Сжижение газов - О'Пять пО физике! Сжижение газов и использование жидких газов в технике

Сжижением природного газа называется перевод его в жидкое состояние под действием температур, которые являются меньшими по сравнению с критической. Данный процесс даёт возможность его резервирования и сбережения для последующего использования, а также для организации перевозки любым видом транспорта. Вещество зачастую применяется в виде в моторах автотранспортных средств, при обработке металлов, в мобильных электростанциях и так далее. Помимо всего прочего, во многих частных домах можно встретить котел на сжиженном газе. Затраты на создание установок для его производства зависят от места расположения разработок, а также типа и состава добываемого сырья. Сейчас наиболее перспективными из них считаются плавучие, поскольку транспортировка путем сооружения подводных газопроводов зачастую является нереальной.

Подготовка и начало сжижения

Тех установок, которые используются для сжижения, одна от другой отличаются, в первую очередь, холодильным циклом. На его выбор прежде всего влияет состав и давление газа, который сюда поступает. Эти параметры, в свою очередь, находятся под влиянием нескольких факторов, среди которых: время года, место добычи и даже термин его разработки. Перед тем как начать сжижать газы и направлять в установку, необходимо очистить их от кислых примесей и осушить. На стартовой фазе процесса из сырья массово выделяются углеводороды, среди которых высококипящие нафтеновые, ароматические и парафиновые. В противном случае может произойти закупоривание арматуры и аппаратуры установок. Чтоб эффективно и качественно сжижать газы, необходимо помнить, что большое количество тяжёлых углеводородов в их составе ведет к высокой температуре сжижения и низким затратам энергии. Если же в их составе присутствует азот, то это приводит к повышению испаряемости и энергозатрат.

Каскадный метод и холодильные циклы

В основе промышленных способов сжижения лежит принцип испарения жидкости, газового расширения, а также эффект Джоуля-Томсона. Сжиженный образуется за счёт использования нескольких холодильных установок (следовательно и сред). В данном случае среда, что характеризуется меньшей конденсируется под давлением за счёт испарения более высоко кипящей соседней. Этот способ является наиболее распространённым и известен как каскадное сжижение. В большинстве случаев холодильным агентом на первом этапе выступает пропан (иногда аммиак), а на втором — этилен. Таким образом, сжижение природного газа осуществляется в данном случае под влиянием испаряемого этилена. Что касается холодильных циклов, что построены на упомянутом выше эффекте Джоуля-Томсона, то среди них различают как с однократным, так и с двойным дросселированием, а также с предварительным охлаждением за счёт специального потока и постороннего агента.

Сжижение крупными установками

Сжижать газы можно также путём использования однопоточного каскадного цикла. Здесь выступает многокомпонентная смесь, в состав которой входит азот с углеводородами. Данный метод вместе с его модификациями применяют чаще всего в крупных установках, производительность которых составляет от двух до пяти миллионов кубических метров готового продукта в сутки. Сжижать газы таким способом выгодно в плане относительно низких затрат энергии. С другой стороны, однопоточный каскадный цикл нуждается в большом количестве металлоёмкого оборудования.

Жидкости могут существовать лишь при температурах ниже критической. Поэтому для сжижения газа его нужно прежде всего охладить ниже критической температуры, а затем подвергнуть сжатию. Как видно из таблицы XIII, такие газы, как кислород, азот, водород и особенно гелий, требуют для сжижения очень низких температур.

Таблица XIII (см. скан) Критические температуры и температуры кипения (при атмосферном давлении) для некоторых газов

В одном из первых промышленных методов сжижения газов (метод Линде, 1895) использовался эффект Джоуля - Томсона.

