Методы и средства интеллектуального анализа данных. Интеллектуальный анализ данных: базовые понятия. Задачи, решаемые ИАД

Целью интеллектуального анализа данных (англ. Datamining, другие варианты перевода - "добыча данных", "раскопка данных") является обнаружение неявных закономерностей в наборах данных. Как научное направление он стал активно развиваться в 90-х годах XXвека, что было вызвано широким распространением технологий автоматизированной обработки информации и накоплением в компьютерных системах больших объемов данных [ , ]. И хотя существующие технологии позволяли, например, быстро найти в базе данных нужную информацию, этого во многих случаях было уже недостаточно. Возникла потребность поиска взаимосвязей между отдельными событиями среди больших объемов данных, для чего понадобились методы математической статистики, теории баз данных, теории искусственного интеллекта и ряда других областей.

Классическим считается определение ,данное одним из основателей направления Григорием Пятецким-Шапиро : DataMining - исследование и обнаружение "машиной" (алгоритмами, средствами искусственного интеллекта) в сырых данных скрытых знаний, которые ранее не были известны, нетривиальны, практически полезны, доступны для интерпретации.

Учитывая разнообразие форм представления данных, используемых алгоритмов и сфер применения, интеллектуальный анализ данных может проводиться с помощью программных продуктов следующих классов:

  • специализированных "коробочных" программных продуктов для интеллектуального анализа;
  • математических пакетов;
  • электронных таблиц(и различного рода надстроек над ними);
  • средств интегрированных в системы управления базами данных (СУБД);
  • других программных продуктов.

В рамках данного курса нас в первую очередь будут интересовать средства, интегрированные с СУБД . В качестве примера можно привести СУБД MicrosoftSQLServer и входящие в ее состав службы AnalysisServices, обеспечивающие пользователей средствами аналитической обработки данных в режиме on-line ( OLAP )и интеллектуального анализа данных, которые впервые появились в MSSQLServer 2000.

Не только Microsoft, но и другие ведущие разработчики СУБД имеют в своем арсенале средства интеллектуального анализа данных.

Задачи интеллектуального анализа данных

В ходе проведения интеллектуального анализа данных проводится исследование множества объектов (или вариантов). В большинстве случаев его можно представить в виде таблицы, каждая строка которой соответствует одному из вариантов, а в столбцах содержатся значения параметров, его характеризующих. Зависимая переменная - параметр , значение которого рассматриваем как зависящее от других параметров (независимых переменных). Собственно эту зависимость и необходимо определить, используя методы интеллектуального анализа данных.

Рассмотрим основные задачи интеллектуального анализа данных.

Задача классификации заключается в том, что для каждого варианта определяется категория или класс , которому он принадлежит. В качестве примера можно привести оценку кредитоспособности потенциального заемщика: назначаемые классы здесь могут быть "кредитоспособен" и "некредитоспособен". Необходимо отметить, что для решения задачи необходимо, чтобы множество классов было известно заранее и было бы конечным и счетным.

Задача регрессии во многом схожа с задачей классификации, но в ходе ее решения производится поиск шаблонов для определения числового значения. Иными словами, предсказываемый параметр здесь, как правило, число из непрерывного диапазона.

Отдельно выделяется задача прогнозирования новых значений на основании имеющихся значений числовой последовательности (или нескольких последовательностей, между значениями в которых наблюдается корреляция). При этом могут учитываться имеющиеся тенденции (тренды), сезонность, другие факторы. Классическим примером является прогнозирование цен акций на бирже.

Тут требуется сделать небольшое отступление. По способу решения задачи интеллектуального анализа можно разделить на два класса: обучение с учителем (от англ. supervisedlearning) и обучение без учителя (от англ. unsupervisedlearning). В первом случае требуется обучающий набор данных, на котором создается и обучается модель интеллектуального анализа данных. Готовая модель тестируется и впоследствии используется для предсказания значений в новых наборах данных. Иногда в этом же случае говорят об управляемых алгоритмах интеллектуального анализа. Задачи классификации и регрессии относятся как раз к этому типу.

Во втором случае целью является выявление закономерностей имеющихся в существующем наборе данных. При этом обучающая выборка не требуется. В качестве примера можно привести задачу анализа потребительской корзины, когда в ходе исследования выявляются товары, чаще всего покупаемые вместе. К этому же классу относится задача кластеризации.

