Психологические основы инженерного творчества студентов. Принципы инженерного творчества: Учебное пособие

Современная научно-техническая революция, характерной чертой которой является бурное развитие науки, техники и производства, вошла в противоречие со старым, ненадежным, малопроизводительным способом мышления. Человечество пытается преодолеть это противоречие путем создания специальных научных методов активизации и рациональной организации инженерного творчества. Это стремление повысить эффективность творческого труда инженера породило ряд приемов, методов и методик, позволяющих в той или иной степени активизировать мышление, развивать и реализовать творческие способности человека.

Цель методов активации поиска новых технических решений состоит в том, чтобы сделать процесс генерирования идей интенсивнее, повысить «концентрацию» оригинальных идей, в общем их потоке. Для этого в методах применяют специальные механизмы повышения эффективности творческого процесса.

Наиболее широкое распространение из числа коллективных методов поиска новых идей решения изобретательских (инженерных) задач нашли метод «мозгового штурма» и его разновидности, а также метод синектики.

«Мозговой штурм». В основу метода «мозгового штурма» положен принцип разделения в пространстве или во времени процессов генерирования идей и их экспертизы, что позволяет в значительной мере преодолевать такие отрицательные свойства человеческого мышления, как психологическая инерция, стремление действовать в соответствии с прошлым опытом и знаниями, идти традиционными путями, устранять психологические препятствия, вызываемые боязнью критики.

Реализация указанного принципа достигается тем, что сформированную перед началом штурма только в общих чертах задачу последовательно решают две группы людей по 14-15 человек в каждой. Рекомендуется для проведения штурма приглашать людей разных специальностей и разного уровня образования. В то же время нежелательно включать в одну группу людей, присутствие которых может в какой-то степени стеснять других, например руководителей и подчиненных. Целью первой группы является только выдвижение идей решения задачи. В состав этой группы включают людей, склонных к абстрагированию, обладающих чувством новизны и фантазии, способных генерировать идеи, поэтому этих людей называют «генераторами идей».

Вторая группа осуществляет экспертизу выдвинутых в результате «штурма» идей, устанавливает степень их ценности с позиции оригинальности решения, экономичности и практической целесообразности. Вторую группу называют «экспертами идей» и в ее состав включают людей с аналитическим, критическим складом ума.

В настоящее время существует много разновидностей метода «мозгового штурма»: индивидуальный, обратный, парный и массовый, двухступенчатый с оценкой идей, «конференция идей», с дополнительным сбором идей. В индивидуальном «штурме» задачи участвует один человек, последовательно генерируя идеи, а затем анализируя и оценивая их. В обратном «мозговом штурме» на первое место выдвигается критика, что позволяет находить недостатки и ограничения технического объекта или высказанных идей. Обратный «мозговой штурм» целесообразно применять для выявления и постановки новых изобретательских задач, которые, как правило, носят более конкретный характер. Парный «мозговой штурм» проводят два человека, один из которых генерирует идеи, а второй их анализирует и оценивает.

Массовый «мозговой штурм» проводится в больших аудиториях с целью увеличения эффективности процесса генерирования новых идей. Всех участников «штурма» делят на группы по 5-7 человек, их руководителей за 2-3 дня ставят в известность о предстоящем «штурме», знакомят с порядком его проведения и с задачей, которую предстоит решать. Задачу формулируют как личную.

«Мозговой штурм» получил дальнейшее развитие в виде метода «конференции идей».

Синектика . Сущность метода определяет его название «синектика», что в переводе с греческого означает совмещение разнородных элементов. В отличие от метода «мозгового штурма» поиск новой идеи или решения в процессе синектического заседания осуществляется группой профессионалов (оптимальный состав 5-7 человек) - людей различных специальностей, которых обучают изобретательским приемам творческого решения проблем путем неограниченной тренировки воображения и объединения несовместимых элементов.

Синектическое заседание отличается от «мозгового штурма» использованием некоторых приемов психологической настройки, в том числе очень активным применением различных аналогий.

Главными инструментами поиска новых идей решения проблемы в ходе синектического заседания являются аналогии, среди которых чаще всего используются следующие: прямая, личная, символическая, фантастическая.

При прямой аналогии делается попытка использования аналогичных решений в других отраслях техники или живой природе по отношению к рассматриваемому объекту или процессу.

Личная аналогия, или эмпатия , заключается в отождествлении себя с рассматриваемым объектом или процессом.

Сущность символической (абстрактной) аналогии заключается в том, что требуется в краткой парадоксальной форме (буквально в двух словах) сформулировать фразу, отражающую суть явления (процесса) рассматриваемой проблемы. Она должна выражать связь между словами, которые обычно никак друг с другом не сопоставляются, и содержать в себе нечто неожиданное, удивительное.

Применяя фантастическую аналогию , вводят различные фантастические средства или персонажи, выполняющие то, что требуется по условиям задачи. Такая аналогия способствует генерации свежих и оригинальных идей, активизирует творческое мышление.

Полученные в результате использования аналогии новые идеи увязывают с решаемой проблемой, анализируют и определяют их возможности. Отдельные предложения, возникающие в процессе обсуждения, используются, чтобы вызвать новые точки зрения на проблему, способствующие успешному ее разрешению. Важным элементом этого этапа является критическая оценка экспертов.

На последнем этапе синектического заседания осуществляются развитие и максимальная конкретизация идеи, признанной наиболее удачной. Основное время синекторы посвящают инженерному анализу, изучению и обсуждению полученных результатов, консультируются со специалистами, экспериментируют, а когда решение созрело, занимаются поисками наилучших способов его реализации.

Для активации поиска новых идей в практике инженерного творчества применяются так называемые ассоциативные методы (каталога, фокальных объектов, гирлянд случайностей и ассоциаций).

Процесс поиска новых идей с помощью ассоциативных методов осуществляется путем поиска аналогов совершенствуемого объекта, переноса знаний из одной области в другую, интерпретации нового посредством известных понятий и т.д. В связи с этим в творческом процессе достаточно эффективно используются такие источники генерирования новых идей, как ассоциация, метафора и аналогия.

Ассоциация – это связь между отдельными представлениями, при которой одно представление вызывает другое. Метафора означает перенесение свойств одного предмета (явления) на другой объект на основании общего для обоих признака. Аналогия отражает сходство предметов, явлений, процессов в каких-либо свойствах.

Для возникновения ассоциаций и генерирования идей можно использовать цвет, как он оказывает определенное психологическое воздействие на человека.

Красный цвет психофизиологически наиболее активно воздействует на человека, стимулирует его психическую деятельность, активизирует реакции, поэтому используется для кратковременной активизации деятельности; продолжительное воздействие при больших угловых размерах поля зрения вызывает сенсорное утомление и спад активности; плохо виден при слабой освещенности.

Оранжевый цвет стимулирует нервно-мышечную деятельность, способствует психологическому контакту с окружающей средой, при большой насыщенности вызывает ощущение угрозы, поэтому применяется в качестве сигнала предупреждения.

Желтый цвет ассоциируется с солнечным светом, действует возбуждающе, способствует впечатлению уюта и чистоты помещения, стимулирует внимание, Однако слишком желтый цвет утомляет глаза; в соединении с черным цветом используется в сигнальной окраске для обеспечения безопасности движения.

Зеленый – цвет травы, деревьев; благоприятно действует на зрение, снижает нервную усталость, способствует бодрому настроению, стимулирует деятельность.

Голубой цвет ассоциируется с небом и водой, снижает возбуждение, успокаивает.

Синий цвет психологически вызывает ощущение спокойствия, создает благоприятную обстановку для умственной деятельности, снижает

ощущение умственного утомления.

Фиолетовый и желто-зеленый цвета снижают напряжение; рекомендуются для помещений, где по характеру деятельности требуются тонкое восприятие и наблюдательность

Белый цвет ассоциируется с чистотой, стимулирует поддержание порядка.

Темные цвета, в том числе черный вызывают пессимистическое настроение, чувство угнетения, тяжести, снижают эффективности освещения; черный цвет весьма подходит для создания контрастов; предметы, окрашенные в черный цвет, кажутся более тяжелыми.

Применение ассоциаций, метафор и аналогий позволяет находить подсказки решения различных инженерных задач. Эти свойства ассоциаций, метафор и аналогий и послужили основой для создания ассоциативных методов активизации творческого мышления.

Сущность метода фокальных объектов состоит в перенесении признаков случайно выбранных объектов на совершенствуемый предмет, что приводит к резкому увеличению числа оригинальных вариантов решения задачи.

Алгоритм метода фокальных объектов определяет следующий по-

рядок действия:

    Выбор фокального объекта.

    Выбор трех-четырех случайных объектов (их берут наугад из словаря, каталога, журнала и т.д.).

    Составление для каждого случайного объекта признаков их характеризующих.

    Генерирование идей путем присоединения к фокальному объекту признаков случайных объектов.

    Развитие полученных сочетаний путем свободных ассоциаций.

    Оценка полученных идей и отбор полезных решений.

Одним из важнейших элементов инженерного мышления является творческое воображение . Воображение часто приводит к фантазии, которая связана с желанием, чтобы произошло то, чего хочется. Использование фантазии для стимулирования новых идей заключается в размышлении над некоторыми фантастическими решениями.

Часто бывает полезно рассмотреть идеальные решения, даже с некоторой долей фантазии, чтобы попытаться найти нужное.