Схема машины Линде представлена на рисунке 6.21. Сжатый компрессором К и вследствие этого несколько нагретый газ проходит через холодильник X, где он отдает тепло проточной воде и охлаждается до первоначальной температуры. Затем газ проходит через змеевик к дроссельному вентилю (крану) и расширяется в приемник В с перепадом давления примерно от сотен атмосфер до одной атмосферы. Сразу после запуска установки понижение температуры недостаточно для сжижения газа. Слегка охлажденный газ направляется опять в компрессор через змеевик Оба змеевика расположены в тесном тепловом контакте (обычно один змеевик вставлен в другой) в противоточном теплообменнике В теплообменнике газ, идущий к компрессору и имеющий более низкую температуру, охлаждает встречный поток газа. Очевидно, во втором цикле газ подойдет к вентилю А с более низкой температурой, чем

это было при первом его прохождении, а после дросселирования температура еще более понизится. С каждым циклом в результате дросселирования и действия теплообменника температура газа будет все более понижаться и в конце концов понизится настолько, что часть газа после расширения превращается в жидкость и накапливается в приемнике В, откуда жидкость может быть слита в сосуд Дьюара через кран

Описанный принцип противоточного теплообмена используется во всех машинах для сжижения газов, хотя конструкция такого рода теплообменников может быть чрезвычайно разнообразной.

Другой промышленный метод сжижения газов (метод Клода, 1902 г.) основан на дополнительном охлаждении газа при совершении им работы. Сжатый газ после вентиля (рис. 6.21) направляется в поршневую машину (детандер), где он, расширяясь, совершает работу по перемещению поршня за счет кинетической энергии молекул (на рисунке детандер не изображен). В результате эффект понижения температуры газа делается более значительным, нежели в машине Линде. Этот метод усовершенствовал советский ученый П. Л. Капица (1934 г.), который вместо поршневого детандера применил небольшую турбину (турбодетандер), приводимую во вращение охлаждаемым газом (ротор детандера небольших размеров, и вес его измеряется всего сотнями граммов).

В настоящее время для сжижения газов в большинстве случаев используют машины с расширением в детандерах. При сжижении гелия для предварительного охлаждения в машинах с турбодетандерами используют не водород, а азот, что значительно повышает производительность и экономическую эффективность устройства. Кроме того, при одинаковой производительности машины с турбодетандерами в несколько раз меньше машин, работающих по схеме Линде.

Опытный факт охлаждения вещества при испарении был известен издавна и даже практически использовался (например, применение пористых сосудов для сохранения свежести воды). Но первое научное исследование этого вопроса предпринял Джан Франческо Чинья и описал в работе 1760 г. «De frigore ex evaporationе» («О холоде вследствие испарения»).

Чинья доказал, что чем быстрее происходит испарение, тем интенсивнее остывание, а Меран показал, что если дуть на влажный шарик термометра, понижение температуры окажется больше, чем при таком же опыте с сухим шариком термометра. Антуан Боме (1728—1804) обнаружил, что при выпаривании серного эфира охлаждение происходит сильнее, чем при испарении воды. Основываясь на этих фактах, Тиберио Кавалло создал в 1800 г. холодильную машину, а Волластон построил в 1810 г. свой известный криофор, применяемый и в наше время. На основе этого прибора в 1820 г. был создан гигрометр Даниэля. Холодильная машина стала практически применимой лишь после 1859 г., т. е. после того, как Фернан Карре (1824— 1894) опубликовал свой метод получения льда с помощью испарения эфира, впоследствии замененного аммиаком. В 1871 г. Карл Линде (1842—1934) описал созданную им холодильную машину, в которой охлаждение достигается за счет расширения газа. В 1896 г. он скомбинировал эту машину с противоточным теплообменником, описываемым в курсах физики, и это позволило ему получить жидкий водород. Достигнутые к тому времени физиками экспериментальные результаты начали внедряться в промышленность.

Проблема сжижения газов имеет вековую историю, берущую свое начало во второй половине XVIII столетия. Началось все с сжижения аммиака простым охлаждением, которое произвел ван Марум, серного ангидрида — Монж и Клуэ, хлора — Нортмор (1805 г.) и сжижения аммиака компрессионным методом, предложенным Баччелли (1812 г.).

