выделяют положительное «электричество» удаляя Н+ понижая рН. Подтверждением нейтрального или даже положительного электрического заряда почек, может служить применяемый почками способ прокачки крови по капиллярам нефрона, а именно использование своеобразного «ресивера» в виде боуменовой капсулы с различными диаметрами приносящей и выносящей клубочковых артериол. В этом случае почкой может, и не применятся (в виду ее отсутствии) электродинамическая (любого знака) поддержка кровотока, так необходимая для необходимого продвижения крови используется дополнительная гидравлическая поддержка. Такая поддержка обеспечивает локальное повышение давления крови и тем самым обеспечивает кровоток.

Приведенный механизм электростатического и электродинамического действия электрических зарядов на сердечнососудистую систему позволяет по иному представить некоторые известные процессы в кровообращении.

Ссылки на источники1. Скипетров, В.П. Лечение аэроионами кислорода / В.П.Скипетров, Н.Н.Беспалов, А.В.Зорькина. ‬Саранск: «СВМО», 2001. ‬70 с. 2. Микулин, А.А. Активное долголетие / А.А.Микулин. ‬М.: «Физкультура и спорт», 1977. ‬112 с.3. Бочаров,М.Е. Электрические процессы внутри организма: Практическая гипотеза/ М.Е.Бочаров.‬Saarbrucken, Deutschland: LAPLAMBERT, 2015. ‬102 с.4. Бочаров, М.Е. Повышение эффективности аэроионизации птичников с клеточным содержанием: дис. канд. техн. наук: 05.20.02. / Бочаров Михаил Евгеньевич. ‬Москва, 2008. ‬236 с.5. Аринчин, Н.И. Микронасосная деятельность скелетных мышц при их растяжении / Н.И.Аринчин, Г.Ф.Борисевич. ‬Минск: «Наука и техника», 1986. ‬111 с.

Полезная модель относится к физике, а также к медицине и биологии и может быть использована для определения и регистрации электрических и магнитных свойств эритроцитов. Недостатком известных устройств является невысокая точность. Предлагается устройство для определения электрических и магнитных свойств эритроцитов крови, содержащее электроды и регистрирующее устройство, причем, электроды выполнены в виде инъекционных игл, покрытых электрически изолирующим материалом и связаны через усилитель с регистратором электрических сигналов.


Полезная модель относится к физике, а также к медицине и биологии и может быть использована для определения и регистрации электрических и магнитных свойств эритроцитов.

Известны способы и устройства для определения и регистрации: -количества эритроцитов в гемолизированной крови до шести месяцев от времени взятия крови на исследование (патенты РФ №№2.100.807, 2.225.616; ЕР №0536658; Справочник по клиническим лабораторным методам исследования. Под ред. Е.А. Кост. - М.: Медицина. 1975. с.22 и 23 и другие);

Консервированной эритроцитарной массы перед трансфузией (патент РФ №2.157.219; Кушер P.M. Коррекция нарушения биофизических свойств эритроцитов консервированной эритроцитарной массы с помощью гемосорбентов. Биомеханика на защите жизни и здоровья человека. Тезисы докладов. - Н.Новгород, 1992, с.142 и 143 и другие);

Электрического пробоя мембран эритроцитов при контакте с излучаемым объектом (патент РФ №2.083.983, 001 №33/11, 1997 и другие); -показателей содержания К+ и Na+ в плазме и эритроцитах, показателей СОЭ и рН крови (патент РФ №2.056.637, 001 №33.48, 1996 и другие);

Сингенных эритроцитов, которые подвергали магнитно-лазерному облучению in vitro в течение 30, 60 или 120 с (патент РФ №2.084.896, 001 №33/49, 1997 и другие);

Деформируемости эритроцитов (авт. свид. СССР №1.377.111; патенты РФ №№2.052.194, 2.155.607, 2.197.726; патент США №4.457.915; Васильев А.П. Определение индекса деформируемости эритроцитов. Лабораторное дело, 1991, №9, с.44-46 и другие);