Также можно говорить о классификации задач интеллектуального анализа данных по назначению, в соответствии с которой,они делятся на описательные (descriptive) и предсказательные (predictive). Цель решения описательных задач - лучше понять исследуемые данные, выявить имеющиеся в них закономерности, даже если в других наборах данных они встречаться не будут. Для предсказательных задач характерно то, что в ходе их решения на основании набора данных с известными результатами строится модель для предсказания новых значений.

Но вернемся к перечислению задач интеллектуального анализа данных.

Задача кластеризации - заключается в делении множества объектов на группы (кластеры) схожих по параметрам. При этом, в отличие от классификации, число кластеров и их характеристики могут быть заранее неизвестны и определяться в ходе построения кластеров исходя из степени близости объединяемых объектов по совокупности параметров.

Другое название этой задачи - сегментация . Например, интернет-магазин может быть заинтересован в проведении подобного анализа базы своих клиентов, для того, чтобы потом сформировать специальные предложения для выделенных групп, учитывая их особенности.

Кластеризация относится к задачам обучения без учителя (или "неуправляемым" задачам).

Задача определения взаимосвязей , также называемая задачей поиска ассоциативных правил , заключается в определении часто встречающихся наборов объектов среди множества подобных наборов. Классическим примером является анализ потребительской корзины, который позволяет определить наборы товаров, чаще всего встречающиеся в одном заказе (или в одном чеке). Эта информация может потом использоваться при размещении товаров в торговом зале или при формировании специальных предложений для группы связанных товаров.

Данная задача также относится к классу "обучение без учителя".

Анализ последовательностей или сиквенциальный анализ одними авторами рассматривается как вариант предыдущей задачи, другими - выделяется отдельно. Целью, в данном случае, является обнаружение закономерностей в последовательностях событий. Подобная информация позволяет, например, предупредить сбой в работе информационной системы, получив сигнал о наступлении события, часто предшествующего сбою подобного типа. Другой пример применения - анализ последовательности переходов по страницам пользователей web-сайтов.

Анализ отклонений позволяет отыскать среди

Информационные технологии Торговля Финансовая сфера

Интеллектуальный анализ данных (ИАД), или Data Mining, - термин, используемый для описания открытия знаний в базах данных, выделения знаний, изыскания данных, исследования данных, обработки образцов данных, очистки и сбора данных; здесь же подразумевается сопутствующее ПО. Все эти действия осуществляются автоматически и позволяют получать быстрые результаты даже непрограммистам.

Запрос производится конечным пользователем, возможно на естественном языке. Запрос преобразуется в SQL – формат. SQL запрос по сети поступает в СУБД, которая управляет БД или хранилищем данных. СУБД находит ответ на запрос и доставляет его назад. Пользователь может затем разрабатывать презентацию или отчет в соответствии со своими требованиями.

Многие важные решения в почти любой области бизнеса и социально сферы основываются на анализе больших и сложных БД. ИАД может быть очень полезным в этих случаях.

Методы интеллектуального анализа данных тесно связаны с технологиями OLAP и технологиями построения хранилищ данных. Поэтому наилучшим вариантом является комплексный подход к их внедрению.

Для того чтобы существующие хранилища данных способствовали принятию управленческих решений, информация должна быть представлена аналитику в нужной форме, то есть он должен иметь развитые инструменты доступа к данным хранилища и их обработки.

Очень часто информационно – аналитические системы, создаваемые в расчете на непосредственное использование лицами, принимающими решения, оказываются чрезвычайно просты в применении, но жестко ограничены в функциональности. Такие статические системы называются Информационными системами руководителя. Они содержат в себе предопределенные множества запросов и, будучи достаточными для повседневного обзора, неспособны ответить на все вопросы к имеющимся данным, которые могут возникнуть при принятии решений. Результатов работы такой системы, как правило, являются многостраничные отчеты, после тщательного изучения которых у аналитика появляется новая серия вопросов. Однако каждый новый запрос, непредусмотренный при проектировании такой системы, должен быть сначала формально описан, закодирован программистом и только затем выполнен. Время ожидания в таком случае может составлять часы и дни, что не всегда приемлемо. Таким образом, внешняя простота статистических ИС поддержки решений, за которую активно борется большинство заказчиков информационно – аналитических систем, оборачивается потерей гибкости.