Определяющий вклад в решение этой проблемы одновременно и независимо внесли Шарль Каньяр де Латур (1777—1859) и Майкл Фарадей (1791—1867).

В серии работ, опубликованных в 1822 и 1823 гг., Каньяр де Латур описал опыты, проведенные им для определения существования для жидкости (как это чувствуется интуитивно) некоторого предельного расширения, дальше которого независимо от приложенного давления вся она переходит в парообразное состояние. С этой целью де Латур положил в котел, заполненный на одну треть спиртом, каменный шар и начал постепенно разогревать котел. По шуму, производимому шаром, поворачивавшимся внутри котла, де Латур пришел к выводу, что при определенной температуре весь спирт испарился. Опыты были повторены с небольшими трубками; из трубок удалялся воздух, а затем они заполнялись на 2/5 исследуемой жидкостью (спирт, эфир, бензин) и нагревались в пламени. По мере увеличения температуры жидкость становилась все более подвижной, а граница раздела жидкости и пара все более нечеткой, пока при определенной температуре совсем не исчезала и вся жидкость казалась превратившейся в пар. Соединив эти трубки с манометром со сжатым воздухом, Каньяр де Латур сумел измерить давление, устанавливающееся в трубке в момент, когда исчезает граница раздела между жидкостью и паром, и соответствующую температуру. Вопреки бытующему представлению Каньяр де Латур не только не определил в этих опытах критическую температуру для воды, ему не удалось даже полностью испарить воду, потому что трубки всегда лопались раньше, чем достигался желаемый эффект.

Более конкретный результат содержали опыты Фарадея, проведенные в 1823 г. с загнутыми стеклянными трубками, более длинное плечо, которых было запаяно. В это плечо Фарадей помещал вещество, которое при нагреве должно было давать исследуемый газ, затем закрывал второе, короткое плечо трубки и погружал трубку в охлаждающую смесь. Если, проделав это, нагревать вещество в длинном плече трубки, то образуется газ, давление которого постепенно увеличивается, причем во многих случаях в короткой трубке у Фарадея происходило сжижение газа. Так, нагревая бикарбонат натрия, Фарадей получил жидкую углекислоту; таким же способом он получал жидкий сероводород, хлористый водород, серный ангидрид и др.

Опыты де Латура и Фарадея показали, что можно добиться сжижения газа, подвергая его высокому давлению. В этом направлении начали работать многие физики, в частности Иоганн Наттерер (1821—1901). Однако некоторые газы (водород, кислород, азот) сжижить таким путем не удавалось. В 1850 г. Вертело подверг кислород давлению в 780 атм, но не смог добиться сжижения. Это заставило Вертело присоединиться к мнению Фарадея, который, уверенный, что рано или поздно удастся получить твердый водород, полагал, что одного давления недостаточно для сжижения некоторых газов, прозванных тогда «перманентными» или «неукротимыми».

В том же 1845 г., когда Фарадей высказал это соображение, Реньо, заметив, что при низкой температуре углекислый газ обладает аномальной сжимаемостью, а при приближении к 100° С начинает следовать закону Бой-ля, выдвинул предположение, что для каждого газа существует некая область температур, где он подчиняется закону Бойля. В 1860 г. эту идею Реньо развил и модифицировал Дмитрий Иванович Менделеев (1834—1907), согласно которому для всех жидкостей должна существовать «абсолютная температура кипения», выше которой она может существовать лишь в газообразном состоянии, каково бы ни было давление.

