Возрастание, убывание и экстремумы функции. Нахождение точек максимума (мин) функции. Логарифмы

значение

Наибольшее

значение

Наименьшее

Точка максимума

Точка минимума

Задачи на нахождение точек экстремумафункции решаются по стандартной схеме в 3 шага.

Шаг 1 . Найдите производную функции

  • Запомнитеформулы производной элементарных функции и основные правила дифференцирования, чтобы найти производную.

y′(x)=(x3−243x+19)′=3x2−243.

Шаг 2 . Найдите нули производной

  • Решите полученное уравнение, чтобы найти нули производной.

3x2−243=0⇔x2=81⇔x1=−9,x2=9.

Шаг 3 . Найдите точки экстремума

  • Используйте метод интервалов, чтобы определить знаки производной;
  • В точке минимума производная равна нулю и меняет знак с минуса на плюс, а вточке максимума – с плюса на минус.

Применим этот подход, чтобы решить следующую задачу:

Найдите точку максимума функции y=x3−243x+19.

1) Найдем производную: y′(x)=(x3−243x+19)′=3x2−243;

2) Решим уравнение y′(x)=0: 3x2−243=0⇔x2=81⇔x1=−9,x2=9;

3) Производная положительная при x>9 и x<−9 и отрицательная при −9

Как искать наибольшее и наименьшее значение функции

Для решения задачи на поиск наибольших и наименьших значений функциинеобходимо :

  • Найти точки экстремума функции на отрезке (интервале).
  • Найти значения в концах отрезка и выбрать наибольшее или наименьшее величину из значений в точках экстремума и в концах отрезка.

Во многих задачах помогаеттеорема :

Если на отрезке только одна точка экстремума, причем это точка минимума, то в ней достигается наименьшее значение функции. Если это точка максимума, то в ней достигается наибольшее значение.

14. Понятие и основные свойств неопределённого интеграла.

Если функция f (x X , и k – число, то

Короче: постоянную можно выносить за знак интеграла.

Если функции f (x ) и g (x ) имеют первообразные на промежутке X , то

Короче: интеграл суммы равен сумме интегралов.

Если функция f (x ) имеет первообразную на промежутке X , то для внутренних точек этого промежутка:



Короче: производная от интеграла равна подынтегральной функции.

Если функция f (x ) непрерывна на промежутке X и дифференцируема во внутренних точках этого промежутка, то:

Короче: интеграл от дифференциала функции равен этой функции плюс постоянная интегрирования.

Дадим строгое математическое определение понятия неопределенного интеграла .

Выражение вида называется интегралом от функции f(x) , где f(x) - подынтегральная функция, которая задается (известная), dx - дифференциал x , с символом всегда присутствует dx .

Определение. Неопределенным интегралом называется функция F(x) + C , содержащая произвольное постоянное C , дифференциал которой равенподынтегральному выражению f(x)dx , т.е. или Функцию называют первообразной функции . Первообразная функции определяется с точностью до постоянной величины.

Напомним, что -дифференциал функции и определяется следующим образом:

Задача нахождения неопределенного интеграла заключается в нахождении такой функции, производная которой равняется подынтегральному выражению. Данная функция определяется с точностью до постоянной, т.к. производная от постоянной равняется нулю.

Например, известно, что , тогда получается, что , здесь - произвольная постоянная.

Задача нахождение неопределенного интеграла от функций не столь простая и легкая, как кажется на первый взгляд. Во многих случаях должен быть навык работы снеопределенными интегралами, должен быть опыт, который приходит с практикой и с постоянным решением примеров на неопределенные интегралы. Стоит учитывать тот факт, что неопределенные интегралы от некоторых функций (их достаточно много) не берутся в элементарных функциях.

15.Таблица основных неопределённых интегралов.

Основные формулы

16. Определённый интеграл как предел интегральной суммы. Геометрический и физический смыл интеграла.

Пусть функция у=ƒ(х) определена на отрезке [а; b], а < b. Выполним следующие действия.

1. С помощью точек х 0 =а, x 1, х 2, ..., х n = В (х 0

2. В каждом частичном отрезке , i = 1,2,...,n выберем произвольную точку с i є и вычислим значение функции в ней, т. е. величину ƒ(с i).

3. Умножим найденное значение функции ƒ (с i) на длину ∆x i =x i -x i-1 соответствующего частичного отрезка: ƒ (с i) ∆х i.

4. Составим сумму S n всех таких произведений:

Сумма вида (35.1) называется интегральной суммой функции у = ƒ(х) на отрезке [а; b]. Обозначим через λ длину наибольшего частичного отрезка:λ = max ∆x i (i = 1,2,..., n).

5. Найдем предел интегральной суммы (35.1), когда n → ∞ так, что λ→0.

Если при этом интегральная сумма S n имеет предел I, который не зависит ни от способа разбиения отрезка [а; b] на частичные отрезки, ни от выбора точек в них, то число I называется определенным интегралом от функции у = ƒ(х) на отрезке [а; b] и обозначается Таким образом,

Числа а и b называются соответственна нижним и верхним пределами интегрирования, ƒ(х) - подынтегральной функцией, ƒ(х) dx - подынтегральным выражением, х - переменной интегрирования, отрезок [а; b] - областью (отрезком) интегрирования.