Фантазия является сильным катализатором к поиску новых нешаблонных идей решения задач.

Метод морфологического анализа (МА) является одним из примеров реализации системного подхода в творческом процессе. Метод эффективен при решении конструкторских и технологических задач общего характера: проектирование новых машин и технологического оборудования; поиск новых вариантов технологических процессов; поиск новых применений существующего объекта (изделия); прогнозирование развития технических систем и технологий и др.

Основной принцип метода МА состоит в систематизированном анализе всех возможных вариантов, вытекающих из закономерностей строения (т.е. морфологии) совершенствуемой системы. В рассматриваемом техническом объекте (технической системе, технологическом процессе) выделяется несколько характерных для него структурных или функциональных морфологических признаков (Р). Каждый такой признак может характеризовать какой-то конструктивный режим работы, т.е. параметры или характеристики объекта, от которых зависит достижение основной цели объектом, определяемой его назначением.

Алгоритм метода морфологического анализа следующий:

Формулировка задачи (проблемы).

    Составление списка всех морфологических признаков объекта задачи, т.е. всех важных характеристик объекта, его параметров и режимов работы, от которых зависит реализация объектом своей главной цели.

    Раскрытие возможных вариантов по каждому морфологическому признаку и составление морфологической матрицы.

    Формулировка конкретных решений задачи путем сочетаний вариантов морфологических признаков.

    Определение практической ценности полученных вариантов решения задачи и выбор из них наиболее эффективных.

В результате глубоко морфологического анализа объекта можно прийти к новому взгляду на все поле возможных решений, а отсюда недалеко и до принципиально новых направлений усовершенствования конкретного технического устройства или технологического процесса.

Метод контрольных вопросов заключается в поиске решения задачи с помощью специально подготовленного перечня (списка) наводящих вопросов. Расчет делается на то, что при ответе на поставленные вопросы наступает то «озарение», которое приводит к нужной идее решения задачи.

Метод может применяться либо в форме монолога инженера, обращенного к самому себе, либо диалога, например в виде вопросов, задаваемых руководителем «мозгового штурма» членам группы «генераторов идей».

В зависимости от специфики рассматриваемого объекта или целей анализа вопросы могут быть самыми разнообразными – от очень простых до весьма сложных. Обилие вопросов в списке не означает, что ответы на каждый из них должны привести к новой идее. Если в результате поиска решения с помощью этого метода будет получена хотя бы одна интересная идея, можно считать, что вопросник свою задачу выполнил. Некоторые списки содержат не вопросы, а краткие рекомендации, в других есть и то и другое.

Списки контрольных вопросов разрабатываются путем анализа и обобщения опыта работ технологов предприятия. Список – это способ передачи опыта, он позволяет не упустить каких-либо важных моментов, обратить внимание на что-либо, направляет и расширяет возможности поиска решения.

ОСНОВЫ ИНЖЕНЕРНОГО ТВОРЧЕСТВА

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

КАМЫШИНСКИЙ ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ (ФИЛИАЛ)

ВОЛГОГРАДСКОГО ГОСУДАРСТВЕННОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА

основы инженерного творчества

Учебное пособие

Волгоград

УДК 658.518.2(075.8)

Рецензенты: главный конструктор -КРАН» ; технический директор СМИ»

Никифоров, инженерного творчества: учеб. пособие / . ВолгГТУ, Волгоград, 2008. – 96 с.

Дается общее представление об основных методах инженерного творчества, приводится их краткая характеристика, классификация и сфера применения.

Предназначено для студентов, обучающихся по специальности 151001.65 «Технология машиностроения», а также может быть полезно для инженерно-технических работников машиностроительных предприятий, связанных с созданием и модернизацией техники.

Ил. 16. Табл. 2. Библиогр.: 14 назв.

Печатается по решению редакционно-издательского совета

Волгоградского государственного технического университета

ISBN 0087-4 Ó Волгоградский

государственный

0 " style="border-collapse:collapse">

Введение

Современное классическое техническое образование, предоставляемое в наших вузах, ориентировано в первую очередь на обучение студентов решению типовых задач, которые возможно встретятся в будущей профессиональной деятельности . Эти задачи могут быть решены путем логического вывода из ранее известных посылок, при этом имеется готовая постановка задачи, известен способ ее решения, а также предпола-гаемый ответ. Однако задачи, возникающие перед инженером, могут носить различный характер. И поэтому, безусловно, необходимое умение решать типовые инженерные задачи должно быть дополнено умением решать задачи инженерные творческие. А для этого необходимо, чтобы будущий специалист, прежде всего, овладел бы системным видение м мира, в том числе и мира технических систем, знаниями и навыками, необходимыми специалисту для решения нетиповых, творческих задач. Нельзя сказать, что накопленный на сегодняшний день огромный научно-технический потенциал создавался людьми, не владеющими творческим подходом к решению. Однако, как показывает анализ литературы по рассматриваемому вопросу, творческие инженерные задачи, как правило, находили решение в результате некоего интуитивного озарения, посетившего разработчика.

В настоящее время возникла и активно развивается наука, изучающая методы и способы ускоренного и целенаправленного нахождения оптимальных технических решений при создании сложных технических систем. Одно из названий этой науки – «Методы инженерного творчества». Помочь ознакомиться с этой дисциплиной и призвано данное учебное пособие . Учебное пособие структурировано на 5 глав. В первой главе приводится краткий исторический обзор развития методов технического инженерного творчества и изобретательства, описан применяемый до сих пор метод проб и ошибок, приведены направления его совершенствования и присущие недостатки. Во второй главе представлены различные подходы к классификации стратегий, методов и результатов изобретательского творчества. В 3, 4 и 5-ой главах последовательно освещены методы интуитивного поиска, методы систематизации и методы упорядоченного поиска технических решений.

Учебное пособие построено на основании ряда литературных источников, представленных в списке литературы. Автор учебного пособия не всегда придерживался указания ссылок на первоисточники, чтобы не перегружать текст и не быть привязанным к точному цитированию.

Для того чтобы оживить содержание учебного пособия, в него внесены художественные иллюстрации, специально подготовленные художником, которой автор приносит огромную благодарность.

Список аббревиатур

МПиО – метод проб и ошибок;

МА – мозговая атака; мозговой штурм;

ТО – технический объект:

ПКД – проблема, как она дана;

ПКП – проблема как её понимают;

ФСА – функционально-стоимостный анализ;

FDM – фундаментальный метод проектирования Мэтчетта;

ТРИЗ – теория решения изобретательских задач;

АРИЗ – алгоритм решения изобретательских задач;

ИКР – идеальный конечный результат;

ТС – техническая система;

КПД – коэффициент полезного действия;

ВПР – вещественно-полевые ресурсы;

ТП – техническое противоречие;

ФП – физическое противоречие;

РВС – оператор «размер–время–стоимость»;

ММЧ – метод моделирования «маленькими человечками»;

РТВ – курс развития творческого воображения.

1. Предпосылки возникновения методов поиска новых технических решений

1.1. Исторические корни технического творчества и изобретательства

Современное научно-теоретическое мышление стремится проникнуть в сущность изучаемых явлений и процессов. Это возможно при условии целостного подхода к объекту изучения, рассмотрения этого объекта в возникновении и развитии, т. е. применения исторического подхода к его изучению.

Ученые и философы с древних времен пытались определить закономерности творческого мышления. Термин «эвристика», произошедший от легендарного возгласа Архимеда «Эврика!» («Нашел!»), ввел древнегреческий математик Папп Александрийский в III веке н. э. Он обобщил труды античных математиков, рассказал о том, как работал Евклид при поиске мате­матических доказательств. Методы, отличные от чисто логических, Папп объединил под условным названием «эвристика». Его трактат «Искусство решать задачи» можно считать первым специальным методическим пособием, показывающим, как вернее действовать, если задачу нельзя решить с помощью известных математических или логических приемов.

Если рассматривать историю становления эвристики хронологи­чески, то следует отметить, что разработку учения об эвристических методах начал еще древнегреческий философ Сократ (469–399 гг. до н. э.). Он ставил себе цель преподавать не готовую систему знаний, а метод, с помощью которого можно создавать систему. В беседах, дискуссиях со своими собеседниками, ставя наводящие вопросы, он стимулировал пробуждение скрытых (латентных) творческих спо­собностей людей, рождение ими продуктивных идей. Метод называл­ся майотикой Сократа. Дословно это означает «акушерское искус­ство», что достаточно метко выражает суть.

Архимеду (287–212 гг. до н. э.) принадлежит уже подробное учение о методах рассмотрения и решения задач. С помощью упро­щенных представлений (говоря современным языком, моделей) он выдвигал и обосновывал гипотезы, которые затем можно было точно доказать математически. В своем труде «Стомахион» Архимед описал некоторые способы создания новых технических объ­ектов из уже известных элементов.

Таким образом, уже в древности с развитием науки возникли методические сборники о том, как нужно действовать, если задачу заранее нельзя решить с помощью известных математических или логических методов. Последующий упадок античных наук привел к забвению на многие века за­ложенных в прошлом тысячелетии некоторых начал эвристики. Сыграла свою негативную роль церковь, которая препятствовала всему новому, а образ техника, изобретателя, алхимика связывался с действием темных сил. Технические нововведения не только не приветствовались, но и запрещались.

Лишь в XVI–XVII вв. труды Г. Галилея (гг.), Ф. Бэкона (1561–1626 гг.) возродили эвристиче­ские подходы к науке.