Исследование этого вопроса было возобновлено в 1863 г. в новой форме Томасом Эндрюсом (1813—1885). В 1863 г. Эндрюс ввел в капиллярную трубку углекислый газ, заперев объем газа столбиком ртути. С помощью винта он произвольно устанавливал давление, под которым находился газ, одновременно меняя постепенно температуру. Добившись с помощью одного лишь увеличения давления частичного сжижения газа и затем медленно нагревая трубку, Эндрюс наблюдал те же явления, которые за 30 лет до него исследовал Каньяр де Латур. Когда температура углекислоты достигала 30,92° С, граница раздела между жидкостью и газом исчезала и никаким давлением нельзя было уже получить обратно жидкую углекислоту. В своей обстоятельной работе 1869 г. Эндрюс предложил назвать температуру 30,92° С «критической точкой» для углекислоты. Таким же методом он определил критические точки для хлористого водорода, аммиака, серного эфира, окиси азота. Термин «пар» он предложил сохранить для газообразных веществ, находящихся при температуре ниже критической точки, а термин «газ» применять к веществам, находящимся при температуре выше критической точки. Подтверждением этой точки зрения Эндрюса являлись упомянутые уже опыты Наттерера, проведенные им с 1844 по 1855 г., в которых перманентные газы подвергались давлению до 2790 атм, так и не сжижаясь, и многочисленные аналогичные опыты, начатые в 1870 г. Эмилем Амага (1841—1915), в которых достигалось давление до 3000 атм.

Все эти отрицательные результаты опытов подтверждали гипотезу Эндрюса о том, что перманентные газы — это вещества, для которых критическая температура ниже достигнутых в тот момент значений, так что их сжижение можно было бы осуществить с помощью предварительного глубокого охлаждения, возможно с последующим сжатием. Эта гипотеза была блестяще подтверждена в 1877 г. Луи Кальете (1832—1913) и Раулем Пикте (1846—1929), которым независимо друг от друга удалось после предварительного сильного охлаждения добиться сжижения кислорода, водорода, азота, воздуха. Работы Кальете и Пикте были продолжены другими физиками, но лишь появление холодильной машины Линде, о которой мы уже упоминали, сделало методы сжижения практически доступными, позволив получать сжиженные газы в больших количествах и широко применять их при научных исследованиях и в промышленности.

УДЕЛЬНАЯ ТЕПЛОЕМКОСТЬ ГАЗОВ

Методы определения удельной теплоемкости трудно было применить к газообразным веществам вследствие малого удельного веса газов и паров. Поэтому в начале XIX века Парижская Академия наук объявила конкурс на лучший метод измерения удельной теплоемкости газа. Премия была присуждена Франсуа Деларошу (? — 1813?) и Жаку Берару (1789—1869), предложившим поместить в калориметр змеевик, по которому при известной температуре проходил бы газ при фиксированном давлении. Этот метод фактически не был новым; он был предложен еще за 20 лет до того Лавуазье. Как бы то ни было, результаты, полученные Деларошем и Бераром, приводились в курсах физики в течение полувека. Заслуга этих ученых прежде всего в том, что было привлечено внимание к необходимости различать удельные теплоемкости при постоянном давлении и при постоянном объеме. Последняя величина очень трудно поддается измерению из-за малой величины теплоемкости газа по сравнению с теплоемкостью содержащего его резервуара.

Но за несколько лет до появления работ Делароша и Берара началось исследование любопытного явления, отмеченного Эразмом Дарвином (1731—1802) в 1788 г., а затем в 1802 г. Дальтоном и заключающегося в том, что сжатие воздуха вызывает его разогрев, а расширение приводит к охлаждению. Началом исследования этого явления обычно считают опыт Гей-Люссака (1807 г.), повторенный Джоулем в 1845 г. Гей-Люссак соединил трубкой два баллона, подобно тому как это делал Герике; один из баллонов был наполнен воздухом, а второй пустой; из наполненного баллона воздух мог свободно перетекать в пустой. В результате было установлено понижение температуры первого баллона и повышение температуры второго. Такое тепловое поведение воздуха заставляло считать, что удельная теплоемкость при постоянном давлении должна быть больше, чем при постоянном объеме, какой бы теории природы тепла мы ни придерживались. Действительно, если, расширяясь, газ охлаждается, то, позволяя ему при нагреве расширяться, необходимо сообщить ему дополнительное тепло, чтобы скомпенсировать сопутствующее расширению охлаждение.