Динамические ИС поддержки решений, напротив, ориентированы на обработку нерегламентированных (ad hoc) запросов аналитиков к данным. Работа аналитиков с этими системами заключается в интерактивной последовательности формирования запросов и изучения их результатов.


Но динамические ИС поддержки решений могут действовать не только в области оперативной аналитической обработки (OLAP). Поддержка принятия управленческих решений на основе накопленных данных может выполняться в трех базовых сферах.

1. Сфера детализированных данных. Это область действия большинства систем, нацеленных на поиск информации. В большинстве случаев реляционные СУБД отлично справляются с возникающими здесь задачами. Общепризнанным стандартом языка манипулирования реляционными данными является SQL. Информационно – поисковые системы, обеспечивающие интерфейс конечного пользователя в задачах поиска детализированной информации, могут использоваться в качестве надстроек как над отдельными базами данных транзакционных систем, так и над общим хранилищем данных.

2. Сфера агрегированных показателей. Комплексный взгляд на собранную в хранилище данных информацию, ее обобщение и агрегация и многомерный анализ являются задачами систем OLAP. Здесь можно или ориентироваться на специальные многомерные СУБД, или оставаться в рамках реляционных технологий. Во втором случае заранее агрегированные данные могут собираться в БД звездообразного вида, либо агрегация информации может производится в процессе сканирования детализированных таблиц реляционной БД.

3. Сфера закономерностей. Интеллектуальная обработка производится методами интеллектуального анализа данных главными задачами которых являются поиск функциональных и логических закономерностей в накопленной информации, построение моделей и правил, которые объясняют найденные аномалии и/или прогнозируют развитие некоторых процессов.

Полная структура информационно – аналитической системы построенной на основе хранилища данных, показана на рис.3.2. В конкретных реализациях отдельные компоненты этой схемы часто отсутствуют.

Рис.3.2. Структура корпоративной информационно – аналитической системы.

Английский термин «Data Mining» не имеет однозначного перевода на русский язык (добыча данных, вскрытие данных, информационная проходка, извлечение данных/информации) поэтому в большинстве случаев используется в оригинале. Наиболее удачным непрямым переводом считается термин «интеллектуальный анализ данных» (ИАД).

ИАД включает методы и модели статистического анализа и машинного обучения , дистанцируясь от них в сторону автоматического анализа данных. Инструменты ИАД позволяют проводить анализ данных предметными специалистами (аналитиками), не владеющими соответствующими математическими знаниями.

Задачи, решаемые ИАД

  1. Классификация - отнесение входного вектора (объекта, события, наблюдения) к одному из заранее известных классов.
  2. Кластеризация - разделение множества входных векторов на группы (кластеры) по степени «похожести» друг на друга.
  3. Сокращение описания - для визуализации данных, лаконизма моделей, упрощения счета и интерпретации, сжатия объемов собираемой и хранимой информации.
  4. Ассоциация - поиск повторяющихся образцов. Например, поиск «устойчивых связей в корзине покупателя» (англ. market basket analysis ) - вместе с пивом часто покупают орешки.
  5. Анализ отклонений - Например, выявление нетипичной сетевой активности позволяет обнаружить вредоносные программы.
  6. Визуализация

В литературе можно встретить еще ряд классов задач. Базовыми задачами являются первые три. Остальные задачи сводятся к ним тем или иным способом.

Также можно использовать сводные задачи под основу

Алгоритмы обучения

Для задач классификации характерно «обучение с учителем », при котором построение (обучение) модели производится по выборке содержащей входные и выходные векторы.

Для задач кластеризации и ассоциации применяется «обучение без учителя », при котором построение модели производится по выборке, в которой нет выходного параметра. Значение выходного параметра («относится к кластеру …», «похож на вектор …») подбирается автоматически в процессе обучения.

Для задач сокращения описания характерно отсутствие разделения на входные и выходные векторы . Начиная с классических работ К. Пирсона по методу главных компонент , основное внимание здесь уделяется аппроксимации данных.