Функция у=ƒ(х), для которой на отрезке [а; b] существует определенный интеграл называется интегрируемой на этом отрезке.

Сформулируем теперь теорему существования определенного интеграла.

Теорема 35.1 (Коши). Если функция у = ƒ(х) непрерывна на отрезке [а; b], то определенный интеграл

Отметим, что непрерывность функции является достаточным условием ее интегрируемости. Однако определенный интеграл может существовать и для некоторых разрывных функций, в частности для всякой ограниченной на отрезке функции, имеющей на нем конечное число точек разрыва.

Укажем некоторые свойства определенного интеграла, непосредственно вытекающие из его определения (35.2).

1. Определенный интеграл не зависим от обозначения переменной интегрирования:

Это следует из того, что интегральная сумма (35.1), а следовательно, и ее предел (35.2) не зависят от того, какой буквой обозначается аргумент данной функции.

2. Определенный интеграл с одинаковыми пределами интегрирования равен нулю:

3. Для любого действительного числа с.

17. Формула Ньютона-Лейбница. Основные свойства определенного интеграла.

Пусть функция y = f(x) непрерывна на отрезке и F(x) - одна из первообразных функции на этом отрезке, тогда справедлива формула Ньютона-Лейбница : .

Формулу Ньютона-Лейбница называют основной формулой интегрального исчисления .

Для доказательства формулы Ньютона-Лейбница нам потребуется понятие интеграла с переменным верхним пределом.

Если функция y = f(x) непрерывна на отрезке , то для аргумента интеграл вида является функцией верхнего предела. Обозначим эту функцию , причем эта функция непрерывная и справедливо равенство .

Действительно, запишем приращение функции , соответствующее приращению аргумента и воспользуемся пятым свойством определенного интеграла и следствием из десятого свойства:

где .

Перепишем это равенство в виде . Если вспомнить определение производной функции и перейти к пределу при , то получим . То есть, - это одна из первообразных функции y = f(x) на отрезке . Таким образом, множество всех первообразных F(x) можно записать как , где С – произвольная постоянная.

Вычислим F(a) , используя первое свойство определенного интеграла: , следовательно, . Воспользуемся этим результатом при вычислении F(b) : , то есть . Это равенство дает доказываемую формулу Ньютона-Лейбница .

Приращение функции принято обозначать как . Пользуясь этим обозначением, формула Ньютона-Лейбница примет вид .

Для применения формулы Ньютона-Лейбница нам достаточно знать одну из первообразных y=F(x) подынтегральной функции y=f(x) на отрезке и вычислить приращение этой первообразной на этом отрезке. В статье методы интегрирования разобраны основные способы нахождения первообразной. Приведем несколько примеров вычисления определенных интегралов по формуле Ньютона-Лейбница для разъяснения.

Пример.

Вычислить значение определенного интеграла по формуле Ньютона-Лейбница.

Решение.

Для начала отметим, что подынтегральная функция непрерывна на отрезке , следовательно, интегрируема на нем. (Об интегрируемых функциях мы говорили в разделе функции, для которых существует определенный интеграл).

Из таблицы неопределенных интегралов видно, что для функции множество первообразных для всех действительных значений аргумента (следовательно, и для ) записывается как . Возьмем первообразную при C = 0 : .

Теперь осталось воспользоваться формулой Ньютона-Лейбница для вычисления определенного интеграла: .

18. Геометрические приложения определенного интеграла.

ГЕОМЕТРИЧЕСКИЕ ПРИЛОЖЕНИЯ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА

Прямоугольная С.К. Функция, задана параметрически Полярная С.К.
Вычисление площадей плоских фигур
Вычисление длины дуги плоской кривой
Вычисление площади поверхности вращения

Вычисление объема тела

Вычисление объема тела по известным площадям параллельных сечений:

Объем тела вращения: ; .

Пример 1 . Найти площадь фигуры, ограниченной кривой y=sinx, прямыми

Решение: Находим площадь фигуры:

Пример 2 . Вычислить площадь фигуры, ограниченной линиями

Решение: Найдем абсциссы точек пересечения графиков данных функций. Для этого решаем систему уравнений

Отсюда находим x 1 =0, x 2 =2,5.

19. Понятие дифференциальных управлений. Дифференциальные уравнения первого порядка.

Дифференциа́льное уравне́ние - уравнение, связывающее значение производной функции с самой функцией, значениями независимой переменной, числами (параметрами). Порядок входящих в уравнение производных может быть различен (формально он ничем не ограничен). Производные, функции, независимые переменные и параметры могут входить в уравнение в различных комбинациях или все, кроме хотя бы одной производной, отсутствовать вовсе. Не любое уравнение, содержащее производные неизвестной функции, является дифференциальным уравнением. Например, не является дифференциальным уравнением.

Дифференциальные уравнения в частных производных (УРЧП) - это уравнения, содержащие неизвестныефункции от нескольких переменных и их частные производные. Общий вид таких уравнений можно представить в виде:

где - независимые переменные, а - функция этих переменных. Порядок уравнений в частных производных может определяется так же, как для обыкновенных дифференциальных уравнений. Ещё одной важной классификацией уравнений в частных производных является их разделение на уравнения эллиптического, параболического и гиперболического типа, в особенности для уравнений второго порядка.