Изменения физико-химических свойств эритроцитов под влиянием 3-адреноблокатора пропранола (обзидана, анаприлина), добавляемого in vitro в исследуемую цитратную кровь (патент РФ №2.120.632, 001 №33/48, 1998; Соминский В.Н. и др. Повышение осмотический резистентности эритроцитов под влиянием пропранола. - Лабораторное дело, 1981, №9, с.525-527 и др.);

Светящихся эритроцитов, которые свидетельствуют о наличии в организме злокачественных образований (патент РФ №2.037.152, 001 №33/48, 1995; Говалль В.И. и др. Снижение содержания малых лимфоцитов в крови больных со злокачественными костными опухолями. Вопросы онкологии, 1987, т.33, №9, с.51 и другие);

Изменения поверхностного заряда эритроцитов (патент №2.027.188, 001 №33/49, 1995 и др.);

Электрических и магнитных свойств эритроцитов (Чижевский А.Л.

Электрические и магнитные свойства эритроцитов. Киев, Наукова думка, 1973, с.72-78 и другие).

Из известных устройств наиболее близким к предлагаемому является устройство для реализации способа определения электрических и магнитных свойств эритроцитов (Чижевский А.Л. Электрические и магнитные свойства эритроцитов. Киев. Наукова думка, 1973, с.72-78), который и выбран в качестве прототипа.

Устройство содержит электроды и регистрирующее приспособление.

Известно, что живые клетки под действием внешнего электрического поля перемещаются в сторону положительного электрода. На основании этого А.Л.Чижевским в конце 50-х годов была рассчитана приблизительная величина электрического заряда эритроцита человека и высказана гипотеза о том, что потоки движущихся по сосудам эритроцитов представляют собой конвекционные электрические токи.

Однако эта гипотеза не была подтверждена экспериментально, т.е. устройство не позволяло точно проводить экспериментальное исследование.

Технической задачей полезной модели является повышение точности экспериментального исследования электрических и магнитных свойств эритроцитов.

Поставленная задача решается тем, что устройство для определения электрических и магнитных свойств эритроцитов крови содержит электроды и регистрирующее устройство, причем, электроды выполнены в виде инъекционных игл, покрытых электрически изолирующим материалом и связаны с усилителем и регистратором электрических сигналов.

На фиг.1 представлен общий вид устройства.

Устройство содержит электроды (1, 2) и регистрирующее устройство (3), причем, электроды (1, 2) выполнены в виде инъекционных игл, покрытых электрически изолирующим материалом (4) и связаны через усилитель (5) с регистратором электрических сигналов (3).

Устройство реализуется следующим образом.

Иглы (1, 2) насаживают на шприцы, заполняют два шприца-электрода 0,9% изотоническим раствором хлорида натрия, вводят шприцы-электроды (1, 2) в артериальное и венозное русла кровообращения, подтягивают "на себя" поршни шприцов до появления крови в цилиндрах шприцов, что свидетельствует о том, что их иглы находятся в просветах сосудов и обеспечивают надежный электрический контакт между кровью в сосудах и внутренней поверхностью инъекционных игл, шприцы - электроды (1, 2) подключают через усилитель сигналов (5) к вольтметру (3) и измеряют разность потенциалов между артериальной и венозной кровью, при этом металлическую иглу каждого шприца заранее покрывают изолирующим лаком (4), что исключает электрический контакт иглы с тканями интимы стенки сосуда в месте вкола, к дистальной части иглы припаивают медный провод, посредством контакта, с которым через усилитель (5) на вход измерительного прибора (3) передают электрический потенциал внутренней среды сосуда.

При движении эритроцитов в кровеносных сосудах наблюдается эффект Бернулли, в результате чего скорость движения плазмы является функцией расстояния от геометрической оси сосуда. Изменение скорости движения

плазмы по ортогональному сечению сосуда имеет максимум у геометрической его оси. Разность скоростей движения отдельных слоев плазмы ориентирует эритроциты ортогонально к поперечному сечению сосуда и радиально к его стенкам, создавая значительную разность гидродинамических усилий, приложенных к диаметрально противоположным точкам эритроцита, центр которого находится между геометрической осью и стенкой сосуда.