В 1250 г. испанский философ Раймунд Луллий спроектировал систему, с помощью которой можно было комбинировать некоторые принципы и основные понятия и тем самым получить все познания, к которым вообще способен человеческий разум. Для комбинирования применялись вращающиеся четырехугольники или окружности, на которые были нанесены буквы, цифры и рисунки. Это позволяло механически или автоматически получать разные комбинации. Метод был чисто спекулятивным, принципы и понятия не были научно обоснованы, а вся методика была поставлена на службу религии.

Вторую систему создал французский философ и математик Рене Декарт (1596–1650). В своем труде «Правила для руководства ума» он предложил метод, с помощью которого все проблемы путем разложения на простые составные части можно свести к математическим, а все математические – к алгебраическим задачам. Для алгебраических задач Декарт хотел разработать универсальный метод решения. Труд остался незаконченным. Такая судьба постигла бы его и сейчас. Бесконечное множество проблем, с которыми сталкивается человек, нельзя решить с помощью универсального алгоритма. И не для всех задач можно дать четкие алгоритмы.

Под влиянием Луллия и Декарта первым, кто попытался описать логику создания основного про­дукта инженерного творчества – изобретения, был выдающийся ученый, основатель Академии наук в Германии, (1646–1716 гг.). Он призывал пользоваться разумом так, чтобы «оценивать не только явное, но также и изобретать, откры­вать скрытое». Путь к достижению цели он видел в расчленении всех понятий на некоторые элементарные ячейки, образующие как бы азбуку человеческих мыслей. А дальше в действие вступала ком­бинато-рика: «путем комбинирования немногого можно составить бес­конечное». Всю жизнь работал ученый над усовершенствованием «искусства изобретения», обоснованным им в своей диссертационной работе. Но труд его также полон пробелов.

Однако труды Луллия, Декарта и Лейбница оказались весьма перспективными. Комбинаторика как метод мышления в наше время нашла широкое применение. В 1932 г. Вильгельм Оствальд показал, как полезны могут быть комбинации для получения изобретений. А Фриц Цвикки, американский астроном, родившийся в Швейцарии, назвал этот метод «морфологическим анализом» и применил его сначала для поиска всех возможных классов звезд. Затем разработал несколько новых астрономических приборов и классифицировал все мыслимые принципы построения движителей и двигателей летательных аппаратов. Во Франции практически одновременно А. Молье использовал аналогичный метод.

Значительный вклад в развитие идей эвристики внес Христиан Вольф (1679–1754 гг.), который дал более четкое ее определение, предложил ряд правил искусства изобретательства.

Чешский математик и философ Бернард Больцано (1781– 1848 гг.) создал фундаментальный труд – «Наукоучение». В нем есть большой раздел «Искусство изобретательства» с изложением различ­ных его методов и эвристических правил.

В России теорией эвристики в начале XX века много занимался инженер-патентовед. В ряде своих книг он на­стойчиво декларировал возможность создания науки о творчестве, и в частности об изобретательстве. Но он оказался в плену триад формальной аристотелевской логики и творческую лабораторию изобретателя так и не показал.

1.2. Метод проб и ошибок

https://pandia.ru/text/78/049/images/image007_124.gif" width="296 height=182" height="182">

Рис. 1. Схема поиска методом "проб и ошибок".

ВИ – вектор психологической инерции; ПК – поисковая концепция

От точки, которую мы назовем "Задача", изобретатель должен попасть в точку "Решение". Где именно находится эта точка, заранее, конечно, неизвестно. Изобретатель создает определенную поисковую концепцию (ПК) , т. е. выбирает направление поисков. Начинаются "броски" в выбранном направлении (они условно обозначены стрелками): "А если попробовать так?" А потом становится ясно, что неправильна вся поисковая концепция – поиски идут не в том направлении. Изобретатель возвращается к задаче, выдвигает новую поисковую концепцию и начинает новую серию "бросков". В практике количество попыток обычно намного больше, чем изображено на схеме.

При переборе вариантов безраздельно властвует субъективизм, отсутствуют правила выдвижения идей и критерии их оценки. Правда, по мере развития тех­ники, накопления знаний и опыта изобретатель реже выдвигает нелепые идеи. Он, как правило, представляет себе, что возможно и что невозможно. В процессе поис­ка ему не нужно проверять все возможные варианты – опыт, знания позволяют многие из них заранее оце­нить, принять или отвергнуть. И все-таки далеко не все поддается оценке.

МПиО и сегодня можно использовать для решения простых задач. Но как быть со сложными проблемами, которые требуют рассмотрения и оценки сотен или даже тысяч возможных вариантов? Ведь на их решение могут уйти многие месяцы или годы и безо всяких гарантий на успех. Нередко именно поэтому изобретатель подчас останавливается далеко не на лучшем варианте решения.

Изобретений без признаков яркой творческой мыс­ли многие тысячи. И если, за неимением лучшего, их все-таки внедряют, то часто этим не столько ускоряют, сколько тормозят научно-технический прогресс.

МПиО не для создания изобретений высокого уровня. Даже если кому-то удается найти удачную идею, терпеливо перебрав множество вари­антов или случайно выйдя на правильное решение, то маловероятно, что со следующей задачей изобретатель сумеет справиться на таком же уровне и в приемлемый срок. Большие творческие способности несколько увели­чивают эту вероятность, но в целом и способности не компенсируют недостатков метода проб и ошибок. Не намного облегчает дело так называемый эстафетный механизм нахож­дения сильных решений, при котором последующие по­коления исследователей и изобретателей учитывают отрицательный опыт предшественников и не ищут в заведомо бесперспективных направлениях. Выявляя и отбрасывая все новые подобные направления, исследо­ватели постепенно как бы достраивают пирамиду по­иска до самой вершины.

Хотя с помощью метода проб и ошибок создана вся современная техника, однако до 70–80-гг. XIX века несовершенство метода ничем не компенсировалось. Решение трудных задач растягивалось на десятки лет. Одной и той же проблемой иногда занималось не­сколько поколений изобретателей. Чтобы повысить эффективность творческого поиска, в него стали постепенно вовлекать все больше специалистов, причем самого разного профиля. Зону поиска в таких случаях дробили на небольшие участки, каждым из которых занимался подчас специальный многочисленный коллектив . Так рождались специализированные, узкопрофильные НИИ, КБ с многочисленными подразделениями. С развитием НТР и ростом объемов творческого труда увеличивалось число отраслевых институтов и конструкторских бюро.

Такой, чисто экстенсивный, путь развития не способен удовлетворить уровень и темпы развития техники сегодняшнего дня. В условиях современной экономики столь нерациональная растрата материальных средств, людских ресурсов, их творческого потенциала способна привести лишь к банкротству предприятия.

Некоторые скептики могут возразить и привести факты, свидетельствующие о том, что открытие или изобретение сделано внезапно, по воле случая, безо всякого пере­бора вариантов. Пришла мгновенная догадка – и задача решена. В качестве подтверждения приведут с десяток широко известных, но мало что объясняющих примеров.

Марилс вынул из бочки со скипидаром случайно упавший ту­да рабочий костюм. Он оказался чистым, без пятен. Благодаря этому в 1870 г. был изобретен способ химической очистки тканей.

Физик Беккерель случайно открыл радиоактивность, обнаружив, что завернутая в черную бумагу фотопластинка, лежавшая ря­дом с солью урана, оказалась засвеченной.

Уатта вид кипящего чайника натолкнул на идею паровой машины, а обычная паутина подсказала инженеру Брандту принцип конструкции висячих мостов.

Случайных открытий действительно было, да и сей­час есть, немало, но не бывает случайных открывате­лей! «На случай наталкиваются те, кто его заслу­живает», – прекрасно сформулировал Лагранж. Или, как сказано в биографии Пастера: «Те, кто делает все, чтобы на него натолкнуться».

Эдисону, по его собственному признанию, прихо­дилось работать над одним изобретением в среднем семь лет. По крайней мере треть этого времени уходила на по­иски идеи.

Вот что писал изобретатель Николай Тесла, работав­ший одно время в лаборатории Эдисона: «Если бы Эди­сону понадобилось найти иголку в стоге сена, он не стал бы терять времени на то, чтобы определить наиболее ве­роятное место ее нахождения. Он немедленно с лихора­дочным прилежанием пчелы начал бы осматривать соло­минку за соломинкой, пока не нашел бы предмета своих поисков. Его методы крайне неэффективны: он может за­тратить огромное количество времени и энергии и не до­стигнуть ничего, если только ему не поможет счастливая случайность. Вначале я с печалью наблюдал за его дея­тельностью, понимая, что небольшие теоретические зна­ния и вычисления сэкономили бы ему тридцать процентов труда. Но он питал неподдельное презрение к книжному образованию и математическим знаниям, доверяясь все­цело своему чутью изобретателя и здравому смыслу аме­риканца».

Названные выше открытия и изобретения сделали вовсе не случайные люди, а видные ученые, опытные специалисты, накопившие обширные знания и опыт. Случай лишь ускорил ход их мыслей, сконцентриро­вал их в едином направлении, стал своего рода им­пульсом в создании нового. Но подобное может про­исходить лишь с человеком ищущим, способным такой случай заметить, понять и, наконец, объяснить и сде­лать выводы.