Как обыкновенные дифференциальные уравнения, так и уравнения в частных производных можно разделить налинейные и нелинейные . Дифференциальное уравнение является линейным, если неизвестная функция и её производные входят в уравнение только в первой степени (и не перемножаются друг с другом). Для таких уравнений решения образуют аффинное подпространство пространства функций. Теория линейных ДУ развита значительно глубже, чем теория нелинейных уравнений. Общий вид линейного дифференциального уравнения n -го порядка:

где p i (x ) - известные функции независимой переменной, называемые коэффициентами уравнения. Функция r (x ) в правой части называется свободным членом (единственное слагаемое, не зависящее от неизвестной функции) Важным частным классом линейных уравнений являются линейные дифференциальные уравнения с постоянными коэффициентами .

Подклассом линейных уравнений являются однородные дифференциальные уравнения - уравнения, которые не содержат свободного члена: r (x ) = 0. Для однородных дифференциальных уравнений выполняется принцип суперпозиции: линейная комбинация частных решений такого уравнения также будет его решением. Все остальные линейные дифференциальные уравнения называются неоднородными дифференциальными уравнениями.

Нелинейные дифференциальные уравнения в общем случае не имеют разработанных методов решения, кроме некоторых частных классов. В некоторых случаях (с применением тех или иных приближений) они могут быть сведены к линейным. Например, линейное уравнение гармонического осциллятора может рассматриваться как приближение нелинейного уравнения математического маятника для случая малых амплитуд, когда y ≈ sin y .

· - однородное дифференциальное уравнение второго порядка с постоянными коэффициентами. Решением является семейство функций , где и - произвольные константы, которые для конкретного решения определяются из задаваемых отдельно начальных условий. Это уравнение, в частности, описывает движение гармонического осциллятора с циклической частотой 3.

· Второй закон Ньютона можно записать в форме дифференциального уравнения где m - масса тела, x - его координата, F (x , t ) - сила, действующая на тело с координатой x в момент времени t . Его решением является траектория движения тела под действием указанной силы.

· Дифференциальное уравнение Бесселя - обыкновенное линейное однородное уравнение второго порядка с переменными коэффициентами: Его решениями являются функции Бесселя.

· Пример неоднородного нелинейного обыкновенного дифференциального уравнения 1-го порядка:

В следующей группе примеров неизвестная функция u зависит от двух переменных x и t или x и y .

· Однородное линейное дифференциальное уравнение в частных производных первого порядка:

· Одномерное волновое уравнение - однородное линейное уравнение в частных производных гиперболического типа второго порядка с постоянными коэффициентами, описывает колебание струны, если - отклонение струны в точке с координатой x в момент времени t , а параметр a задаёт свойства струны:

· Уравнение Лапласа в двумерном пространстве - однородное линейное дифференциальное уравнение в частных производных второго порядка эллиптического типа с постоянными коэффициентами, возникающее во многих физических задачах механики, теплопроводности, электростатики, гидравлики:

· Уравнение Кортевега - де Фриза, нелинейное дифференциальное уравнение в частных производных третьего порядка, описывающее стационарные нелинейные волны, в том числе солитоны:

20. Дифференциальные уравнения с разделяющимся применимыми. Линейные уравнения и метод Бернулли.

Линейным дифференциальным уравнением первого порядка называется уравнение, линейное относительно неизвестной функции и её производной. Оно имеет вид

Алгоритм нахождения данных точек оговаривался уже неоднократно, кратко повторюсь:

1. Находим производную функции.

2. Находим нули производной (приравниваем производную к нулю и решаем уравнение).

3. Далее строим числовую ось, на ней отмечаем найденные точки и определяем знаки производной на полученных интервалах. *Это делается путём подстановки произвольных значений из интервалов в производную.

Если вы совсем не знакомы со свойствами производной для исследования функций, то обязательно изучите статью « ». Также повторите таблицу производных и правила дифференцирования (имеются в этой же статье). Рассмотрим задачи:

77431. Найдите точку максимума функции у = х 3 –5х 2 +7х–5.

Найдём производную функции:

Найдем нули производной:

3х 2 – 10х + 7 = 0

у(0) " = 3∙0 2 – 10∙0 + 7 = 7 > 0

у(2) " = 3∙2 2 – 10∙2 + 7 = – 1< 0

у(3) " = 3∙3 2 – 10∙3 + 7 = 4 > 0

В точке х = 1 производная меняет свой знак с положительного на отрицательный, значит это есть искомая точка максимума.

Ответ: 1

77432. Найдите точку минимума функции у = х 3 +5х 2 +7х–5.

Найдём производную функции:

Найдем нули производной:

3х 2 + 10х + 7 = 0

Решая квадратное уравнение получим:

Определяем знаки производной функции на интервалах и отметим их на эскизе. Подставляем произвольное значение из каждого интервала в выражение производной:

у( –3 ) " = 3∙(–3) 2 + 10∙(–3) + 7 = 4 > 0

у( –2 ) "= 3∙(–2) 2 + 10∙(–2) + 7 = –1 < 0

у(0 ) "= 3∙0 2 – 10∙0 + 7 = 7 > 0


В точке х = –1 производная меняет свой знак с отрицательного на положительный, значит это есть искомая точка минимума.