Гидродинамические усилия, испытываемые эритроцитом при его движении в плазме, стремятся переместить его по радиусу сосуда в направлении к его геометрической оси и тем самым сблизить его с эритроцитами, находящимися на более близких к оси концентрических окружностях. Этим усилиям противодействуют силы электростатического отталкивания, действующие между отдельными эритроцитами, расположенными в разных концентрических кольцах, экваториальная плоскость которых совпадает. Силы электростатического отталкивания, возрастая с квадратом уменьшения расстояния между эритроцитами, создают надежный электростатический распор между отдельными концентрически расположенными кольцами эритроцитов и стабилизируют их расположение при движении в плазме, предохраняя тем самым отдельные эритроциты от взаимного соприкосновения, что имеет кардинальное физиологическое значение.

Гидродинамические усилия, стремясь передвинуть отдельные эритроциты в направлении к оси сосуда, сжимают кольца эритроцитов, чем могут уменьшить диаметр этих колец. Уменьшение диаметра колец влечет за собой уменьшение расстояний между соседними эритроцитами данного кольца, что, в свою очередь, вызывает быстрое возрастание электростатических сил отталкивания, противодействующих гидродинамическим силам, стремящимся сжать кольца.

Силы магнитного притяжения, действующие между отдельными эритроцитами внутри колец, также возрастают, но в меньшей мере, чем электростатические. Величина данных магнитных сил несколько меньше электростатических. Они примерно уравниваются лишь при значительном числе оборотов эритроцитов.

Взаимодействие эритроцитов в крови, в отличие от взаимодействия заряженных мицелл в растворах обычных электролитов, имеет свою специфику. Эта специфика вытекает из следующих обстоятельств:

1) эритроциты находятся в крови в сравнительно очень большой концентрации, занимая до 36% общего объема крови;

2) эритроциты по размерам значительно превосходят объемы заряженных частиц и имеют специфическую форму, отличную от шарообразной;

3) эритроциты, по сравнению с их размерами, расположены очень близко относительно друг друга на расстояниях, составляющих всего примерно 15% их собственных размеров;

4) эритроциты при своем движении по сосудам располагаются в виде упорядоченной радиально-кольцевой модели, т.е. представляют в движущейся крови упорядоченную структуру.

Для экспериментального подтверждения электрических и магнитных

свойств эритроцитов были разработаны и изготовлены оригинальные шприцы-электроды. За основу были взяты шприцы "Fraxiparine" емкостью 3 мл фирмы "LOOK" с иглой диаметром 0,4 мм, модифицированные следующим образом: металлическая игла шприца покрыта изолирующим лаком, что исключило электрический контакт иглы с тканями интимы стенки сосуда в месте вкола. К дистальной части иглы заранее был припаян медный провод диаметром 0,08 мм, посредством контакта, с которым на вход измерительного прибора передавался электрический потенциал внутренней среды сосуда. В качестве изолирующего лака использовался лак "Color trend" фирмы "Evon cosmetics", Великобритания. Шприц заполнялся 0,9% изотоническим раствором хлорида натрия, после введения иглы в сосуд поршень шприца подтягивали "на себя" до появления крови в цилиндре шприца, что позволяло визуально убедиться, что игла находится в просвете сосуда, и обеспечивало надежный электрический контакт между кровью в сосуде и внутренней (неизолированной) поверхностью инъекционной иглы.

В качестве измерительного прибора использовался "Вольтметр универсальный В7-16" №8881, 1982 года выпуска, заводской номер У 100387. Погрешность измерения до эксперимента на животном составляла 0,01-0,02 В;

при погружении обоих шприцев - электродов, подключенных к вольтметру, в сосуд с изотоническим раствором хлорида натрия, контактная разность потенциалов составила 0,05 В.

Эксперимент проводился на кролике породы "Шиншилла" весом 3,1 кг. Шприц-электрод, введенный в просвет артерии левого уха кролика, был подключен к положительному входу вольтметра "В7-16", шприц-электрод, введенный в просвет вены правого уха животного - к отрицательному входу.

Появление крови в цилиндрах шприцев-электродов после подтягивания поршней свидетельствовало о том, что их иглы находятся в просветах сосудов (кровь, соответственно, была разного цвета: в левом - алая, артериальная, в правом - более темная, венозная). Произведено восемнадцать измерений разности потенциалов между артериальной и венозной кровью животного.