Не нужно забывать, что известные «случайные» от­крытия – лишь малая толика всего огромного количества открытий и изобретений, сделанных на протяжении ис­тории человечества. А основная масса новшеств – ре­зультат постепенного накопления знаний и длительного творческого труда.

Извечный и безостановочный поиск на основе МПиО помог человеку открыть мир тех­ники. Но времена неудержимо меняются. Метод пере­бора вариантов, тысячелетия добросовестно служивший человечеству, стал недостаточно быстрым и эф­фективным. Уже в XIX в. он практически исчерпал свои возможности. А в наш век лавинного потока информа­ции, быстрого развития науки и техники МПиО стал неприемлемым. Основанная на нем тех­нология творческого труда пришла в глубокое противо­речие с требованиями научно-технического прогресса.

Систематизируем ряд "усовершенствований" МПиО:

1. Увеличение числа "проб", например, с помощью большого числа людей, одновременно работающих над проблемой.

В конце XIX века применение метода проб и ошибок усовершенствовал Эдисон. В его мастерской работало до тысячи человек, поэтому можно было разделить одну техническую проблему на несколько задач и по каждой задаче одновременно вести проверку многих вариантов. Фактически Эдисон изобрел научно-исследовательский институт.

2. Замена вещественных проб мысленными.

Замена вещественных экспериментов мысленными – большой шаг вперед. Из 100 вариантов 99 или 95 рассматривают мысленно, и только оставшиеся 1–5 вариантов испытывают "в натуре" – это огромный выигрыш в затраченных силах, средствах, времени. Увеличение количества занятых в решении проблемы специалистов – тоже большой шаг вперед в организации технического творчества. Но как можно разделить задачу и чтобы каждый перебирал свои варианты?

Объем знаний, доступных современному изобретателю, настолько велик, что результаты многих проб могут быть предсказаны заранее. Изобретатель может опираться не только на личные знания, но и на необъятную научно-техническую литературу , может консультироваться с другими специалистами. Все это позволяет теоретически оценивать большую часть вариантов, не прибегая к реальным, вещественным опытам. Мысленные эксперименты идут намного быстрее, в этом их основное преимущество. Но мысленные эксперименты субъективны, они не защищены от психологических помех. Кроме того, мысленные эксперименты, в отличие от реальных, как правило, не сопровождаются неожиданными побочными открытиями, обнаружением всевозможных непредвиденных явлений и эффектов.

3. Увеличение степени фильтрации – главная тенденция исторического развития метода проб и ошибок.

Когда-то варианты решения задач перебирали буквально наугад. Но по мере развития технических знаний формировались представления о том, что в принципе возможно и что невозможно. Сообразуясь с этими представлениями, современный изобретатель фильтрует варианты, отбрасывая то, что кажется ему неудачным. Фильтрация облегчает решение задач, имеющих нормальные, т. е. более или менее привычные, ответы, и резко затрудняет решение задач, требующих нетривиальных, "диких" идей.

4. Создание т. н. "неалгоритмических методов" (методы мозговой атаки, синектика и др.)

Несмотря на перечисленные направления улучшения работы по МПиО, он обладает рядом недостатков :

1) при решении творческой задачи по МПиО, пробы осуществляются либо по линии наименьшего сопротивления (по "вектору инерции"), либо (что лучше) "во все стороны";

2) процесс решения по МПиО плохо управляется человеком, так как зависит от множества случайных и трудноучитываемых факторов;

3) положительный опыт, полученный при решении задачи не накапливается и не становится широко доступным другим;

4) за внешнюю простоту МПиО приходится расплачиваться потерями времени, бесконечными пробами и отсутствием гарантии получения решения задачи.

2. Классификация методов поиска новых

технических решений

Существуют различные подходы к классификации методов инженерного творчества. Классификация может основываться на рассмотрении уровня полученных технических решений. Такая классификация была предложена на основе анализа множества опи­саний изобретений. Он разделил процесс творческого поиска на несколько последовательных стадий и сформулировал осуществляемые на каж-дой из них изменения. Таким образом сложилась классификация уровней творчества, одна из ее возможных модификаций представлена в табл. 1.

Поиск начинается с выбора задачи, а затем поисковой концепции (подхода), и это не случайно: очень важен верный выбор задачи в начале пути. При выборе проис­ходит конкретизация задачи. Анализ данных табл. 1 показывает, что от первого к пятому уровню меняется сам характер поиска по всем его стадиям. При этом на первом уровне используется готовое решение почти без выбора, на втором осуществляется выбор, а от третьего к пятому уровню все более сложными становятся вно­симые изменения, качественно меняется их характер. На четвертом уровне создается принципиально новый объект, а на пятом – новая система таких объектов. Таким образом, творческий характер поиска нарастает от одного уровня к другому.

Инженерная профессия и деятельность требуют от неё субъектов, технических специалистов соответствующей подготовки, определённых способностей и творческого мышления. В этой связи инженерное мышление и творчество нуждаются в своем философском осмыслении.

Инженерное мышление – это специальное, профессиональное мышление, направленное на разработку, создание и эксплуатацию новой высокопроизводительной, надёжной, безопасной и эстетической техники, на разработку и внедрение прогрессивной технологии, на повышение качества продукции и уровня организации производства.

Главное в инженерном мышлении – решение конкретных технико-технологических, производственных и организационно-управленческих проблем и задач с помощью технических средств, выдвижение и внедрение инноваций для достижения наиболее экономичных, эффективных и качественных результатов, а также для гуманизации производства и труда, техники и технологии.

В.Г.Горохов считает, что на протяжении веков сформировались три основные особенности инженерного мышления – художественная, практическая (или технологическая) и научная. Он справедливо подчеркивает, что современное инженерное мышление глубоко научно .

А.И.Ракитов, выявивший признаки, отличающие развитое инженерное мышление от прединженерного мышления, пришёл к выводу, что инженерное мышление формируется на машинной основе, как мышление по поводу конструирования, создания машин; оно рационально, выражается в общедоступной форме, имеет тенденцию к формализации и стандартизации, опирается не только на экспериментальную базу, но и на теорию, систематично формируется профессиональными инженерными дисциплинами, экономической рентабельностью. Наконец, инженерное мышление имеет тенденцию к универсализации и распространению на все сферы человеческой жизни .

В структуру инженерного мышления входят рациональный, чувственно-эмоциональный и аксиологический элементы, память, воображение, фантазии, способности, профессиональное самосознание и пр.

Понятно, что рациональную, теоретическую и методологическую его основу составляют знания прежде всего технические, технологические, естественно-научные, инженерные, однако сейчас всё большее и большее место в нём занимают и социально-гуманитарные знания.

Хотелось бы здесь особое внимание обратить на технические способности, которые позволяют инженеру добиться значительных успехов в своей деятельности.

Технические способности – сочетание индивидуально - психологических свойств, которые дают возможность инженеру при благоприятных условиях сравнительно легко и быстро усвоить систему конструкторско-технологических знаний, умений, то есть овладеть одной или несколькими техническими профессиями и добиться значительных успехов в них. Главными компонентами технических способностей, в том числе и инженерных, являются: склонность к технике, технологии и инженерному делу, к техническому творчеству, техническому мышлению; наличие пространственного воображения; техническая наблюдательность, ярко выраженные зрительная и моторная память, точность глазомера; ручная умелость (ловкость) и др.

Инженерное творчество имеет свою специфику, выходит за рамки сугубо технического мышления, которому чаще всего присущи узкий прагматизм, технократизм, асоциальность, а порой и дегуманизированность.

Инженерное творчество – это свободная неалгоритмированная деятельность, которая совершенствует старую технику и технологию и создаёт новые технические и технологические средства, обладающие производственной и социальной значимостью, а также предлагает новые, более прогрессивные формы организации труда и производства.

Надо заметить, что в инженерно-техническом творчестве процесс создания нового технического объекта идёт не от научной идеи к технике, а от технической идеи к техническому решению, а от него – к новому техническому объекту .

В инженерно-техническом творчестве часто выделяют пять этапов.

Первый этап - создание нового технического объекта, формирование проблемной ситуации с одновременным аналитическим осмыслением её структуры субъектом творчества (отражение технической потребности, осознание необходимости нового и недостатков старого, раскрытие конкретных технических противоречий и формулировка технических задач с определённой структурой).

Второй этап - рождение и вынашивание новой технической идеи (нового принципа, новой трансформации и др.).

Третий этап - разработка «идеальной модели», функциональной и структурной схемы будущего технического объекта («идея - образ»).

Четвертый этап - конструирование. Переход от мысленного построения к реальным разработкам - качественный скачок. Поиск реальных форм воплощения нового качества - это создание нового в специфике конкретных условий. С этого этапа идет разрешение противоречий между идеальным и материальным, между теорией и практикой.

Пятый этап - предметное и относительно завершённое воплощение изобретения, усовершенствование или приспособление в новом техническом объекте. Он складывается из трех основных стадий: создание экспериментального образца - испытание в экспериментальных условиях - доработка и изменение на основе данных эксперимента; создание промышленного образца - ограничение производственных условий - доработка на основе полученных данных; серийное или массовое производство - применение в многообразных промышленных условиях - доработка путем устранения недостатков функционирования новых технических средств в разнообразных условиях .

Другими словами, инженерно-техническое творчество выступает как единство экспериментального и теоретического поиска решения технико-технологических проблем и задач.

В.П.Булатов и Е.А.Шаповалов в инженерной деятельности выделяют несколько иные крупные этапы .