Исходя из этих экспериментальных фактов, Лаплас в 1816 г. пришел к гениальной идее о том, что известное несоответствие между значением скорости звука, получающимся из опыта, и его теоретическим значением, получающимся из закона Ньютона, можно объяснить изменением температуры, которое испытывают слои воздуха при чередующихся сжатиях и разрежениях. На основе этих теоретических предпосылок Лаплас исправил формулу Ньютона, введя в нее коэффициент, равный отношению удельных теплоемкостей при постоянном давлении и при постоянном объеме для воздуха. Сопоставление экспериментального значения скорости звука в воздухе и теоретического значения, получающегося по формуле Ньютона, позволило найти отношение удельных теплоемкостей. Таким косвенным путем физикам удалось получить первые данные о значении этого отношения и тем самым, поскольку значение удельной теплоемкости при постоянном давлении было известно, оценить удельную теплоемкость воздуха при постоянном объеме. Несколькими годами позже (1819 г.) Никола Клеману (1779—1841) и Шарлю Дезорму (1777—?) удалось в опытах по расширению газов, многократно повторяющихся другими учеными вплоть до наших дней и вошедших во все учебники по физике, непосредственно определить отношение теплоемкостей, которое в пределах экспериментальных ошибок совпало с найденным Лапласом.

В 1829 г. в результате тонких и кропотливых исследований Дюлонг определил отношение теплоемкостей для различных газов, для чего вызывал звук в трубке с помощью потоков различных газов. Эти эксперименты заставили его прийти к выводу, что в газах и парах при равных условиях (объем, давление, температура) образуется при одинаковом относительном сжатии или расширении одинаковое количество теплоты.

Заметим, что метод Дюлонга был существенно улучшен в 1866 г. Кундтом (1839—1894), который ввел специальную трубку (эта трубка называется теперь трубкой Кундта). Метод Кундта до сих пор считается одним из лучших методов определения отношения удельных теплоемкостей.

Составитель Савельева Ф.Н.

Инструкция

На вид сжиженный природный газ (СПГ) - это бесцветная жидкость без и запаха, на 75-90% состоящая и обладающая очень важными свойствами: в жидком состоянии он не горюч, не и не агрессивен, что крайне важно при транспортировке. Процесс сжижения СПГ имеет характер, где каждая новая ступень означает сжатие в 5-12 раз, после чего следует охлаждение и переход на следующую ступень. СПГ становится жидким по завершению последней стадии сжатия.

Если же газ необходимо транспортировать на очень большие расстояния, то гораздо выгоднее использовать специальные суда – танкеры-газовозы. От места газа до ближайшего подходящего места на морском побережье протягивают трубопровод, а на берегу строят терминал. Там газ сильно сжимают и охлаждают, переводя в жидкое состояние, и закачивают в изотермические емкости танкеров (при температурах порядка -150оС).

Этот способ транспортировки имеет ряд преимуществ перед трубопроводным. Во-первых, один подобный за один рейс может перевезти громадное количество газа, ведь плотность вещества, находящегося в жидком состоянии, гораздо выше. Во-вторых, основные расходы приходятся не на транспортировку, а на погрузку-разгрузку продукта. В-третьих, хранение и перевозка сжиженного газа гораздо безопаснее, чем сжатого. Можно не сомневаться, что доля природного газа, транспортируемого в сжиженном виде, будет неуклонно возрастать по сравнению с газопроводными поставками.

Сжиженный природный газ востребован в различных областях деятельности человека - в промышленности, в автомобильном транспорте, в медицине, в сельском хозяйстве, в науке и пр. Немалую популярность сжиженные газ ы завоевали за счет удобства их использования и транспортировки, а также экологической чистоты и невысокой стоимости.