Ответ: –1

77435. Найдите точку максимума функции у = 7+12х–х 3

Найдём производную функции:

Найдем нули производной:

12 – 3х 2 = 0

х 2 = 4

Решая уравнение получим:

*Это точки возможного максимума (минимума) функции.

Определяем знаки производной функции на интервалах и отметим их на эскизе. Подставляем произвольное значение из каждого интервала в выражение производной:

у( –3 ) "= 12 – 3∙(–3) 2 = –15 < 0

у(0 ) "= 12 – 3∙0 2 = 12 > 0

у( 3 ) "= 12 – 3∙3 2 = –15 < 0

В точке х = 2 производная меняет свой знак с положительного на отрицательный, значит это есть искомая точка максимума.

Ответ: 2

*Для этой же функции точкой минимума является точка х = – 2.

77439. Найдите точку максимума функции у = 9х 2 – х 3 .

Найдём производную функции:

Найдем нули производной:

18х –3х 2 = 0

3х(6 – х) = 0

Решая уравнение получим:

Определяем знаки производной функции на интервалах и отметим их на эскизе. Подставляем произвольное значение из каждого интервала в выражение производной:

у( –1 ) "= 18 (–1) –3 (–1) 2 = –21< 0

у(1 ) "= 18∙1 –3∙1 2 = 15 > 0

у(7 ) "= 18∙7 –3∙7 2 = –1< 0

В точке х = 6 производная меняет свой знак с положительного на отрицательный, значит это есть искомая точка максимума.

Ответ: 6

*Для этой же функции точкой минимума является точка х = 0.

77443. Найдите точку максимума функции у = (х 3 /3)–9х–7.

Найдём производную функции:

Найдем нули производной:

х 2 – 9 = 0

х 2 = 9

Решая уравнение получим:

Определяем знаки производной функции на интервалах и отметим их на эскизе. Подставляем произвольное значение из каждого интервала в выражение производной:

у( –4 ) "= (–4) 2 – 9 > 0

у(0 ) "= 0 2 – 9 < 0

у(4 ) "= 4 2 – 9 > 0

В точке х = – 3 производная меняет свой знак с положительного на отрицательный, значит это есть искомая точка максимума.

Ответ: – 3

Здравствуйте! Ударим по приближающемуся ЕГЭ качественной систематической подготовкой, и упорством в измельчении гранита науки!!! В конце поста имеется конкурсная задача, будьте первым! В одной из статей данной рубрики мы с вами , в которых был дан график функции, и ставились различные вопросы, касающиеся экстремумов, промежутков возрастания (убывания) и прочие.

В этой статье рассмотрим задачи входящие в ЕГЭ по математике, в которых дан график производной функции, и ставятся следующие вопросы:

1. В какой точке заданного отрезка функция принимает наибольшее (или наименьшее) значение.

2. Найти количество точек максимума (или минимума) функции, принадлежащих заданному отрезку.

3. Найти количество точек экстремума функции, принадлежащих заданному отрезку.

4. Найти точку экстремума функции, принадлежащую заданному отрезку.

5. Найти промежутки возрастания (или убывания) функции и в ответе указать сумму целых точек, входящих в эти промежутки.

6. Найти промежутки возрастания (или убывания) функции. В ответе указать длину наибольшего из этих промежутков.

7. Найти количество точек, в которых касательная к графику функции параллельна прямой вида у = kx + b или совпадает с ней.

8. Найти абсциссу точки, в которой касательная к графику функции параллельна оси абсцисс или совпадает с ней.

Могут стоять и другие вопросы, но они не вызовут у вас затруднений, если вы поняли и (ссылки указаны на статьи, в которых представлена необходимая для решения информация, рекомендую повторить).

Основная информация (кратко):

1. Производная на интервалах возрастания имеет положительный знак.

Если производная в определённой точке из некоторого интервала имеет положительное значение, то график функции на этом интервале возрастает.

2. На интервалах убывания производная имеет отрицательный знак.

Если производная в определённой точке из некоторого интервала имеет отрицательное значение, то график функции на этом интервале убывает.

3. Производная в точке х равна угловому коэффициенту касательной, проведённой к графику функции в этой же точке.

4. В точках экстремума (максимума-минимума) функции производная равна нулю. Касательная к графику функции в этой точке параллельна оси ох.

Это нужно чётко уяснить и помнить!!!

Многих график производной «смущает». Некоторые по невнимательности принимают его за график самой функции. Поэтому в таких зданиях, где видите, что дан график, сразу же акцентируйте своё внимание в условии на том, что дано: график функции или график производной функции?

Если это график производной функции, то относитесь к нему как бы к «отражению» самой функции, которое просто даёт вам информацию об этой функции.

Рассмотрим задание:

На рисунке изображен график у = f ′(х) - производной функции f (х) , определенной на интервале (–2;21).


Ответим на следующие вопросы:

1. В какой точке отрезка функция f (х) принимает наибольшее значение.

На заданном отрезке производная функции отрицательна, значит функция на этом отрезке убывает (она убывает от левой границы интервала к правой). Таким образом, наибольшее значение функции достигается на левой границе отрезка, т. е. в точке 7.