Перечислим основные инженерные операции, составляющие в совокупности пять этапов, элементов структуры инженерной деятельности.

На этапе определения потребности инженер составляет представление о ней, формулирует конечную цель деятельности в наиболее общем виде и конкретизирует эту цель путем целеполагания отдельных технических характеристик создаваемого объекта.

На этапе выработки и принятия решения осуществляются его информационная подготовка, выработка вариантов и нахождение оптимального среди них. Истинность найденного решения подвергается проверке путем теоретического анализа, а после изготовления макета или опытного образца – анализом практических результатов комплекса экспериментов над ним. Затем решение принимается инженером. Для того чтобы оно было принято обществом, и технический объект запущен в производство, необходимо еще доказать целесообразность данного решения. Этим заканчивается рассматриваемый этап процесса инженерной деятельности.

На этапе подготовки производства составляется вся техническая документация, необходимая для изготовления технического объекта, а именно, проект и его экономическое, социальное, экологическое и другие обоснования.

На этапе регулирования производства инженерная деятельность связана с функцией технического управления, обеспечения взаимодействия людей и техники в процессе изготовления технического объекта. Как известно, функция управления производством относится в большей степени к экономической, хозяйственной деятельности. Инженер не подменяет хозяйственного руководителя, но в то же время участвует в решении экономических вопросов производства. Этот этап инженерной деятельности – ключевой и очень важен для общества. Именно здесь расходуются людские, материальные, финансовые ресурсы, и общество вправе ожидать высокого конечного результата производства. В материальном производстве как основе жизнедеятельности общества соединяются все виды социальной деятельности, в том числе и инженерная.

На этапе удовлетворения технической потребности инженерная деятельность связана с управлением процессом использования техники. Здесь не только проверяется качество инженерных решений, но и обнаруживаются новые технические потребности. Они составляют исходные данные для повторения цикла инженерной деятельности.

Таковы функции элементов структуры инженерной деятельности. Каждый из них определяет крупные виды разделения труда внутри инженерной профессии. Поэтому структура инженерной профессии в общем виде совпадает с внутренней структурой инженерной деятельности.

Структура инженерной профессии сложна и многообразна. Она детерминируется не только внутренними факторами инженерной деятельности, но и внешними (общественным разделением труда, состоянием технического базиса общества, научно-технической политикой государства, материально-техническим и финансовым обеспечением инженерной деятельности и др.).

Функции профессиональной деятельности инженера, содержание его труда определяются структурой инженерной деятельности. Назовем этот структурный срез инженерной профессии общей структурой, так как количество её элементов не зависит от конкретной технической потребности. Общая структура инженерной профессии состоит из пяти последовательно соединенных элементов, симметричных пяти этапам структуры инженерной деятельности. Это следующие элементы или крупные блоки инженерной профессии: общее проектирование, инженерные исследования и разработки, проектирование и конструирование, производство и строительство, эксплуатация.

Отраслевая структура инженерной профессии основана на общественном разделении труда, определяющем место профессиональной деятельности инженера в народном хозяйстве: отрасль промышленности, строительство, сельское хозяйство, транспорт, наука, здравоохранение, сфера обслуживания и т.п. Технический базис общества определяет структуру инженерных специальностей через конкретный вид техники, на который направлена деятельность инженера, - механическая, измерительная, медицинская, транспортная, бытовая техника, электрические установки, строительные конструкции и т.п.

Исключительно важным результатом инженерно-технического творчества является изобретение. Изобретение – продукт творческой деятельности, в котором на основе научных знаний и технических достижений создаются новые принципы, действия или контролирование технических систем, их отдельных компонентов. Если научное открытие выступает приращением нового знания к существующему, то изобретение является приложением этого знания с целью его практического использования].

Понятно, что речь здесь идет о подлинных, а не мнимых инженерах.

Инженеры, чтобы соответствовать своему центральному месту в современном производстве и по-настоящему профессионально выполнять свои функции, должны иметь творческое мышление и заниматься инновационной деятельностью.

Для повышения творческой активности инженеров предусмотрено их участие в научно - технических конференциях, на которых обсуждаются вопросы состояния и перспективы развития производства, науки, техники, технологии и инженерного дела на современном этапе. Ещё необходимо повысить эффективность работы по организации рационализаторской и изобретательской деятельности, создавать совет молодых специалистов и учёных и др.

В этой связи уместно подчеркнуть, что научно-техническое творчество студентов, целенаправленно организованное в техническом вузе, является важным средством формирования у будущих инженеров творческого мышления, навыков и умений для осуществления инновационной деятельности, для решения сложных технико-технологических, инженерных и производственных проблем и задач в будущей их профессиональной деятельности. Положительный опыт в организации и осуществлении научно-технического творчества студентов имеется у таких уфимских вузов, как УГАТУ и УГНТУ.

Такова самая общая характеристика инженерного мышления и творчества.


А. И. Половинкин

ОСНОВЫ ИНЖЕНЕРНОГО ТВОРЧЕСТВА

2-е издание, переработанное и дополненное

Допущено Министерством высшего и среднего специального образования СССР в качестве учебного пособия для студентов высших технических учебных заведений

«МАШИНОСТРОЕНИЕ» 1988

ББК 32.81 П52 УДК 668.512.2 (075.8)

Рецензенты д-р техн. наук проф, Р. Р. Мавлютов, канд. техн. наук А. В. Никитин, канд. психологических наук А. А. Вербицкий Половинкин А. И.

Основы инженерного творчества: Учеб. пособие для студентов втузов.—М.: Машиностроение, 1988. — 368 с.г ил.

ISBN 5-217-00016-3

Даны основные понятия, единые для различных эвристических и машинных методов инженерного творчества (функция технического объекта, функциональная структура, физический принцип действия, техническое решение, критерии развития и др.). Изложены наиболее распространенные эвристические методы: мозговой штурм, метод эвристических приемов, морфо< логический анализ и синтез, функционально-стоимостной анализ, Изложены машинные методы поискового проектирования и конструирования применительно к задачам поиска улучшенных физических принципов действия и технических решений. Весь материал иллюстрирован иа примерах из различных областей техники.

ISBN 5-217-00016-3 Издательство «Машиностроение», 1988

ПРЕДИСЛОВИЕ

В «Основных направлениях экономического и социального развития СССР на 1986—1990 годы и на период до 2000 года», утвержденных XXVII съездом КПСС, указана генеральная линия нашей страны — ускорение социально-экономического развития на основе научно-технического прогресса и всесторонней интенсификации. При этом отмечено главное направление работы: «Осуществить коренное повышение технического уровня выпускаемой продукции. Обеспечить создание и освоение производства техники новых поколений, позволяющей многократно повысить производительность труда, улучшить его условия, существенно снизить материальные затраты». Решение этих задач в первую очередь связано с изобретением, разработкой и освоением новых машин, приборов и оборудования, новых технологий и материалов.

Один из главных недостатков в подготовке большинства выпускников инженерных специальностей — неумение самостоятельно ставить новые задачи, неумение решать задачи поиска новых конструкторско-технологических решений на уровне изобретений, обеспечивающих в итоге повышение качества продукции, достижение мирового уровня, всестороннюю интенсификацию и экономию ресурсов. Учебный процесс в основном построен на решении таких теоретических и практических задач, для которых уже имеется готовая постановка задачи, дается способ ее решения в виде четкого алгоритма, имеются примеры решения задач по этому способу, а преподавателю (а часто и студенту) известен ответ. При этом решение задачи часто превращается в рутинную работу, не требующую глубоких творческих размышлений.

В дополнение к приобретению навыков решения таких задач (что выпускник также должен уметь хорошо делать!)будущийспециалист обязан овладетьзнаниями и навыками решения творческих инженерных задач, в которых нет готовой постановки, неизвестен способ решения, нет близких примеров решения аналогичных задач, а преподавателю — неизвестен ответ, обычно имеющий несколько вариантов.

Необходимость восполнения указанного пробела в подготовке специалистов особо выделена в «Основных направлениях перестройки высшего и среднего специального образования в стране», где сказано: «Первоочередная задача — осуществить решительный поворот от массового, валового обучения к усилению индивидуального подхода, развитию творческих способностей будущих специалистов... Процесс формирования инженерных кадров должен быть подчинен развитию у них навыков самостоятельного технического творчества, системного анализа технико-экономических проблем, умения находить эффективные решения».

Введение в вузах дисциплины «Основы инженерного творчества» призвано сыграть ключевую роль в реализации этого директивного указания, а также в перестройке и повышении эффективности их работы. Опыт преподавания такой дисциплины в ряде вузов страны и за рубежом позволяет прогнозировать прогрессивные положительные результаты изучения методов инженерного творчества в увязке с другими дисциплинами и различными видами учебной работы.

Во-первых, резко возрастает доля студентов, работающих увлеченно и самостоятельно, в итоге приобретающих активную позицию и повышенный творческий потенциал — весьма актуальные качества для молодого специалиста. Во-вторых, многократно увеличивается доля курсовых и дипломных проектов, содержащих творческие инженерные решения. В-третьих, возрастает объем интеллектуальной продукции на кафедре в виде авторских свидетельств и патентов на изобретения, сделанных преподавателями и студентами, а также в виде разработанных и реализованных на практике предложений по новым конструкторско-технологическим решениям.