Инструкция

Перед сжижением углеводородного газ а его необходимо предварительно очистить и удалить водяной пар. Углекислый газ удаляют, используя систему трехступенчатых молекулярных фильтров. Очищенный таким образом газ в небольших количествах используется в качестве регенерационного. Восстанавливаемый газ либо сжигается, либо применяется для получения в генераторах мощности.

Просушивание происходит с помощью 3-х молекулярных фильтров. Один фильтр поглощает водяной пар. Другой сушит газ , который далее и проходит через третий фильтр. Для понижения температуры газ пропускается через водяной охладитель.

Азотный способ подразумевает производство сжиженного углеводородного газ а из любых газ овых источников. К преимуществам этого метода можно отнести простоту технологии, уровень безопасности, гибкость , легкость и малозатратность эксплуатации. Ограничения этого метода - необходимость источника электроэнергии и высоких капитальных затрат.

При смешанном способе производства сжиженного газ а в качестве хладагента используют смесь азота и . Получают газ также из любых источников. Этот метод отличается гибкостью производственного цикла и небольшими переменными затратами на производство. Если сравнивать с азотным способом сжижения, здесь капитальные затраты более существенны. Также необходим источник электроэнергии.

Источники:

  • Что такое сжижение газов?
  • Сжиженный газ: получение, хранение и транспортировка
  • что такое сжиженный газ

Природный газ добывается из недр Земли. Это полезное ископаемое состоит из смеси газообразных углеводородов, которая образуется в результате разложения органических веществ в осадочных породах земной коры.

Какие вещества входят в состав природного газа

На 80-98% природный газ состоит (CH4). Именно физико-химические свойства метана определяют характеристики природного газа. Наряду с метаном в составе природного газа присутствуют соединения такого же структурного типа – этан (C2H6), пропан (C3H8) и бутан (C4H10). В некоторых случаях в небольших количествах, от 0,5 до 1%, в природном газе обнаруживаются: (С5Н12), (С6Н14), гептан (С7Н16), (С8Н18) и нонан (С9Н20).

Также природный газ включает в себя соединения сероводорода (H2S), углекислого газа (CO2), азот (N2), гелий (He), водяные пары. Состав природного газа зависит от характеристик месторождений, где он добывается. Природный газ, добываемый в чисто газовых месторождениях, состоит в основном из метана.

Характеристики составляющих природного газа

Все химические соединения, входящие в состав природного газа, обладают рядом свойств, полезных в различных сферах промышленности и в быту.

Метан – горючий газ без цвета и запаха, он легче воздуха. Используется в промышленности и быту в качестве горючего. Этан – горючий газ без цвета и запаха, он немного тяжелее воздуха. В основном, из получают этилен. Пропан – ядовитый газ без цвета и запаха. Ему по свойствам близок бутан. Пропан используется, например, при сварочных работах, при переработке металлолома. Сжиженным и бутаном заправляют зажигалки и газовые баллоны. Бутан используют в холодильных установках.

Пентан, гексан, гептан, октан и нонан – . Пентан в небольших количествах входят в состав моторных топлив. Гексан также используется при экстрагировании растительных масел. Гептан, гексан, октан и нонан являются хорошими органическими растворителями.

Сероводород – ядовитый бесцветный тяжелый газ, тухлых яиц. Этот газ даже в маленькой концентрации вызывает паралич обонятельного нерва. Но в силу того, что сероводород обладает хорошими антисептическими свойствами, его в малых дозах применяют в медицине для сероводородных ванн.

Углекислый газ – негорючий бесцветный газ без запаха с кислым вкусом. Углекислый газ используют в пищевой промышленности: в производстве газированных напитков для насыщения их углекислотой, для заморозки продуктов, для охлаждения грузов при транспортировке и т.п.

Азот – безвредный бесцветный газ, без вкуса и запаха. Применяют его в производстве минеральных удобрений, используют в медицине и т.п.

Гелий – один из самых легких газов. Он не имеет цвета и запаха, не горит, не токсичен. Гелий используют в различных областях промышленности – , для охлаждения атомных реакторов, наполнения стратостатов.