Измерения проводились через примерно одинаковые интервалы времени с таким расчетом, чтобы по прошествии интервала под измерительными электродами оказалась новая порция крови.

Среднее значение разности потенциалов между артериальным и венозным руслом кролика по данным восемнадцати измерений составляет - 0,88±0,01В с доверительным интервалом, равным 0,95, что более чем в 10 раз превышает погрешность измерения. Колебания разности потенциалов обусловлены динамикой кровообращения как дискретного процесса.

После выведения животного из опыта посредством ингаляции паров эфира была вскрыта брюшная полость и через 30 минут после остановки сердца кролика в просвет брюшного отдела аорты и верхней полой вены были введены шприцы-электроды. При этом было зафиксировано наличие разности потенциалов - 0,5 В между артериальным и венозным руслами.

Таким образом, предлагаемое устройство по сравнению с прототипом обеспечивает экспериментальное доказательство наличия электрической разности потенциалов между артериальной и венозной кровью величиной -

0,88В; после выведения животного из опыта через 30 мин после остановки сердца кролика зафиксирована разность потенциалов между артериальным и венозным руслом - 0,5В.

Причиной возникновения электрической разности потенциалов между артериальной и венозной кровью, вероятно, является наличие асимметрии активного ионного транспорта со стороны эндотельных клеток, приводящий к повышенному выведению положительных ионов в интерстициальную жидкость по сравнению с выведением их в просвет кровеносного сосуда.


Формула полезной модели

Устройство для определения электрических и магнитных свойств эритроцитов крови, содержащее электроды и регистрирующее устройство, отличающееся тем, что электроды выполнены в виде инъекционных игл, покрытых электрически изолирующим материалом и связаны через усилитель с регистратором электрических сигналов.

Г Г б од 1 В ЯН8 1998

На правах рукописи

ИГНАТЬЕВ Виталий Васильевич

МЕХАНИЧЕСКИЕ И ЭЛЕКТРОДИНАМИЧЕСКИЕ СВОЙСТВА ЭРИТРОЦИТОВ В ПОТОКАХ ДВИЖУЩЕЙСЯ ПО СОСУДАМ КРОВИ

Специальность 03.00.02 - биофизика

Санкт-Петербург 1997

Работа выполнена в Военно-медицинской академии

Научный руководитель: Член-корреспондент РАМН, доктор медицинских наук, профессор В.О.Самойлов,

Научный консультант: кандидат физико-математических наук, доцент П.П.Рымкевич.

доктор физико-математических наук, профессор Холмогоров В.Е.

Ведущая организация: Институт аналитического приборостроения РАН.

Защита диссертации состоится "_" января 1998 г. в

Час. на заседании диссертационного совета Д 063.38.23.

при Санкт-Петербургском Государственном Техническом университете по адресу: 195251 С-Пб. ул. Политехническая дом 29.

С диссертацией можно ознакомиться в библиотеке Санкт-Петербургского Государственного Технического университета и в библиотеке ВМедА.

Ученый секретарь диссертационного совета кандидат

Официальные оппоненты:

доктор биологических наук Сунгуров А.Ю.

физ.мат. наук

0.Л. Власова

ОБЩАЯ ХАРАКТЕРИСТИКА. РАБОТЫ

Актуальность темы обусловлена тем, что она посвящена одной из важнейших проблем современной биофизики - свойствам и особенностям поведения клеток крови при их движении по кровеносным сосудам.

В середине нашего столетия эту проблему сформулировал и разработал выдающийся отечественный биофизик А.Л. Чижевский. Согласно его выкладкам безъядерные эритроциты при их движении по магистральным сосудам организуются в радиально-кольцевые системы, причем не только движутся поступательно, но и вращаются относительно устойчивой оси вращения. Вместе с тем, как полагал А.Л.Чижевский потоки движущейся крови являются конвекционными электрическими токами.

Однако теоретические построения А.Л.Чижевского пока недостаточно уточнены в экспериментах.

Цель и задачи работы. Цель работы состояла в изучении и аналитическом описании механики и электродинамики движущихся в потоках кроЕИ безъядерных эритроцитов, а также в экспериментальной проверке основных следствий, полученных в рамках разработанной математической модели.