Ответ: 7

2. В какой точке отрезка функция f (х)

По данному графику производной можем сказать следующее. На заданном отрезке производная функции положительна, значит функция на этом отрезке возрастает (она возрастает от левой границы интервала к правой). Таким образом, наименьшее значение функции достигается на левой границе отрезка, то есть в точке х = 3.

Ответ: 3

3. Найдите количество точек максимума функции f (х)

Точки максимума соответствуют точкам смены знака производной с положительного на отрицательный. Рассмотрим, где таким образом меняется знак.

На отрезке (3;6) производная положительна, на отрезке (6;16) отрицательна.

На отрезке (16;18) производная положительна, на отрезке (18;20) отрицательна.

Таким образом, на заданном отрезке функция имеет две точки максимума х = 6 и х = 18.

Ответ: 2

4. Найдите количество точек минимума функции f (х) , принадлежащих отрезку .

Точки минимума соответствуют точкам смены знака производной с отрицательного на положительный. У нас на интервале (0;3) производная отрицательна, на интервале (3;4) положительна.

Таким образом, на отрезке функция имеет только одну точку минимума х = 3.

*Будьте внимательны при записи ответа – записывается количество точек, а не значение х, такую ошибку можно допустит из-за невнимательности.

Ответ: 1

5. Найдите количество точек экстремума функции f (х) , принадлежащих отрезку .

Обратите внимание, что необходимо найти количество точек экстремума (это и точки максимума и точки минимума).

Точки экстремума соответствуют точкам смены знака производной (с положительного на отрицательный или наоборот). На данном в условии графике это нули функции. Производная обращается в нуль в точках 3, 6, 16, 18.

Таким образом, на отрезке функция имеет 4 точки экстремума.

Ответ: 4

6. Найдите промежутки возрастания функции f (х)

Промежутки возрастания данной функции f (х) соответствуют промежуткам, на которых ее производная положительна, то есть интервалам (3;6) и (16;18). Обратите внимание, что границы интервала не входят в него (круглые скобки – границы не включены в интервал, квадратные – включены). Данные интервалы содержат целые точки 4, 5, 17. Их сумма равна: 4 + 5 + 17 = 26

Ответ: 26

7. Найдите промежутки убывания функции f (х) на заданном интервале. В ответе укажите сумму целых точек, входящих в эти промежутки.

Промежутки убывания функции f (х) соответствуют промежуткам, на которых производная функции отрицательна. В данной задаче это интервалы (–2;3), (6;16), (18;21).

Данные интервалы содержат следующие целые точки: –1, 0, 1, 2, 7, 8, 9, 10, 11, 12, 13, 14, 15, 19, 20. Их сумма равна:

(–1) + 0 + 1 + 2 + 7 + 8 + 9 + 10 +

11 + 12 + 13 + 14 + 15 + 19 + 20 = 140

Ответ: 140

*Обращайте внимание в условии: включены ли границы в интервал или нет. Если границы будут включены, то и в рассматриваемых в процессе решения интервалах эти границы также необходимо учитывать.

8. Найдите промежутки возрастания функции f (х)

Промежутки возрастания функции f (х) соответствуют промежуткам, на которых производная функции положительна. Мы уже указывали их: (3;6) и (16;18). Наибольшим из них является интервал (3;6), его длина равна 3.

Ответ: 3

9. Найдите промежутки убывания функции f (х) . В ответе укажите длину наибольшего из них.

Промежутки убывания функции f (х) соответствуют промежуткам, на которых производная функции отрицательна. Мы уже указывали их, это интервалы (–2;3), (6;16), (18;21), их длины соответственно равны 5, 10, 3.

Длина наибольшего равна 10.

Ответ: 10

10. Найдите количество точек, в которых касательная к графику функции f (х) параллельна прямой у = 2х + 3 или совпадает с ней.

Значение производной в точке касания равно угловому коэффициенту касательной. Так как касательная параллельна прямой у = 2х + 3 или совпадает с ней, то их угловые коэффициенты равны 2. Значит, необходимо найти количество точек, в которых у′(х 0) = 2. Геометрически это соответствует количеству точек пересечения графика производной с прямой у = 2. На данном интервале таких точек 4.

Ответ: 4

11. Найдите точку экстремума функции f (х) , принадлежащую отрезку .

Точка экстремума функции это такая точка, в которой её производная равна нулю, при чём в окрестности этой точки производная меняет знак (с положительного на отрицательный или наоборот). На отрезке график производной пересекает ось абсцисс, производная меняет знак с отрицательного на положительный. Следовательно, точка х = 3 является точкой экстремума.

Ответ: 3

12. Найдите абсциссы точек, в которых касательные к графику у = f (x) параллельны оси абсцисс или совпадают с ней. В ответе укажите наибольшую из них.

Касательная к графику у = f (x) может быть параллельна оси абсцисс или совпадать с ней, только в точках, где производная равна нулю (это могут быть точки экстремума или стационарные точки, в окрестностях которых производная свой знак не меняет). По данному графику видно, что производная равна нулю в точках 3, 6, 16,18. Наибольшая равна 18.

Можно построить рассуждение таким образом:

Значение производной в точке касания равно угловому коэффициенту касательной. Поскольку касательная параллельна оси абсцисс или совпадает с ней, её угловой коэффициент равен 0 (действительно тангенс угла в ноль градусов равен нулю). Следовательно, мы ищем точку, в которой угловой коэффициент, равен нулю, а значит, и производная равна нулю. Производная равна нулю в той точке, в которой её график пересекает ось абсцисс, а это точки 3, 6, 16,18.