Этапы обучения

Можно выделить типичный ряд этапов решения задач методами ИАД:

  1. Формирование гипотезы;
  2. Сбор данных;
  3. Подготовка данных (фильтрация);
  4. Выбор модели;
  5. Подбор параметров модели и алгоритма обучения;
  6. Обучение модели (автоматический поиск остальных параметров модели);
  7. Анализ качества обучения, если неудовлетворительный переход на п. 5 или п. 4;
  8. Анализ выявленных закономерностей, если неудовлетворительный переход на п. 1, 4 или 5.

См. также

Литература

  • Паклин Н.Б., Орешков В.И. Бизнес-аналитика: от данных к знаниям (+ СD). . - СПб: Изд. Питер, 2009. - 624 с.
  • Айвазян С.А., Бухштабер В.М., Енюков Е.С., Мешалкин Л.Д. Прикладная статистика. Классификация и снижение размерности . - М.: Финансы и статистика, 1989. - 608 с.
  • Дюк В., Самойленко А. Data Mining: учебный курс (+CD).. - СПб: Изд. Питер, 2001. - 368 с.
  • Журавлёв Ю.И. , Рязанов В.В., Сенько О.В. "РАСПОЗНАВАНИЕ.Математические методы.Программная система.Практические применения", к книге прилагается компакт-диск с демоверсией программной системы «РАСПОЗНАВАНИЕ» . - М.: Изд. «Фазис», 2006. - 176 с. - ISBN 5-7036-0106-8
  • Зиновьев А. Ю. Визуализация многомерных данных . - Красноярск: Изд. Красноярского государственного технического университета, 2000. - 180 с.
  • Чубукова И. А. Data Mining: учебное пособие . - М.: Интернет-университет информационных технологий: БИНОМ: Лаборатория знаний, 2006. - 382 с. - ISBN 5-9556-0064-7

Ссылки


Wikimedia Foundation . 2010 .

Смотреть что такое "Интеллектуальный анализ данных" в других словарях:

    В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники. Эта отметка… … Википедия

    Топологический анализ данных новая область теоретических исследований для задач анализа данных (Data mining) и компьютерного зрения. Основные вопросы: Как из низкоразмерных представлений получать структуры высоких размерностей; Как… … Википедия

    Процесс получения высококачественной информации из текста на естественном языке. Как правило, для этого применяется статистическое обучение на основе шаблонов: входной текст разделяется с помощью шаблонов, затем производится обработка полученных… … Википедия

    интеллектуальный учет электроэнергии - [Интент] Учет электроэнергии Понятия «интеллектуальные измерения» (Smart Metering), «интеллектуальный учет», «интеллектуальный счетчик», «интеллектуальная сеть» (Smart Grid), как все нетехнические,… … Справочник технического переводчика

    У этого термина существуют и другие значения, см. Капитал (значения). Эта статья должна быть полностью переписана. На странице обсуждения могут быть пояснения … Википедия

    Обычный агент … Википедия

    Интеллектуальный анализ данных (англ. Data Mining) выявление скрытых закономерностей или взаимосвязей между переменными в больших массивах необработанных данных. Подразделяется на задачи классификации, моделирования и прогнозирования и другие.… … Википедия

    Для улучшения этой статьи по математике желательно?: Проставив сноски, внести более точные указания на источники. Исправить статью согласно стилистическим правилам Википедии. Переработать офо … Википедия

    Мониторинг сетей целенаправленное воздействие на сеть, осуществляемое для организации ее функционирования по заданной программе: включение и отключение системы, каналов передачи данных, терминалов, диагностика неисправностей, сбор… … Википедия

    Не следует путать с Извлечение информации. Data Mining (рус. добыча данных, интеллектуальный анализ данных, глубинный анализ данных) собирательное название, используемое для обозначения совокупности методов обнаружения в данных ранее… … Википедия

Книги

  • Интеллектуальный анализ данных в системах поддержки принятия решений. Моделирование слабоструктурированных временных рядов и нечеткая оценка инвестиционных проектов , Рамин Рзаев. Предлагаемая читателю книга посвящена решению проблем, направленных на разработку методов и алгоритмов решения задач прогнозирования и принятия решений в условиях неопределенности и комплекса…