Автор выражает благодарность и признательность Т. П. Бабинцевой, С. А. Генералову, Т. М. Зверевой, С. Г. Колесникову, С. А. Николаеву, Я- Ш. Флейтману, С. А. Фоменкову, оказавшим большую помощь в подготовке рукописи книги.

УСЛОВНЫЕОБОЗНАЧЕНИЯ

АБИЗ — автоматизированный банк инженерных енаний

ИТ — инженерное творчество ИТР — идеальное техническоерешение КПД — коэффициент полезного действия

МА — мозговая атака НТП — научно-технический прогресс

ОС — окружающая среда РЭА — радиоэлектронная аппаратура САПР — система автоматизированного проектирования СДС — синтез допустимой структуры

ТЗ — техническое задание ТИЗ — творческая инженерная задача

ТО — технический объект

ТР — техническое решение

ТФ — техническая функция УПП — универсальноепространство параметров -

ФО — физическая операция

ФП — функция планирования ФПД — физическийпринцип действия

ФС — функциональная структура ФСА — функционально-стоимостной анализ ФТЭ — физико-технический эффект

ФУ — функция управления

ФЭ — функциональный элемент ШЛП — шаг локального поиска

ЭП — эвристический прием

ЭФ — энергетическая функция

ВВЕДЕНИЕ

История развития человечества — это прежде всего история изобретения, создания и совершенствования различных изделий и технологий. Систематическое использование и обработка нашими далекими предками камня и палки, начавшиеся около миллиона лет назад, технология добывания и использования огня, возникшая примерно 100 тыс. лет назад, лук и стрелы с кремниевыми наконечниками, появившиеся около 10 тыс. лет назад, повозка с колесами, выплавка бронзы, водяное колесо, токарный станок, скрипка, паровая машина, пластмассы, телевизор, вычислительная машина, космический аппарат, искусственное сердце и необозримо многое другое — все это результаты удивительного, мучительного и величественного процесса, называемого творчеством.

Тысячи известных и безымянных изобретателей и рационализаторов породили необъятный теперь мир техники и технологии. Этот мир действительно велик. Только в нашей стране номенклатура выпускаемых изделий превышает 20 млн. единиц!

Если говорить в целом об истории инженерного творчества (ИТ), то прежде всего вызывают удивление темпы его роста, которые иллюстрируются табл. 1, где под классом изделий подразумеваются технические объекты, имеющие одинаковые или очень близкие функции (например, класс молотков, болтов, стульев, стиральных машин, токарных станков, паровых турбин и т. д.). При взгляде на табл. 1 невольно возникает вопрос, какие же показатели по числу классов и сложности изделий будут через 100 лет?! Что изменится за этот, с одной стороны, малый промежуток времени (по сравнению со всей историей технического прогресса), а с другой — очень большой, если учесть современные, заметные каждому темпы развития техники, которые продолжают ускоренно возрастать?!

Что Вы, дорогой читатель, запишите в последней строке табл. 1? Каков будет мир техники через 25, 50 и 100 лет?

Цели и задачи настоящей учебной дисциплины — обучение навыкам постановки и решения задач поиска (изобретения) новых, более эффективных конструкторско-технологических решений, в том числе решений, превосходящих мировой уровень. Такие задачи возникают при разработке новых машин, приборов, технологического оборудования и технологий, при выполнении плановых работ по реконструкции и модернизации. Решение проблемы интенсивного развития экономики выдвинуло большое число дополнительных творческих инженерных задач, связанных с экономией трудовых ресурсов, сырья, материалов и энергии.

Другая не менее важная цель изучения дисциплины — подготовка к овладению интенсивной технологией инженерного творчества, основанной на использовании методов ИТ, специально подготовленной информации и вычислительной техники.

Почему с возрастающей настойчивостью ставится вопрос массового обучения молодежи методам ИТ?

В возрасте до 20—25 лет значительно легче формируется творческая личность, осваиваются психология и методология ИТ, нежели после 30 лет. Известно, что революционные идеи создания новых высокоэффективных машин, аппаратов, приборов и технологий чаще выдвигают и разрабатывают люди до 30 лет. Ускорение научно-технического прогресса, экономическая мощь страны находятся в прямой зависимости от ее творческого потенциала, т. е. от числа творчески работающих конструкторов, технологов, ученых. Широкое и активное участие молодежи в инженерном творчестве многократно увеличивает творческий потенциал страны.

Другая причина связана с возрастанием сложности изделий, что было уже показано в табл. 1, в глобально-историческом разрезе. Однако особый интерес вызывают последние десятилетия, в течение которых наблюдаются быстрый рост сложности изделий по числу деталей и используемых физических эффектов, расширение номенклатуры используемых материалов и комплектующих элементов, рост разнообразия самих технических систем, сокращение времени их создания и морального старения, возрастание объема патентной и научно-технической информации и т. д. Эти факторы привели к такому положению, когда объем работ по выбору новых улучшенных проектно-конструкторских решений, т. е. по ИТ, начиная с середины XX века возрастает за каждые 10 лет примерно в 10 раз (при условии сохранения качества разработок). Это по существу не прекращающееся во времени взрывообразное увеличение объема работ все более не согласуется с фактическим ростом числа научных и инженерно-технических работников, призванных обеспечивать технический прогресс. Ниже показано относительное возрастание объема работ по ИТ и максимально возможные темпы роста кадрового потенциала, призванного заниматься ИТ:

Заметим, что среди всех инженеров, техников и рабочих без обучения методам ИТ результативно занимаются ИТ не более 20%, т. е. абсолютный прирост кадрового потенциала в соответствии с приведенными данными нужно умножить на коэффициент 0,1—0,2.

Несоответствие между нормальным ростом объема работ и качеством подготовки инженерных кадров породило ряд негативных последствий, в первую очередь снижение качества многих новых изделий. В ближайшем будущем наиболее высокие темпы технического прогресса (в смысле повышения показателей эффективности изделий) будут в тех странах, в которых объем работ по ИТ в наибольшей мере приближается к нормальному росту. В связи с этим мы сможем справиться с быстро нарастающим объемом работ по ИТ и обеспечить нормальные темпы технического прогресса при выполнении двух условий:

при введении массового обучения ИТ;

при широком использовании вычислительной техники в решении трудоемких и сложных задач ИТ.

Существует мнение, что умение находить, ставить и решать изобретательские и рационализаторские задачи — это «божий дар», которому нельзя обучить. Как относиться к такой точке зрения? Может ли каждый научиться изобретать?

По мнению ряда авторитетных педагогов обучение ИТ заметно повышает творческий потенциал каждого человека. Конечно, у одаренных людей при одинаковом обучении со всеми творческий потенциал остается относительно более высоким. Здесь вполне можно провести аналогию со спортом. Каждого здорового человека можно научить достаточно хорошо играть в волейбол или шахматы, но у спортсменов, имеющих соответствующие природные данные, результаты будут выше.

Если говорить конкретнее, то основная цель обучения заключается в выявлении и раскрытии творческих наклонностей и способностей, о которых многие обучаемые не подозревают (и может быть до конца своей жизни не узнали бы!). Обучение ускоряет приобретение опыта и мастерства одаренными (в смысле ИТ) специалистами. Для людей, имеющих слабые природные задатки, обучение дает в руки инструмент и навыки, которые позволяют успешно решать довольно широкий круг творческих инженерных задач. И еще один нюанс, который лучше передать словами английских проф. М. Тринга и Э. Лейтуэйта: «Как показал наш собственный опыт, лишь немногие из тех, кто наделен талантом изобретателя, умеют развивать талант и пользоваться им» .

Таким образом, необходимость массового обучения молодежи ИТ кроме всего прочего сильно связана с поднятием престижа инженера, популярности инженерного труда и повышением качества обучения во втузе. Дело в том, что многие инженеры, не умея ставить и решать творческие задачи, вынуждены заниматься утомительной и неинтересной рутинной работой. Приобретение навыков постановки и решения творческих инженерных задач значительно увеличит долю творческого труда. Хорошо известно, что с ИТ обычно связаны наиболее яркие страницы внутренней жизни человека, работающего в области техники. Кроме того, ИТ часто приносит еще дополнительное моральное и материальное вознаграждение и глубокое удовлетворение полученным результатом. Поэтому массовое обучение методам ИТ — это один из наиболее действенных путей повышения интереса к инженерному труду.

Ответим на ряд вопросов. Какие в настоящее время существуют методы ИТ? Известно довольно большое число методов, которые условно можно разделить на две группы:

1.Эвристические методы технического творчества, основанные на использовании достаточно четко описанных методик и правил поиска новых технических решений. Эти методы начали разрабатывать еще с древних времен (Сократ, Архимед); особое внимание им уделили выдающиеся ученые XVII—XVIII вв. Ф. Бэкон, Р. Декарт и Г. Лейбниц. Начиная с 40-х гг. нашего столетия резко возросли исследования и разработки по созданию и применению эвристических методов, методик, приемов, принципов, правил и т. п. В настоящее время известно более 100 эвристических методов, методик, подходов и их модификаций.

2.Компьютерные методы поискового конструирования, основанные на использовании ЭВМ в решении творческих инженерных задач. Эти методы начали разрабатывать и применять в 60-х годах. В настоящее время известны десятки различных подходов и методов поискового конструирования.

Обзор эвристических и компьютерных методов ИТ достаточно широко освещен в литературе .

Принимая во внимание довольно большое разнообразие методов ИТ и то, что их число продолжает расти (в силу молодости самой дисциплины), зададимся вопросом: Какому методу или каким методам рекомендуется в первую очередь обучать?