Любой газ можно превратить в жидкость простым сжатием, если только его температура ниже критической. Поэтому деление веществ на жидкости и газы в значительной мере условно. Те вещества, которые мы привыкли считать газами, просто имеют очень низкие критические температуры и поэтому при температуре, близкой к комнатной, не могут находиться в жидком состоянии. Наоборот, у веществ, причисляемых нами к жидкостям, критические температуры велики.
Первый газ (аммиак) был обращен в жидкость уже в 1799 г. Дальнейшие успехи в сжижении газов связаны с именем анг- лийского физика М. Фарадея (1791-1867), который сжижал газы путем их одновременного охлаждения и сжатия.
Ко второй половине XIX в. из всех известных в то время газов остались не обращенными в жидкость только шесть: водород, кислород, азот, оксид азота, оксид углерода и метан, - их назвали постоянными газами. Задержка в сжижении этих газов еще на четверть столетия произошла потому, что техника понижения температуры была развита слабо, и они не могли быть охлаждены до температуры ниже критической. Когда физики научились получать температуры порядка 1 К, удалось все газы, в том числе и гелий, обратить не только в жидкое, но и в твердое состояние.
Установки для сжижения газов
Существует много типов машин для получения жидких газов, в частности жидкого воздуха. В современных промышленных установках значительное охлаждение достигается путем расширения газа в условиях теплоизоляции (адиабатное расширение).
Такие машины называют детандерами (расширителями). Расширяющийся газ совершает работу, перемещая поршень (поршневые детандеры) или вращая турбину (турбинные детандеры), за счет своей внутренней энергии и поэтому охлаждается.
Высокопроизводительные турбодетандеры низкого давления были разработаны академиком П. Л. Капицей. Начиная с 50-х годов все крупные установки в мире для сжижения воздуха работают по схеме Капицы.
Капица Петр Леонидович (1894- 1984) - знаменитый советский физик; лауреат Нобелевской премии; ученик Э. Резерфорда.
Капица открыл сверхтекучесть жидкого гелия, разработал новые промышленные методы сжижения газов. Большое значение имеют работы Капицы по созданию сверхсильных магнитных полей и электронных генераторов больших мощностей.
На рисунке 6.14 приведена упрощенная схема поршневого детандера. Атмосферный воздух поступает в компрессор 1, где сжимается до давления в несколько десятков атмосфер. Нагретый при сжатии воздух охлаждается в теплообменнике 2 проточной водой и поступает в цилиндр детандера 3. Здесь он, расширяясь, совершает работу, толкая поршень, и охлаждается настолько сильно, что конденсируется в жидкость. Сжиженный воздух поступает в сосуд 4.
Воздух

Температура кипения жидкого воздуха очень низка. При атмосферном давлении она составляет -193 °С. Поэтому жидкий воздух в открытом сосуде, когда давление его паров равно атмосферному давлению, кипит. Так как окружающие тела значительно теплее, то приток теплоты к жидкому воздуху, если бы он хранился в обычных сосудах, был бы настолько значителен, что за очень короткий срок весь жидкий воздух испарился бы.
Хранение жидких газов