Информационная составляющая играет важнейшую роль в эффективном управлении бизнесом, поэтому способность предприятий обеспечивать своих сотрудников всем необходимым для принятия взвешенных решений имеет огромное значение. С середины 90-х годов прошлого века стремительно растет интерес компаний к программным продуктам, которые позволяют аналитикам работать с большими объемами данных, накопленными в ERP, CRM системах и хранилищах данных, и извлекать из них полезную информацию. Следствием этого стало рождение новых информационных технологий и инструментов, обеспечивающих безопасный доступ к источникам корпоративных данных и обладающих развитыми возможностями консолидации, анализа, представления данных и распространения готовых аналитических документов внутри организации и за ее пределами: витрин данных, обработки произвольных запросов (Ad-hoc query), выпуска отчетов (Reporting), инструментов OLAP (On-Line Analytical Processing), интеллектуального анализа данных (Data Mining), поиска знаний в БД (KDD – Knowledge Discovery in Databases) и т.д.

Под «анализом данных» понимают действия, направленные на извлечение из них информации об исследуемом объекте и на получение по имеющимся данным новых данных.

Интеллектуальный анализ данных (ИАД) – общий термин для обозначения анализа данных с активным использованием математических методов и алгоритмов (методы оптимизации, генетические алгоритмы, распознавание образов, статистические методы, Data Mining и т.д.), использующих результаты применения методов визуального представления данных.

В общем случае процесс ИАД состоит из трех стадий:

1) выявление закономерностей (свободный поиск);

2) использование выявленных закономерностей для предсказания неизвестных значений (прогнозирование);

3) анализ исключений для выявления и толкования аномалий в найденных закономерностях.

Иногда выделяют промежуточную стадию проверки достоверности найденных закономерностей (стадия валидации) между их нахождением и использованием.

Все методы ИАД по принципу работы с исходными данными подразделяются на две группы:

Методы рассуждений на основе анализа прецедентов – исходные данные могут храниться в явном детализированном виде и непосредственно использоваться для прогнозирования и/или анализа исключений. Недостатком этой группы методов является сложность их использования на больших объемах данных.

Методы выявления и использования формализованных закономерностей, требующие извлечения информации из первичных данных и преобразования ее в некоторые формальные конструкции, вид которых зависит от конкретного метода.

В таблице 6.1 приведены примеры использования методов интеллектуального анализа данных в финансовых приложениях и маркетинговом анализе.

Таблица 6.1 – Примеры применение методов ИАД в финансах и маркетинге

Приложение (организация) Описание
FALCON (HNC Software, Inc.) Инструментальное средство для оперативного выявления злоупотреблений с кредитными карточками; более 100 организаций-пользователей отмечают сокращение числа нарушений на 20-30%.
Классификатор дебиторских счетов (Internal Revenue Service) Выявление счетов потенциально платежеспособных дебиторов на основе анализа больших объемов архивных данных по уплате налогов.
Повышение качества архивной финансовой информации (Lockheed) Выявление закономерностей (в виде правил вывода) в архивных финансовых данных для использования в моделях прогнозирования, системах поддержки принятия решений по инвестированию и т.д.
Верификация данных по курсам валют (Reuters) Система выявления ошибок в оперативно поступающих данных по курсам валют. С помощью нейронных сетей и индуктивного вывода правил строятся приблизительные прогнозы, которые сравниваются с поступающими данными. Большие отклонения рассматриваются как возможные ошибки.
Прогнозирование невыплат в сделках с недвижимостью (Leeds) Анализ архивных данных по сделкам с недвижимостью и выявление паттернов, соответствующих проблемным сделкам, заканчивающимся невыплатами. Выявленные закономерности используются для оценки риска при заключении новых сделок.
Маркетинговые исследования (Dickinson Direct) Определение характеристик типичных покупателей продукции компании для выявления новых потенциальных клиентов (профилирование клиентов).
Маркетинговые исследования (Reader"s Digest Canada) Выявление основных сегментов рынка и наиболее благоприятных подмножеств, а также исследование зависимостей между основными показателями и характеристиками сегментов.
Установка лотерейных автоматов (Automated Wagering, Inc.) Объединение методов ИАД с географическим анализом для определения наилучших мест для установки лотерейных автоматов в штате Флорида.
Выявление потенциальных покупателей автомобильных стерео систем (Washington Auto Audio, Inc.) Анализ демографической базы данных, содержащей информацию о 14000 реальных и потенциальных клиентов, позволил за 90 секунд получить 3 довольно надежных индикатора для прогноза спроса на продукцию и услуги компании. Аналогичные результаты были получены в результате традиционного исследования, выполненного одной из консалтинговых компаний, причем это исследование обошлось фирме на порядок дороже, чем автоматизированная система интеллектуального анализа данных.