Научная новизна. Теоретически обоснован и экспериментально подтвержден эффект ротационного массопереноса компонентов плаэмы крови и их микрофильтрация в движущихся по магистральным сосудам безъядерных эритроцитах.

Экспериментально показано, что потоки движущейся по сосудам организма крови являются конвекционными электрическими токами, создающими в окружающем их пространстве электромагнитные поля.

Разработаны методы расчета и измерения частот колебаний эритроцитов в собственном поле сил их взаимного электростатического отталкивания.

Практическая значимость работы. В процессе выполнения работы были оформлены две заявки на изобретения: - способ очистки жидкостей и газов от взвесей; - ротационный фильтрующий элемент. На обе заявки получены положительные решения о выдаче патентов N 93016177/26 (019560) от 24.11.1994 г. и N 93016176/26 (019559) от 15.01.1996 г. из ВНИИГПЭ. Они используются при создании систем очистки воды в рамках Санкт-Петербургской программы "Чистый город". Результаты диссертационного исследования используются в

учебном процессе при преподавании биофизики в Санкт-Петербургских государственных медицинском и электротехническом университетах.

Публикации и апробация работы. По теме диссертации выполнен отчет НИР N 26-94-В7, опубликованы три статьи. Результаты исследований были доложены на всероссийской, ряде международных конференций и семинарах в 1993 - 1997 годах.

Структура и объем работы. Диссертация состоит из введения, четырех глав, заключения, выводов, списка использованных источников, приложения и содержит 127 страниц машинописного текста, 34 рисунка, 4 таблицы. Библиография к ней составляет 112 литературных источников.

Положения, выносимые на защиту. 1. Во вращающемся эритроците ir» vivo существует вынужденная диффузия компонентов плазмы крови через него, благодаря которой им присущ эффект микрофильтрации коллоидных частиц. 2. Движущиеся in vivo эритроциты имеют нескомпенсированный отрицательный электрический заряд, то есть потоки движущейся in vivo крови являются переменными конвекционными электрическими токами, генерирующими электромагнитные поля.

1. Физические свойства и модели подвижных клеточных (зригроци-

тарных) систем (обзор литературы).

В 1959 году был опубликовзн фундаментальный труд А.Л.Чижевского: "Структурный анализ движущейся крови." В нем автор на математических моделях и экспериментально показал,что потоки крови in vivo не являются движущимися совокупностями хаотически объединенных её компонентов, а организованы по определённым правилам. Наиболее важными результатами, полученными им в рамках исследований крови являются: 1. Математическое доказательство симметричного расположения эритроцитов в кровотоке и организация их в радиально-кольцевые системы в магистральных сосудах.

2. Учет влияния на движение крови сил электростатического отталкивания, возникаищих между движущимися её клетками.

Во второй монографии, посвященной электрическим и магнитным свойствам эритроцитов, ему уделось вплотную подойти к пониманию того, что потоки движущейся в организме крови являются конвекционными электрическими токзми, а вращающиеся в них эритроциты должны иметь собственные магнитные моменты. Однако, высказанные

в ней гипотезы не имеют достаточного математического и экспериментального доказательства.

Сейчас известны лишь единичные публикации, посвященные в основном экспериментальной проверке гипотезы А.Л.Чижевского о структурной организации движущейся крови. Из электромеханических свойств суспензий клеток описан только эффект электростатического отталкивания (распора) между ними. Однако, приводимая величина этого параметра сильно отличается у разных авторов. Кроме того, описан эффект возникновения разности потенциалов между сосудистой стенкой и потоком движущейся относительно нее среды.

2. Математические модели электромеханических свойств эритроцитов в потоках движущейся крови, а) Микрофиль трация. Микроскопические наблюдения эритроцитов в норме показывают, что клетки по внешнему виду напоминают дис-котороиды, эллипсоиды и т.п. Другими словами, эритроцит можно в первом приближении представить в виде фигуры вращения.

Предположим, что в поле сил инерции происходит перенос частиц плазмы крови от приосевой области эритроцита в сторону его периферии и сопряженный процесс их микрофильтрации.