Ответ: 18

На рисунке изображен график у = f ′(х) - производной функции f (х) , определенной на интервале (–8;4). В какой точке отрезка [–7;–3] функция f (х) принимает наименьшее значение.


На рисунке изображен график у = f ′(х) - производной функции f (х) , определенной на интервале (–7;14). Найдите количество точек максимума функции f (х) , принадлежащих отрезку [–6;9].


На рисунке изображен график у = f ′(х) - производной функции f (х) , определенной на интервале (–18;6). Найдите количество точек минимума функции f (х) , принадлежащих отрезку [–13;1].


На рисунке изображен график у = f ′(х) - производной функции f (х) , определенной на интервале (–11; –11). Найдите количество точек экстремума функции f (х) , принадлежащих отрезку [–10; –10].


На рисунке изображен график у = f ′(х) - производной функции f (х) , определенной на интервале (–7;4). Найдите промежутки возрастания функции f (х) . В ответе укажите сумму целых точек, входящих в эти промежутки.


На рисунке изображен график у = f ′(х) - производной функции f (х) , определенной на интервале (–5;7). Найдите промежутки убывания функции f (х) . В ответе укажите сумму целых точек, входящих в эти промежутки.


На рисунке изображен график у = f ′(х) - производной функции f (х) , определенной на интервале (–11;3). Найдите промежутки возрастания функции f (х) . В ответе укажите длину наибольшего из них.


F На рисунке изображен график

Условие задачи то же (которую мы рассматривали). Найдите сумму трёх чисел:

1. Сумма квадратов экстремумов функции f (х).

2. Разность квадратов суммы точек максимума и суммы точек минимума функции f (х).

3. Количество касательных к f (х), параллельных прямой у = –3х + 5.

Первый, кто даст верный ответ, получит поощрительный приз – 150 рублей. Ответы пишите в комментариях. Если это ваш первый комментарий на блоге, то сразу он не появится, чуть позже (не беспокойтесь, время написания комментария регистрируется).

Успеха вам!

С уважением, Александр Крутицих.

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.

Что такое экстремум функции и каково необходимое условие экстремума?

Экстремумом функции называется максимум и минимум функции.

Необходимое условие максимума и минимума (экстремума) функции следующее: если функция f(x) имеет экстремум в точке х = а, то в этой точке производная либо равна нулю, либо бесконечна, либо не существует.

Это условие необходимое, но не достаточное. Производная в точке х = а может обращаться в нуль, в бесконечность или не существовать без того, чтобы функция имела экстремум в этой точке.

Каково достаточное условие экстремума функции (максимума или минимума)?

Первое условие:

Если в достаточной близости от точки х = а производная f?(x) положительна слева от а и отрицательна справа от а, то в самой точке х = а функция f(x) имеет максимум

Если в достаточной близости от точки х = а производная f?(x) отрицательна слева от а и положительна справа от а, то в самой точке х = а функция f(x) имеет минимум при условии, что функция f(x) здесь непрерывна.

Вместо этого можно воспользоваться вторым достаточным условием экстремума функции:

Пусть в точке х = а первая производная f?(x) обращается в нуль; если при этом вторая производная f??(а) отрицательна, то функция f(x) имеет в точке x = a максимум, если положительна - то минимум.

Что такое критическая точка функции и как её найти?

Это значение аргумента функции, при котором функция имеет экстремум (т.е. максимум или минимум). Чтобы его найти, нужно найти производную функции f?(x) и, приравняв её к нулю, решить уравнение f?(x) = 0. Корни этого уравнения, а также те точки, в которых не существует производная данной функции, являются критическими точками, т. е. значениями аргумента, при которых может быть экстремум. Их можно легко определить, взглянув на график производной : нас интересуют те значения аргумента, при которых график функции пересекает ось абсцисс (ось Ох) и те, при которых график терпит разрывы.

Для примера найдём экстремум параболы .

Функция y(x) = 3x2 + 2x - 50.

Производная функции: y?(x) = 6x + 2

Решаем уравнение: y?(x) = 0

6х + 2 = 0, 6х = -2, х=-2/6 = -1/3

В данном случае критическая точка - это х0=-1/3. Именно при этом значении аргумента функция имеет экстремум . Чтобы его найти , подставляем в выражение для функции вместо «х» найдённое число:

y0 = 3*(-1/3)2 + 2*(-1/3) - 50 = 3*1/9 - 2/3 - 50 = 1/3 - 2/3 - 50 = -1/3 - 50 = -50,333.

Как определить максимум и минимум функции, т.е. её наибольшее и наименьшее значения?

Если знак производной при переходе через критическую точку х0 меняется с «плюса» на «минус», то х0 есть точка максимума ; если же знак производной меняется с минуса на плюс, то х0 есть точка минимума ; если знак не меняется, то в точке х0 ни максимума, ни минимума нет.

Для рассмотренного примера:

Берём произвольное значение аргумента слева от критической точки: х = -1

При х = -1 значение производной будет у?(-1) = 6*(-1) + 2 = -6 + 2 = -4 (т.е. знак - «минус»).