Data Mining (DM)– это технология обнаружения в «сырых» данных ранее неизвестных нетривиальных, практически полезных и доступных интерпретации знаний, необходимых для принятия решений в различных сферах человеческой деятельности. Алгоритмы, используемые в Data Mining, требуют большого количества вычислений, что ранее являлось сдерживающим фактором широкого практического применения этих методов, однако рост производительности современных процессоров снял остроту этой проблемы.

Задачи, решаемые методами DM:

1. Классификация – отнесение объектов (наблюдений, событий) к одному из заранее известных классов.

2. Прогнозирование .

3. Кластеризация – группировка объектов на основе данных, описывающих сущность этих объектов. Объекты внутри кластера должны обладать общими чертами и отличаться от объектов, вошедших в другие кластеры. Чем больше похожи объекты внутри кластера и чем больше отличий между кластерами, тем точнее кластеризация.

4. Ассоциация – выявление закономерностей между связанными событиями.

5. Последовательные шаблоны – установление закономерностей между связанными во времени событиями.

6. Анализ отклонений – выявление наиболее нехарактерных шаблонов.

Решение большинства задач бизнес-анализа сводится к той или иной задаче Data Mining. Например, оценка рисков – решение задачи классификации, сегментация рынка – кластеризации, стимулирование спроса – ассоциации.

Технология Data Mining развивалась и развивается на стыке статистики, теории информации, машинного обучения, теории баз данных. Наибольшее распространение получили следующие методы Data Mining: нейронные сети, деревья решений, алгоритмы кластеризации, алгоритмы обнаружения ассоциативных связей между событиями и т.д.

Деревья решений представляют собой иерархическую древовидную структуру классифицирующих правил типа «если-то». Для отнесения некоторого объекта или ситуации к какому-либо классу следует ответить на вопросы, имеющие форму «значение параметра А больше Х», и расположенные в узлах дерева. При положительном ответе осуществляется переход к правому узлу следующего уровня дерева, отрицательном – к левому узлу

Если построенное дерево состоит из неоправданно большого числа ветвей, то оно не будет обеспечивать получение статистически обоснованного ответа. Кроме того, деревья решений выдают полезные результаты только в случае независимости признаков.

В настоящее время деревья решений применяются при решении следующих задач:

описание данных, т.к. они позволяют хранить информацию о данных в компактной форме;

классификация, т.е. отнесение объектов к одному из заранее известных классов;

регрессия, т.е. определение зависимости целевой переменной, принимающей непрерывные значения, от независимых (входных) переменных.

Несмотря на обилие методов Data Mining, приоритет постепенно все более смещается в сторону логических алгоритмов поиска в данных «если-то» правил. С их помощью решаются задачи прогнозирования, классификации, распознавания образов, сегментации БД, извлечения из данных скрытых знаний, интерпретации данных, установления ассоциаций в БД и др. Результаты таких алгоритмов эффективны и легко интерпретируются.

Главной проблемой логических методов обнаружения закономерностей является проблема перебора вариантов за приемлемое время. Известные методы либо искусственно ограничивают такой перебор (алгоритмы КОРА, WizWhy), либо строят деревья решений (алгоритмы CART, CHAID, ID3, See5, Sipina и др.), имеющие принципиальные ограничения эффективности поиска правил «если-то».

Программное обеспечение для реализации технологий Data Mining: Poly Analyst, Scenario, 4 Thought, MineSet.

Knowledge Discovery in Databases (KDD) следующих этапов:

Подготовка исходного набора данных – создание набора данных из различных источников, для чего должен обеспечиваться доступ к источникам данных, в том числе, к хранилищам данных.