Как считают опытные педагоги и методисты, нецелесообразно обучать какому-либо одному методу или стараться освоить все имеющиеся подходы и методы. Студент или специалист на первом этапе или на первой ступени овладения методами ИТ должен научиться свободно пользоваться небольшим набором из трех — пяти методов. Дальнейшее повышение эффективности деятельности творчески работающего инженера связано с приобретением собственного опыта и расширением набора используемых методов и систем методов решения творческих инженерных задач.

Настоящий курс направлен на изучение трех эвристических методов (методы мозговой атаки, эвристических приемов, морфологического анализа и синтеза) и трех компьютерных методов (методы синтеза технических решений на И—ИЛИ графах, синтеза физических принципов действия, математического программирования — синтеза оптимальных структур и форм). Имеются и другие эффективные методы и системы методов инженерного творчества; метод синектики , метод контрольных вопросов 141], алгоритм решения изобретательских задач 12], специальные объектно-ориентированные компьютерные методы синтеза и анализа конструкторско-технологических решений и др.

Какие принципиальные отличия имеют эвристические методы технического творчества и методы поискового конструирования?

В 1977 г. было проведено условное разделение между эвристическими и компьютерными методами (с помощью первых решают задачи технического творчества, с помощью вторых — задачи поискового конструирования). К задачам технического творчества были традиционно отнесены такие, при которых человек решает поставленную задачу способом «проб и ошибок» или с помощью эвристических методов без использования ЭВМ. К задачам поискового конструирования отнесены такие творческие инженерные задачи, которые человек решает с использованием ЭВМ.

...