Теперь берём произвольное значение аргумента справа от критической точки: х = 1

При х = 1 значение производной будет у(1) = 6*1 + 2 = 6 + 2 = 8 (т.е. знак - «плюс»).

Как видим, производная при переходе через критическую точку поменяла знак с минуса на плюс. Значит, при критическом значении х0 мы имеем точку минимума.

Наибольшее и наименьшее значение функции на интервале (на отрезке) находят по такой же процедуре, только с учетом того, что, возможно, не все критические точки будут лежать внутри указанного интервала. Те критические точки, которые находятся за пределом интервала, нужно исключить из рассмотрения. Если внутри интервала находится только одна критическая точка - в ней будет либо максимум, либо минимум. В этом случае для определения наибольшего и наименьшего значений функции учитываем также значения функции на концах интервала.

Например, найдём наибольшее и наименьшее значения функции

y(x) = 3sin(x) — 0,5х

на интервалах:

Итак, производная функции —

y?(x) = 3cos(x) — 0,5

Решаем уравнение 3cos(x) — 0,5 = 0

cos(x) = 0,5/3 = 0,16667

х = ±arccos(0,16667) + 2πk.

Находим критические точки на интервале [-9; 9]:

х = arccos(0,16667) — 2π*2 = -11,163 (не входит в интервал)

х = -arccos(0,16667) — 2π*1 = -7,687

х = arccos(0,16667) — 2π*1 = -4,88

х = -arccos(0,16667) + 2π*0 = -1,403

х = arccos(0,16667) + 2π*0 = 1,403

х = -arccos(0,16667) + 2π*1 = 4,88

х = arccos(0,16667) + 2π*1 = 7,687

х = -arccos(0,16667) + 2π*2 = 11,163 (не входит в интервал)

Находим значения функции при критических значениях аргумента:

y(-7,687) = 3cos(-7,687) — 0,5 = 0,885

y(-4,88) = 3cos(-4,88) — 0,5 = 5,398

y(-1,403) = 3cos(-1,403) — 0,5 = -2,256

y(1,403) = 3cos(1,403) — 0,5 = 2,256

y(4,88) = 3cos(4,88) — 0,5 = -5,398

y(7,687) = 3cos(7,687) — 0,5 = -0,885

Видно, что на интервале [-9; 9] наибольшее значение функция имеет при x = -4,88:

x = -4,88, у = 5,398,

а наименьшее - при х = 4,88:

x = 4,88, у = -5,398.

На интервале [-6; -3] мы имеем только одну критическую точку: х = -4,88. Значение функции при х = -4,88 равно у = 5,398.

Находим значение функции на концах интервала:

y(-6) = 3cos(-6) — 0,5 = 3,838

y(-3) = 3cos(-3) — 0,5 = 1,077

На интервале [-6; -3] имеем наибольшее значение функции

у = 5,398 при x = -4,88

наименьшее значение —

у = 1,077 при x = -3

Как найти точки перегиба графика функции и определить стороны выпуклости и вогнутости?

Чтобы найти все точки перегиба линии y = f(x), надо найти вторую производную, приравнять её к нулю (решить уравнение) и испытать все те значения х, для которых вторая производная равна нулю, бесконечна или не существует. Если при переходе через одно из этих значений вторая производная меняет знак, то график функции имеет в этой точке перегиб. Если же не меняет, то перегиба нет.

Корни уравнения f ? (x) = 0, а также возможные точки разрыва функции и второй производной разбивают область определения функции на ряд интервалов. Выпуклость на каждом их интервалов определяется знаком второй производной. Если вторая производная в точке на исследуемом интервале положительна, то линия y = f(x) обращена здесь вогнутостью кверху, а если отрицательна - то книзу.

Как найти экстремумы функции двух переменных?

Чтобы найти экстремумы функции f(x,y), дифференцируемой в области её задания, нужно:

1) найти критические точки, а для этого — решить систему уравнений

fх? (x,y) = 0, fу? (x,y) = 0

2) для каждой критической точки Р0(a;b) исследовать, остается ли неизменным знак разности

для всех точек (х;у), достаточно близких к Р0. Если разность сохраняет положительный знак, то в точке Р0 имеем минимум, если отрицательный - то максимум. Если разность не сохраняет знака, то в точке Р0 экстремума нет.

Аналогично определяют экстремумы функции при большем числе аргументов.



Где применяют сульфат меди
Сульфат меди делится на: Сульфат меди(I) Сульфат меди(II) Сульфат меди(II) (CuSO4) — сернокислая медь — белые кристаллы, хорошо растворимые в воде. Однако из водных растворов, а также на воздухе хотя бы с незначительным содержанием влаги кристаллизуется голубой пентагидрат CuSO4 · 5H2O

На каких работах запрещается работать по визе J1
Work and Travel USA (работай и путешествуй в США) - популярная программа студенческого обмена, по которой можно провести лето в Америке, легально работая в сфере обслуживания и путешествуя. История программыWork & Travel входит в программу межправительственных обменов Cultural Exchange Pro

Какие лампы установлены в Peugeot 307
На автомобилях марки Peugeot 307 существуют 2 типа передних фар: для моделей 2001-2005 гг.в, т.н. «дорестайл» для моделей 2005-2007 гг.в, «рестайл» Передние фары дорестайла и рестайла НЕ взаимозаменяемые! Задние фонари на автомобилях марки Peugeot 30