Приведем без доказательства выражение определяющее полный поток частиц класса "К" через поверхность вращающегося эритроцита:

Хк5кшг4к К М 0К й

--■ 2> 3

P n i£(d3+Ah)z+z+hz

i-l i-l(a2(d3+Ah)2+2+h2>z--C2hCg:-3(d3+ah)]2>2)3

N - номер соседнего сечения потока крови.

Эритроциты, магнитные моменты которых не совпадают с направлением силовых линий внешнего поля, вынуждены ориентироваться по нему. Угол поворота эритроцита по отношению к вектору скорости потока крови определяет, очевидно, величину его "лобового" сопротивления потоку.

Из описанных математических моделей следует.

1. Поле центробежных сил создает условия для ускорения процесса переноса компонентов плазмы крови через эритроцит в плоскости его вращения, что ведет к микрофильтрации частиц, как в углублениях эритроцита, расположенных у оси его вращения, так и на внутренней стороне его плаамодемш, максимально удаленной от оси вращения. Структура потоков вещества, проходящего через вращающийся эритроцит изображена на Рис.1.

2. Движущаяся по сосудам кровь представляет собой поток отрицательно заряженных частиц. Этот электрический ток в окружающем сосудистое русло пространстве, создает переменные электрические и магнитные поля.

3. Собственное электростатическое поле, появляющееся у эритроцитов при движении их по кровеносным сосудам, создает условия появления у эритроцитов электромеханических колебаний.

4. Потоки движущейся по сосудам живого организма крови рез-

выход Г J rjj^^g/ - выход

1 - расстояние от оси цилиндра с током до коаксиальной цилиндрической поверхности, на которой находится точка наблюдения. 1 > а - радиуса цилиндра.

гирузот на внешнее электромагнитное поле в соответствии с законами электро- и гидродинамики.

3. Методы и методики проведенных экспериментов.

Для регистрации неспецифических сорбционных свойств движущихся в крови эритроцитов, реакции потоков крови в мелких сосудах человека и животных на воздействие низкочастотных электромагнитных полей, регистрации параметров движения оседающих эритроцитов при действии на них импульсного магнитного поля, определении электрофорегической подвижности эритроцитов в зависимости от времени их инкубации в изоосмотической среде, то есть почти во всех проводившихся экспериментах был применен метод телевизионной микроскопии. Для обнаружения электромагнитных колебаний эритроцитов в рассчитанном диапазоне частот была использована рамочная антенна, геометрические размеры которой много меньше ожидаемой длины волны излучения. При проведении опытов на механических моделях эритроцитов, визуально наблюдали осаждение в них частиц кожевенной пыли из водной взвеси. Методом оптического светорассеивания измеряли коэффициент поглощения водной взвеси пыли до и после взаимодействия ее с моделью эритроцита.

4. Результаты проведенных экспериментов, и их обсуждение.

Проверка первого следствия - микрофильтрации частиц взвеси, движущимися по кровеносным сосудам эритроцитами проводилась на кроликах породы "шиншилла",и на механических моделях эритроцитов.

В первой серии опытов измеряли величину реакции эритроцитов кролика in vitro на действие неоднородного постоянного магнитного поля до и после введения животному коллоидного "загрязнителя" крови - "магнитной жидкости".

> Реакция эритроцитов в исходном состоянии (до введения "магнитной жидкости") на воздействие постоянного магнитного поля максимальной величины отсутствовала. Через два и три часа после

введения животному этой жидкости наблюдалось выраженное смещение эритроцитов в вертикальной плоскости.

0 12 3 1 час. Доказательством того,что частицы "магнитной жидкости" адсорбировались внутри эритроцитов, а не на их поверхности, служило постоянство величин их вертикального смещения в магнитном поле как сразу после разведения крови, так и спустя 45 минут после него.

При проведении опытов на механических моделях эритроцитов, измеряли коэффициент поглощения раствора. Изменение коэффициента поглощения загрязненной жидкости после обработки ее моделью эритроцита с угловой скоростью 2,4 с-1 приведены в Табл. 1. Усредненные значения собственных частот колебании эритроцитов у испытуемых приведены в Табл.2. Анализ осциллограмм в процессе проведения опытов показал, что они соответствуют изображениям модулированных сигнзлов. Эритроциты в крови колеблются синхронно.