Рис. 6.15
Чтобы сохранить воздух в жидком состоянии, надо воспре-пятствовать его теплообмену с окружающей средой. С этой целью жидкий воздух (и другие жидкие газы) помещают в особые сосуды, называемые сосудами Дьюара. Сосуд Дьюара устроен так же, как и обычный термос. Он имеет двойные стеклянные стенки, из пространства между которыми выка- чан воздух (рис. 6.15). Это уменьшает теплопроводность сосуда. Внутреннюю стенку делают блестящей (посеребренной) для уменьшения нагревания излу-чением. У сосудов Дьюара узкое горлышко, при хранении в них сжиженных газов их оставляют открытыми, чтобы содержащийся в сосуде газ имел возможность постепенно испаряться. Благодаря затрате теплоты на испарение сжиженный газ остается все время холодным. В хорошем сосуде Дьюара жидкий воздух сохраняется в течение нескольких недель.
Применение сжиженных газов
Сжижение газов имеет техническое и научное значение. Сжижение воздуха используется в технике для разделения воздуха на составные части. Метод основан на том, что различные газы, из которых воздух состоит, кипят при различных температурах. Наиболее низкие температуры кипения имеют гелий, неон, азот, аргон. У кислорода температура кипения несколько выше, чем у аргона. Поэтому сначала испаряется гелий, неон, азот, а затем аргон, кислород.
Сжиженные газы находят широкое применение в технике. Азот идет для получения аммиака и азотных солей, употребляемых в сельском хозяйстве для удобрения почвы. Аргон, неон и другие инертные газы используются для наполнения электрических ламп накаливания, а также газосветных ламп. Наибольшее применение имеет кислород. В смеси с ацетиленом или водородом он дает пламя очень высокой температуры, применяемое для резки и сварки металлов. Вдувание кислорода (кислородное дутье) ускоряет металлургические процессы. Доставляемый из аптек в подушках кислород облегчает страдания больных. Особенно важным является применение жидкого кислорода в качестве окислителя для двигателей космических ракет. Двигатели ракеты-носителя, поднявшей в космос первого космонавта Ю. А. Гагарина, работали на жидком кислороде.
Жидкий водород используется как топливо в космических ракетах. Например, для заправки американской ракеты «Сатурн-5» требуется 90 т жидкого водорода. Газы, применяемые в промышленности, медицине и т. п., легче перевозить, когда они находятся в сжиженном состоянии, так как при этом в том же объеме заключается большее количество вещества. Так доставляют в стальных баллонах жидкую углекислоту на заводы газированных вод.
Жидкий аммиак нашел широкое применение в холодильниках - огромных складах, где хранятся скоропортящиеся продукты. Охлаждение, возникающее при испарении сжиженных газов, используют в рефрижераторах при перевозке скоропортящихся продуктов.
Значение сжижения газов для научных исследований
Превращение всех газов в жидкое состояние лишний раз подтвердило единство в строении веществ. Оно показало, что состояние вещества зависит от его температуры и давления, а не определено раз и навсегда для данного тела.
С другой стороны, достигнутые при сжижении газов низкие температуры широко раздвинули границы научных исследований и позволили обнаружить изменение многих свойств веществ при сверхнизких температурах. Упругие тела, сделанные из каучука, становятся при этих температурах хрупкими, как стекло. Кусок резины после охлаждения в жидком воздухе легко ломается, а резиновый мячик при ударе разбивается вдребезги. Ртуть и цинк при низких температурах делаются ковкими, а свинец - пластический металл - упругим, как сталь. Колокольчик, сделанный из свинца, звенит. Очень многие вещества (спирт, яичная скорлупа и др.) после освещения их белым светом создают собственное излучение различного цвета (преимущественно зелено-желтого).
При низких температурах интенсивность теплового движения резко уменьшается, поэтому оказывается возможным наблюдение целого ряда явлений, скрытых при более высоких температурах тепловым движением молекул.
При температурах, близких к абсолютному нулю, сильно изменяются электрические свойства некоторых металлов и сплавов: их сопротивление электрическому току становится равным нулю. Это явление, называемое сверхпроводимостью, открыто Г. Камерлинг-Оннесом в 1911 г. При температуре 2,2 К в жидком гелии исчезает вязкость, т. е. он приобретает свойство сверхтекучести. Сверхтекучесть открыл П. JI. Капица в 1938 г.
Такие газы, как азот, кислород, водород, гелий, могут находиться в жидком состоянии только при очень низких температурах. При таких температурах обнаруживаются особые свойства веществ, маскируемые в обычных условиях тепловым движением молекул. Эти свойства находят применение как в науке, так и в технике.



Просмотров