Как лечится атрезия влагалища
Атрезия Врожденное отсутствие или аномальное сужение какого-либо отверстия или канала в теле человека. Атрезия желчных протоков поражает желчные протоки и вызывает у младенцев развитие обтурационной желтухи; если вовремя не сделать ребенку операцию, то болезнь может закончиться смертельным исходом. При атрезии трехстворчатого клапана происходит нарушение внутрисердечного кровотока (нарушается ток крови из

Какой официальный сайт телепрограммы "Снимите это немедленно"
«Снимите это немедленно» - телепередача на канале СТС. Ведущие программы пытаются изменить её героинь в лучшую сторону главным образом внутренне посредством изменения их стиля одежды; после чего героини преображаются, начинают снова ценить и любить себя, забыв про депрессии и другие жизненные трудности. Ведущие программы:Наталья Ст

Что такое сайт
Сайт от англ. - site - место; местонахождение, местоположениеWeb-сайты называют еще "узлами", "узлами Всемирной паутины". Можно ли сказать, что web-сайт - это совокупность связанных между собой web-документов (т.е. документов формата HTML). Виртуальная проекция чаще всего - человека или организации

Для чего нужна программа "iReveilPro" для iPhone
Прикладные программы для iPhone SMS, MMS mySMS — SMS-клиент. iRealSMS — SMS-клиент. biteSMS — SMS-клиент. SwirlyMMS — MMS-клиент. Alibi SMS — отсылка S

Где в Интернете найти официальный сайт Смоленской АЭС
На сегодняшний день в России эксплуатируются 10 атомных электростанций (в общей сложности 32 энергоблока установленной мощностью 24,2 ГВт), которые вырабатывают около 16% всего производимого электричества. При этом в Европейской части России доля атомной энергетики достигает 30%, а на Северо-западе — 37%. Согласно Федеральной целевой про

Как питаться после перенесенного пищевого отравления
Пищевое отравление (пищевая интоксикация) — острые, редко хронические заболевания, возникающие в результате употребления пищи, массивно обсеменённой микроорганизмами определённого вида или содержащей токсичные для организма вещества микробной или немикробной природы. Симптомы Чаще всего симптомы пищевого отравления проявляются через 1-2 часа после употребления

Когда День сотрудников органов внутренних дел РФ
Профессиональные праздники отмечаемые в России Январь: 11 января — День заповедников и национальных парков; 12 января — День работника прокуратуры; 13 января — День российской печати; 21 января — День инженерных войск; 25 января — День штурмана ВМФ; 25 янва

Значения функции и точки максимума и минимума

Наибольшее значение функции

Наменьшее значение функции

Как говорил крестный отец: «Ничего личного». Только производные!

12 задание по статистике считается достаточно трудным, а все потому, что ребята не прочитали эту статью (joke). В большинстве случаев виной всему невнимательность.

12 задание бывает двух видов:

  1. Найти точку максимума / минимума (просят найти значения «x»).
  2. Найти наибольшее / наименьшее значение функции (просят найти значения «y»).
Как же действовать в этих случаях?

Найти точку максимума / минимума

  1. Приравнять ее к нулю.
  2. Найденный или найденные «х» и будут являться точками минимума или максимума.
  3. Определить с помощью метода интервалов знаки и выбрать, какая точка нужна в задании.

Задания с ЕГЭ:

Найдите точку максимума функции

  • Берем производную:



Все верно, сначала функция возрастает, затем убывает - это точка максимума!
Ответ: −15

Найдите точку минимума функции

  • Преобразуем и возьмем производную:

  • Отлично! Сначала функция убывает, затем возрасает - это точка минимума!
Ответ: −2

Найти наибольшее / наименьшее значение функции


  1. Взять производную от предложенной функции.
  2. Приравнять ее к нулю.
  3. Найденный «х» и будет являться точкой минимума или максимума.
  4. Определить с помощью метода интервала знаки и выбрать, какая точка нужна в задании.
  5. В таких заданиях всегда задается промежуток: иксы, найденные в пункте 3, должны входить в данный промежуток.
  6. Подставить в первоначальное уравнение полученную точку максимума или минимума, получаем наибольшее или наименьшее значение функции.

Задания с ЕГЭ:

Найдите наибольшее значение функции на отрезке [−4; −1]


Ответ: −6

Найдите наибольшее значение функции на отрезке


  • Наибольшее значение функции равно «11» при точке максимума (на этом отрезке) «0».

Ответ: 11

Выводы:

  1. 70% ошибок заключается в том, что ребята не запоминают, что в ответ на наибольшее/наименьшее значение функции нужно написать «y» , а на точку максимума/минимума написать «х».
  2. Нет решения у производной при нахождении значений функции? Не беда, подставляй крайние точки промежутка!
  3. Ответ всегда может быть записан в виде числа или десятичной дроби. Нет? Тогда перерешивай пример.
  4. В большинстве заданий будет получаться одна точка и наша лень проверять максимум или минимум будет оправдана. Получили одну точку - можно смело писать в ответ.
  5. А вот с поиском значения функции так поступать не стоит! Проверяйте, что это нужная точка, иначе крайние значения промежутка могут оказаться больше или меньше.


Просмотров