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБАЗОВАНИЮ Государственное образовательное учреждение ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ _________________________________________________ А.А.Черный ПРИНЦИПЫ ИНЖЕНЕРНОГО ТВОРЧЕСТВА Учебное пособие Пенза 2005 УДК 687.02/.05 Черный А.А. Принципы инженерного творчества: Учеб. пособие. – Пенза: Изд-во Пенз. гос. ун-та, 2005. - 43 с.: библиогр. 14 назв. Изложены принципы инженерного творчества. Рассмотрены сущ- ность и принципы системного подхода к инженерным задачам, методы ак- тивизации инженерного творчества, возможность применения ЭВМ в творческом процессе. Приведены алгоритм решения изобретательских за- дач и схемы описания нового технического решения. Учебное пособие подготовлено в Научно-исследовательском ин- ституте плавки литейных сплавов при Пензенском государственном уни- верситете. Оно может быть использовано в учебном процессе при подго- товке инженеров по специальности «Машины и технология литейного производства», а также инженерно-техническими работниками при выпол- нении научно-исследовательских работ. Рецензенты: Кафедра «Машины и технология литейного производства» Камско- го политехнического института»; А.С.Белоусов, главный металлург ОАО «Пензадизельмаш» © А.А.Черный, 2005 2 ВВЕДЕНИЕ История возникновения и развития человечества – это, прежде всего, история изобретения различных изделий и технологий. Инженерное дело – это творческая техническая деятельность. В ли- тейном производстве имеется огромное количество нерешенных проблем. И поскольку без литых заготовок невозможно сделать многие машины, устройства, приспособления, сооружения, то предстоит решать сложные задачи улучшения качества и свойств отливок, создания новых компози- ционных материалов на основе литья. Оборудование, технологические процессы литейного производства необходимо непрерывно совершенство- вать, заменять более эффективными, безопасными, безвредными, энерго- сберегающими, экономичными разработками на основе новых открытий и изобретений. Чтобы стать изобретателем, нужным производству специалистом, надо научиться инженерному творчеству. По мере включения специалиста в творческий процесс накапливается опыт решения творческих задач. Ин- женер постепенно может стать новатором, крупным производственным деятелем, рационализатором, изобретателем. На основе изобретений многие специалисты защищают кандидат- ские и докторские диссертации. Инженеры-изобретатели становятся уче- ными, обучают изобретательству молодых специалистов. А это способст- вует тому, что количество запатентованных изобретений с каждым годом возрастает. Без изобретений нет новой техники, новых технологий. Поэтому обучение изобретательству дает большой экономический эффект. Запатен- тованные изобретения можно выгодно не только внедрять в производство, но и продавать зарубежным фирмам. Следовательно, инженерное творчество обеспечивает ускорение научно-технического прогресса и экономическое укрепление государства. 3 ХАРАКТЕРИСТИКА ИНЖЕНЕРНОГО ТВОРЧЕСТВА Различают научное, научно-техническое и техническое творчество. Научное творчество удовлетворяет потребности познания окружающего мира, т. е. это творчество в фундаментальных науках, результатом которо- го являются открытия. Открытие - это установление неизвестных ранее объективно су- ществующих закономерностей, свойств и явлений материального мира, вносящих коренные изменения в уровень познания. Научно-техническое творчество заключается в исследовании за- кономерностей известных явлений с целью их использования в практике. В основе этого вида творчества лежат прикладные науки, различного рода отраслевые исследования, в результате которых разрабатываются новые технические и технологические решения. Результатом данного вида твор- ческой деятельности являются преимущественно сложные изобретения. Техническое творчество реализуется в результате инженерной дея- тельности, направленной на разработку новых технических решений на основании известных закономерностей. Результатом технического творче- ства являются простые изобретения, рационализаторские предложения и конструкторские разработки. В качестве основного признака отличия одного показателя, харак- теризующего результат процесса творчества, от другого можно использо- вать степень новизны полученного решения. Промышленный образец – это новое художественно- конструкторское решение изделия, определяющее его внешний вид, соот- ветствующее требованиям технической эстетики, пригодное к осуществле- нию промышленным способом и дающее положительный эффект. Любую инженерную задачу (ИЗ) можно упрощенно представить совокупностью трех компонентов: < ИД, А, Р >, где ИД - исходные данные (материалы, сырье, энергия, информация и т. п.); А - алгоритм решения за- дачи (способ переработки сырья, обработки информации или преобразова- ния энергии, технология изготовления изделий); Р - результат решения за- дачи (конечный продукт). Эти компоненты в зависимости от типа задачи могут быть извест- ными (заданными) или неизвестными (неопределенными). В зависимости от этого все множество инженерных задач можно свести к конечному чис- лу типов задач. Если все компоненты задачи известны, то имеет место обычная инженерная задача. Ко второму типу относятся задачи, в которых неизвестны исходные данные. Это инженерная задача поиска сырья, исходного продукта, источ- 4 ника энергии или информации и т.д. для достижения известной цели из- вестным способом. В третьем типе задач неизвестен способ преобразования исходных данных в конечный результат. Это инженерная задача поиска новой техно- логии переработки сырья, нового способа преобразования энергии или ал- горитма обработки информации, новой конструкции или новой технологии изготовления заданного изделия из конкретных материалов. К четвертому типу относятся задачи, в которых неизвестен конеч- ный результат, т.е. задачи поиска новой модели конструкции, формы, функции, материала и т.д. путем преобразования заданных исходных дан- ных известными способами (технология). Пятый тип – это задачи, в которых известен лишь конечный ре- зультат (продукт, изделие). Это инженерные задачи поиска нового исход- ного сырья и новой технологии для достижения известной цели, создания искусственных конструкций, материалов. В шестом типе задач известными являются только исходные дан- ные. Это инженерные задачи утилизации, эффективного использования ре- зервов и возможностей, превращения вредных явлений в полезные, поиска нового применения известных объектов. К седьмому типу относят задачи, в которых известен лишь способ, явление преобразования. Это задачи практического применения открытий, результатов научных исследований, законов, физических и химических эффектов и явлений. И, наконец, последний тип, когда неизвестен ни один из компонен- тов, относится к новым, пока еще не существующим задачам. Данная классификация инженерных задач позволяет предопреде- лить необходимые методы и средства решения. Если один или два компо- нента неизвестны, то задача может быть отнесена к изобретательским за- дачам. Решение изобретательской задачи немыслимо без сбора, анализа и переработки информации о новейших творческих разработках, о тенден- циях развития соответствующей отрасли техники и конкретного техниче- ского объекта, о существующих и прогнозируемых общественных потреб- ностях, новых научных достижениях и технических возможностях. Одним из решающих факторов научно-технического прогресса яв- ляется трансформация научных знаний и результатов творческой деятель- ности в производственные процессы. 5 СИСТЕМНЫЙ ПОДХОД В ИНЖЕНЕРНОМ ТВОРЧЕСТВЕ Системой называется такая совокупность элементов, обладающих различными свойствами, параметрами и пространственной структурой, ко- торая обеспечивает выполнение какой-либо единой цели или функции. Система – это совокупность элементов, связанных технологически, конст- руктивно, функционально. Эффективное решение инженерной задачи возможно лишь на ос- нове всестороннего, целостного рассмотрения разрабатываемой системы и ее развития (изменения) в процессе взаимодействия с окружающей средой. Лишь такой системный подход способен привести к подлинно творческим новаторским решениям, вплоть до сложных изобретений и научных от- крытий. Для систем рассматриваются три характерных типа задач. Задача анализа – задана структура системы, необходимо опреде- лить ее функционирование (поведение). Задача синтеза – заданы характер функционирования и другие требования к системе, необходимо определить структуру, которая удовле- творяет постановленным требованиям. Задача «черного ящика» - задана система, структура которой неиз- вестна или частично, определить ее функционирование и, возможно, структуру. В общем случае, для того чтобы любой объект можно было рас- сматривать как систему, необходимо определить его системные характери- стики: функцию, структуру, свойства и связи с окружающей средой. В задачу системного анализа объектов входят: - разработка формализованных моделей, описывающих структуру, функцию и свойства систем; - характеристика иерархического строения систем и взаимосвязей элементов различного уровня; - определение интегральной функции системы на основе функций отдельных элементов; - определение общих свойств системы, исходя из свойств состав- ляющих ее элементов. Системный подход к творческой деятельности ориентирует инже- нера применять научные методы там, где силы воображения и опыта не- достаточно. Такой подход является предпосылкой изобретательской дея- тельности и эффективного проектирования и конструирования, а также по- зволяет отойти от устаревших традиций и шаблонов. С развитием науки появляются новые знания, которые позволяют разработать новые материалы, технические решения и использовать их для 6 создания нового технологического оборудования (объектов техники). Но- вая техника внедряется в производство с целью повышения его эффектив- ности. Отсюда очевидно, что темпы развития науки должны опережать темпы развития техники и производства. Освоение нового изделия или технологического является, как пра- вило, результатом большой предварительной работы, включающей науч- ные исследования, научное прогнозирование, патентный поиск, сравнение с лучшими образцами передовых отечественных предприятий и зарубеж- ных фирм, предварительный расчет экономической эффективности капи- тальных затрат. Наибольший экономический эффект дают новые изделия или технологические процессы, разработанные на основе фундаменталь- ных исследований, принципиально новых научных идей и направлений, технических решений, защищенных охранными документами (авторскими свидетельствами или патентами). Важную роль в повышении эффективности инженерной деятельно- сти и ее творческих результатов при поиске новых технических решений играют знание закономерностей развития технических систем, умение их анализировать и использовать для выявления резервов их развития, опре- деления целесообразности совершенствования или создания принципиаль- но новых технических систем Закономерности развития техники должны помогать находить от- веты на ряд вопросов, которые могут возникать у творчески работающих конструкторов и инженеров, технологов. Это следующие вопросы: Как для определенного класса технических систем и техники в це- лом происходит прогрессивная конструктивная эволюция, т.е. как со вре- менем изменяются функциональная структура, принцип действия и техни- ческое решение? Как со временем изменяются производительность труда и другие критерии прогрессивного развития определенного класса технических сис- тем? Как возрастают со временем потребности и соответствующие им функции технических систем в смысле разнообразия и количественной ха- рактеристики? Как возрастает со временем разнообразие технических систем, имеющих одинаковые или близкие функции, а также разнообразие техни- ческих систем в отрасли? Как возрастает со временем сложность технических систем? Как растут со временем затраты энергии, материалов и информа- ции в расчете на одного человека? Таким образом, инженер, приступая к разработке новой техниче- ской системы, должен, используя диалектический метод и системный под- 7 ход как методическую основу технического творчества, проанализировать динамику развития и обоснованно сформулировать конкретную программу своих действий. Исходя из того, что технический объект рассматривается как сис- тема, системный подход основывается на ряде принципов, раскрывающих его сущность. Рассмотрим некоторые из них. Принцип целостности заключается в признании того, что некото- рые совокупности объектов могут проявлять себя как нечто целое, обла- дающее такими свойствами, которые принадлежат именно всему целому (системе), а его составным частям элементам и подсистемам данной (сис- темы), и позволяют выделить эту совокупность из основного мира, состав- ляющего окружающую среду данной системы. Например, совокупность гладильной подошвы, нагревательного элемента в виде спирали, регулятора температуры, ручки, собранных оп- ределенным образом, образует электрический утюг, который рассматрива- ется не как совокупность деталей, а как нечто целое, самостоятельное, об- ладающее свойствами, отличными от свойств своих частей. Из этого прин- ципа следует важная особенность системного подхода, заключающаяся в требовании не ограничиваться при разработке новых машин, устройств анализом их частей и взаимодействии между ними, а обязательно пости- гать и учитывать свойства системы как целого. Принцип совместимости элементов в системе указывает на то, что система, обладающая определенными системными свойствами, может быть построена не из любых элементов, а только из таких, свойства кото- рых удовлетворяют требованиям совместимости. Это означает, что собст- венные свойства элементов (форма, размеры, контур, поверхность, цвет, физико-механические характеристики и др.) должны быть такими, чтобы обеспечивать взаимодействие их друг с другом как частей единого целого. Принцип структурности заключается в признании того, что эле- менты, из которых создается система, находятся в системе не произвольно, а образуют определенную, характерную для данной системы структуру, описываемую некоторым системообразующим отношением, выражающим взаимосвязь и взаимозависимость между элементами в системе. Принцип нейтрализации дисфункций указывает на то, что в силу своих внутренних свойств или под воздействием внешней среды элементы системы могут приобретать свойства и функции, не соответствующие свойствами и функциям системы в целом. Поэтому при создании новых систем из определенной совокупности элементов с целью обеспечения ус- тойчивости системы необходимо предусматривать «механизмы», на пра- вильные на нейтрализацию дисфункций. 8 Принцип эволюции утверждает, что для различных технических систем характерно явление эволюции, поэтому необходимо использовать эволюцию как мощный инструмент технического творчества и не наносить вред будущему непродуманным вмешательством в эволюционные процес- сы развития. Принцип специализации и интеграции функций указывает на то, что при развитии систем происходят два как бы противоположных и в то же время взаимодополняющих явления, способствующих повышению эффек- тивности системы: с одной стороны, специализация элементов на выпол- нение определенных функций, с другой - сосредоточение родственных функций у определенных элементов, т.е. возникновение интегральных функций и иерархических структур. Принцип лабилизации функций. С развитием системы появляется свойство быстрого изменения и приобретения новых функций при относи- тельной стабильности состава и структуры системы. Принцип адаптации. Техническая система, функционирующая в изменяющейся окружающей среде, должна обладать свойствами адапта- ции, т.е. свойством перестраивать свои структуру, параметры и функцио- нирование с целью удовлетворения потребностей окружающей среды. Необходимость создания адаптивных систем следует из самого факта изменчивости окружающей среды, а возможность адаптации дости- гается вследствие изменения параметров структуры и поведения системы, применения механизмов положительных и отрицательных обратных свя- зей. Принцип изоморфизма указывает на существование изоморфизмов в структуре, функционировании и развитии систем различной субстанци- онной природы. Поиск общих свойств и закономерностей в строении, функционировании и развитии различных систем позволяет использовать их в разработке новой техники и технологии. Принцип полифункциональности заключается в признании поли- функциональности в назначении и поведении технических систем, выте- кающей из возможности существования системы нескольких целей или функций. Принцип комплексности состоит в том, что при разработке новых технических систем целесообразно использовать комплексный подход, за- ключающийся в построении и синтезе разноаспектных моделей одной и той же системы, а также в привлечении к работе представителей разных специальностей с целью полноты охвата всех проблем и аспектов. Принцип итеративности процесса разработки новых технических систем. Необходимость итераций вытекает из следующего: инженер, раз- рабатывая сложную техническую систему, не может охватить все возмож- 9 ные ситуации сразу, поэтому его знание оказывается неполным, нуждаю- щимся в дополнениях, уточнениях, в сравнениях с действительностью для выявления и устранения упущений. Необходимая полнота знания полнота знания и понимания достигается лишь в результате ряда итераций. Принцип учета вероятностных факторов. Любая достаточно сложная техническая система вследствие невозможности проследить все причинно-следственные связи в самой системе и в окружающей ее среде выступает как не вполне детерминированный объект. Отсюда при созда- нии новых технических систем и технологических процессов встает необ- ходимость статистического исследования и вероятностной оценки явле- ний, протекающих в системе и в окружающей среде путем сбора и обра- ботки соответствующих статистических данных. Принцип иерархической декомпозиции заключается в признании от- носительности понятий «система» и «элемент» в том смысле, что всякий элемент может быть рассмотрен как система при переходе к более детали- зированной страте анализа и всякая система может быть рассмотрена как подсистема или элемент более обширной системы. Принцип вариантности указывает на существование различных альтернатив технического решения системы, различных путей достижения одной и той же цели. Отсюда вытекает стремление проанализировать все возможные варианты решений с целью выбора наиболее эффективного. Принцип математизации. Для облегчения анализа и выбора реше- ния при разработке технических систем с помощью количественных оце- нок вариантов целесообразно применять математические методы исследо- вания операций, оптимизации и другой аппарат системного анализа. Принцип имитации заключается в целесообразности построения и программирования на ЭВМ моделей, имитирующих функционирование (поведение) технической системы или ее элементов. В результате такого воспроизведения процессов, протекающих в системе, проверяется пра- вильность принятых решений, заложенных в создаваемом объекте. Системный подход может и должен широко использоваться для решения разнообразных поисковых задач в технике, он предполагает рас- смотрение объекта как системы, имеющей многообразные связи между ее элементами. И в этом его основное отличие от традиционных требований классической науки, которые направляют умственную деятельность на отыскание простых элементарных основ всякого объекта, т.е. требуют све- дения сложного к простому. Системный подход не дает конкретных рекомендаций в поисковой деятельности, но, являясь не очень жестко связанной совокупностью по- знавательных правил, помогает найти общее направление поиска, увидеть задачу более полно и глубоко. 10



Просмотров