Предобработка данных – удаление пропусков, искажений, аномальных значений и т.д., дополнение данных некоторой априорной информацией. Данные должны быть качественны и корректны с точки зрения используемого метода DM.

Трансформация, нормализация данных – приведение информации к пригодному для последующего анализа виду.

Data Mining – применение различных алгоритмов нахождения знаний.

Постобработка данных – интерпретация результатов и применение полученных знаний в бизнес-приложениях.

Knowledge Discovery in Databases определяет последовательность действий, необходимую для получения знаний, а не набор методов обработки или алгоритмов анализа.

Для того чтобы существующие хранилища данных способствовали принятию управленческих решений, информация должна быть представлена аналитику в нужной форме, то есть он должен иметь развитые инструменты доступа к данным хранилища и их обработки.

Статические информационно-аналитические системы, создаваемые для непосредственного использования лицами, принимающими решения, называются в литературе информационными системами руководителя (ИСР), или Executive Information Systems (EIS). Они содержат в себе предопределенные множества запросов, достаточны повседневного обзора. Однако, они неспособны обеспечить ответы на все вопросы, которые могут возникнуть при принятии решений. Результатом работы такой системы, как правило, являются многостраничные отчеты, после тщательного изучения которых у аналитика появляется новая серия вопросов.

Динамические системы поддержки принятия решений (СППР) ориентированы на обработку нерегламентированных (ad hoc) запросов аналитиков к данным. Работа аналитиков с этими системами заключается в интерактивном формировании запросов и изучения их результатов.

Поддержка принятия управленческих решений на основе накопленных данных может выполняться в следующих областях:

Детализированные данные – поиск данных;

Агрегированные показатели – формирование комплексного взгляда на собранную в хранилище данных информацию, ее обобщение и агрегация, гиперкубическое представление и многомерный анализ;

Закономерности – интеллектуальная обработка методами интеллектуального анализа данных, главными задачами которых являются поиск функциональных и логических закономерностей в накопленной информации, построение моделей и правил, которые объясняют найденные аномалии и/или прогнозируют развитие процессов.

Эволюцию BI-систем можно условно разделить на 3 этапа: системы сбора информации и подготовки регламентированной отчетности (до 90-х годов прошлого столетия), инструменты многомерного анализа на базе технологии оперативной аналитической обработки (OLAP) и создания нерегламентированной отчетности (до 2005 г.), BI-системы с акцентом на развитие прикладных способов аналитики и поиск скрытой информации.

Архитектура BI-системы представлена на рис. 6.12. BI-инструменты включают корпоративные BI-наборы (Enterprise BI Suites, EBIS), предназначенные для генерации запросов и отчетов, и BI-платформы, представляющие собой набор инструментов для создания, внедрения, поддержки и сопровождения BI-приложений. BI-приложения содержат встроенные BI-инструменты (OLAP, генераторы запросов и отчетов, средства моделирования, статистического анализа, визуализации и Data Mining).

Рисунок– Архитектура Business Intelligence

По оценкам агентства IDC рынок Business Intelligenceсостоит из 5 секторов:

1. OLAP-продукты;

2. Инструменты добычи данных;

3. Средства построения Хранилищ и Витрин данных (Data Warehousing);

4. Управленческие информационные системы и приложения;

5. Инструменты конечного пользователя для выполнения запросов и построения отчетов.

Классификация BI-систем базируется на методе функциональных задач, где программные продукты каждого класса выполняют определенный набор функций или операций с использованием специальных технологий (приложение А). Как правило, функции BI включают поддержку принятия решений, запросы и отчетность, аналитическую обработку online, статистический анализ, прогнозирование и количественный анализ.

В настоящее время среди лидеров корпоративных BI-платформ можно выделить MicroStrategy, Business Objects, Cognos, Hyperion Solutions, Microsoft, Oracle, SAP, SAS Institute и другие (в приложении Б приведен сравнительный анализ некоторых функциональных возможностей BI-систем).

В настоящее время намечается интеграция BI-поставщиков и лидеров ERP (Oracle-Hyperion, SAP-Business Objects-Cryslal), что говорит о растущем потенциале и адекватности BI-систем. Использование BI-систем позволит значительно снизить стоимость сопровождения и настройки на интеграцию с приложениями, подбор сценариев и обучение пользователей. BI-возможности и преимущества SAP обеспечивают использование качественных и количественных данных при выборе варианта решения, комбинацию внешних данных и совместных сценариев, что представляет собой новое поколение средств управления предприятием и бизнес-средой; бизнес-аналитика дает возможность оптимизировать оперативную производительность, прогнозирование и бизнес-планирование.