В опытах по определен™ действия электромагнитных полей низкочастотного диапазона на микрососуды и капилляры пзродонтз людей и лабораторных животных. Был применён гальванический метод формирования электрического поля в биообъекте. Одним из электродов цепи служили токопроводящие части самого объектива. Другой электрод располагали на плече или бедре испытуемого.

В отсутствие поля измеряли среднюю густоту капилляров, средний диаметр капилляров и их петель.

При подаче импульсного низкочастотного магнитного поля (В -0,5 мТл и более) с частотой 0,5-2 Гц наблюдалось заметное движение петель капилляров, синхронное и пропорциональное изменению величины магнитной индукции воздействующего поля. Капилляры отклонялись полем тем сильнее, чем больше был их диаметр. Аналогич-

Рис.2. Величина подъема нагруженных "магнитной жидкостью" эритроцитов в неоднородном маг магнитном поле Е=97,5 мТл. 1 -высота подъема эритроцитов; t - время экспозиции.

Таблица 1.

Коэффициенты поглощения годной взЕеси кожевенной пыли после очистки ее механической моделью эритроцита в течении 15 минут.(исходный КПогл.= 0,54)

количество измерений коэффициент поглощения

бязевые мембраны нетканые мембраны

9 8 8 среднее 0,22 + 0,01 0,25 ± 0,01 0,23 ± 0,01 0,2(3)± 0,01 0,19 ± 0,01 0,17 ± 0,02 0,18 ± 0,01 0,18 ± 0,01(3)

Таблица 2.

Средние значения измеренных собственных частот колебаний эритроцитов в кровотоке испытуемых.

номер степени свободы 1 2 3 4 5

Первая серия (мужчина) Вторая серия (мужчина) Третья серия (мужчина) Четвертая серия (женщина) 74,1+0,3 кГц 55,5+0,2 кГц 58,8+0,3 кГц 134,7+0,4 кГц 79,7+0,5 кГц 66,6+0,3 кГц 60,9+0,4 кГц 146,8+0,3 кГц 125+0,7 кГц 166,6+0,2 кГц 142,2+0,2 кГц 250,2+0,5 кГц 1,8+0,4 МГц 4,2+0,4 МГц 2,2±0,1 МГц 2,9+0,1 МГц 5,2+0,8 МГц 5,1+0,5 МГц 4,7+0,3 МГц 3,6+0,1 МГц

1,2,3 - степени свободы поступательного движения;

4,5 - степени свободы колебательного движения, но, капилляры равного диаметра, но образующие большие по диаметру петли, отклонялись полем сильнее, (см. Табл.3.).

Действие постоянного магнитного поля на микрососуды паро-донта (и 10 - 20 мкм.) состояло в формировании в них ассоциатов ■эритроцитов. При отключении магнитного поля ассоциаты движущейся крови в этих сосудах исчезали.

Кроме действия магнитного поля на микрососуды пародонта, изучали реакцию потоков крови в них на постоянное электрическое поле. При этом было отмечено изменение скоростей движения эритроцитов в капиллярах в зависимости от его величины и полярности.

Подключение контактного объектива к (-) источника поля с увеличением его силы вело к тому, что кровоток в капиллярах замедлялся, а при плотности тока о = 22,3 - 31,3 мкА/см2 происходила инверсия направления движения эритроцитов в них.

Замена полярности напряжения на противоположную с уиеличе-

Средние величины отклонения петель капилляров в пародонге человека магнитной составляющей импульсного низкочастотного ЭМП (частота 0,5- 2 Гц).

Диаметр Диаметр Величина Среднее от- число

капилляра, петли, магнитной клонение пет- наблю-

индукции, ли капилляра, дений

мкм. мкм. мТл. мкм. ед.

7,5 ± 0.5 60 ± 0,5 0,5 ± 0,1 6,6 ± 0,7 9

7,5 ± 0,5 60 ± 0,5 1 + 0,1 9 ± 0,4 11

7,5 ± 0,5 60 ± 0,5 1.75 ± 0,1 10,25 Í 0,6 15

8,0 ± 0,5 85 ± 0,5 0,5 ± 0,1 12,6 ± 0,3 9

8,0 ± 0,5 85 ± 0,5 1 ± 0,1 15,2 i 0,5 14

8,0 ± 0,5 85 ± 0,5 1,75 ± 0,1 17,1 ± 0,4 12

8,2 ± 0,5 83 ± 0,5 0,5 ± 0,1 15,6 ± 0,3 11

3,2 ± 0,5 83 ± 0,5 1 ± 0,1 17,2 ± 0,5 10

8,2 ± 0,5 83 ± 0,5 1,75 ± 0,1 21,1 .± 0,3 14

нием разности потенциалов вела к полной остановке кровотока в наблюдаемых капиллярах, а при j = 80 - 100 мкА/см2 в пародонте кроликов хорошо были видны отдельные, вышедшие за пределы капиллярной стенки, эритроциты.

Опыты с оседающими эритроцитами были выполнены для доказательства того, что на внешнее поле реагируют потоки движущейся в живом организме крови, а не только сами сосуды.

Прежде чем приступать к измерениям, проводилась специальная обработка стеклянных капилляров, которая позволяла имитировать в них сосудистый эндотелий.

В эксперименте удалось обнаружить изменения траектории оседающих эритроцитов под действием импульсного магнитного поля (В = 208 мТл). Характерная траектория одного из оседающих в поле сил тяжести эритроцитов до, в момент и после воздействия представлена на Рис.4.

Однообразие отклонения эритроцитов указывает на то, что все они имеют нескомпенсироЕанный отрицательный электрический заряд.

В Табл.4 приведены средние скорости оседания эритроцитов в стеклянном капилляре до приложения поля (I), при действии импульсного магнитного поля (II) и после его снятия (III) (В = 208 мТл).

Синусоидальное низкочастотное магнитное поле так же, как и импульсное, уменьшает скорость оседания эритроцитов. Так, без

его воздействия средняя скорость их оседания была равна 27,6

мкм/с, на частоте 160 Гц (Б=57 мТл) она уменьшалась в 1,47 раза,

а на частоте 500 Гц (В=57 мТл) - в 1,87 раза.

первоначальная скорость оседания 32,2 Смкм/с]

Рис.4.Характерная тра-"5" ектория движения оседающего в поле сил тяжести эритроцита (без воздействия и под воздействием импульсного магнитного поля).

скорость оседания после первого импульса 24,3 [мкм/с]

После второго импульса 16,6 [мкм/с]

Установлено, что подеижность эритроцитов в свежеприготовленных препаратах (2-3 минуты после взятия крови у человека) на порядок больше той, которая приводится в литературе (1,1 -и достигает величин 15 - 18-Ю-8-м2-

г-Ю^-м^с^-В-1)

Таблица 4.

Средние скорости движения оседающих эритроцитов при свободном падении и под действием импульсного магнитного поля

Интервал наблюдения Скорость движения эритроцитов Расстояние от стенки капилляра

танг.сост. норм.сост. результ.

I II III 0,0 ± 0,5 17,3 ± 0,6 0,0 ± 0,3 34,0 ± 0,4 18,6 ± 0,3 26,2 ± 0,6 34.0 ± 0,3 28.1 ± 0,3 26.2 ± 0,4 126 ± 10 мкм

Обнаруженные экспериментальные факты невозможно объяснить в рамках диссоционного механизма возникновения у эритроцитов потенциала течения (г; - разности потенциалов), то есть у них должен существовать, по крайней мере, ещё один - динамический механизм его появления.

Проведенные исследования вскрывают ряд механизмов поведения эритроцитов в потоках движущейся крови. Они, прежде всего, указывают па неотделимость друг от друга электрических и механических процессов, имеющих место в движущейся;n vivo крови. Пренебрежение одним из них ведет к серьезным теоретическим заблуждени-

ям, вызывающим трудности в решении ряда задач современной биологии и медицины.

18 16 14 12 10 8 5 4

насущных практических

Рис.5. Подвижность эритроцитов в электрическом поле в зависимости от Бремени инкубации их в изо-осмотической среде, обозначения: ц

T - }

Просмотров