Желание заказчиков отслеживать и финансовые, и операционные показатели требует, чтобы BI-системы могли одновременно обращаться к базам данных автоматизированных систем, отдельных бэк-офисных модулей, CRM-приложений и т.д. Обработка гетерогенных источников данных не возможна без применения сложных технологий интеграции на основе сервисно-ориентированной архитектуры.

Сектор BI-систем на белорусском рынке представлен слабо. В частности, EPAM представляет Hyperion® System™ 9, которая объединяет платформу Business Intelligence с финансовыми приложениями в одну модульную систему, которая легко адаптируется под конкретные требования бизнеса. Комплекс Hyperion® System1 M 9 внедряется на БМЗ и в концерне «Белнефтехим».

Фирма ТопСофт представляет модуль Галактика Business Intelligence – комплекс приложений для поддержки принятия решений в сбытовой деятельности. На данный момент Галактика ВI-Сбыт внедрена в РБ в компаниях «British-American Tobacco» и «МАВ» (производство красок).

Однако потребности белорусского рынка в BI-системах растут, основными потенциальными потребителями BI-систем являются телекоммуникационные компании, которые испытывают потребность в глубоком анализе базы клиентов, для них предлагаются пакеты Oracle Marketing analyst из Oracle BI Suite; банки, нуждающиеся в средствах аналитики услуг по кредитованию предприятий и частных лиц, могут использовать BI-системы собственной разработки или готовые специализированные приложения; промышленные предприятия и сфера торговли – аналитические программные продукты необходимы для построения управленческой отчетности на системах хранения и консолидации данных, например Cognos BI, Business Object; государственные управленческие структуры, крупные компании и холдинги, требующие полнофункциональных решений ВI, для них подходят Cognos, Oracle, Business Objects, Microsoft, интегрированные с системами планирования и бюджетирования; отрасли энергетики, нефтехимии – требуются BI-системы для повышения эффективности системы управления, такие решения реализованы в системах сбалансированных показателей (BSC) и поддерживаются базовыми модулями SAP ERP.

Потребность в системах искусственного интеллекта возникает по мере достижения предприятием достаточно высокой культуры управления.

Экспертные системы

Однозначного определения понятие экспертной системы не имеет.

Экспертная система (ЭС, Expert system) – система искусственного интеллекта, включающая знания об определенной слабо структурированной и трудно формализуемой узкой предметной области и способная предлагать и объяснять пользователю разумные решения.

Согласно толковому словарю по информатике, под экспертной системой понимают систему искусственного интеллекта, которая включает в себя базу знаний с набором правил и механизмом вывода, позволяющую на основании этих правил и предоставляемых пользователем фактов распознавать ситуацию, ставить диагноз, формулировать решение или давать рекомендации для выбора действия.

Иногда вместо определения понятия дают перечень свойств экспертных систем: экспертная система ограничена определенной сферой экспертизы; способна рассуждать при сомнительных данных; способна объяснять цепочку рассуждений понятным способом; факты и механизм вывода четко отделены друг от друга; она строится так, чтобы имелась возможность постепенного развития и наращивания системы; чаще всего она основана на использовании правил; на выходе выдает четкий совет; экономически выгодна.

Технология ЭС существенно расширяет круг практически значимых задач, решение которых с использованием современных средств вычислительной техники, приносит значительный экономический эффект. ЭС предназначены для решения неформализованных задач, к которым относят задачи, обладающие одной или несколькими из следующих характеристик:

Не могут быть заданы в числовой форме;

Цели не могут быть выражены в терминах точно определенной целевой функции;

Не существует алгоритмического решения задач;

Алгоритмическое решение существует, но его нельзя использовать из-за ограниченности ресурсов (время, память).

Неформализованные задачи характеризуются: ошибочностью, неоднозначностью, неполнотой и противоречивостью исходных данных, знаний о проблемной области и решаемой задаче; большой размерностью пространства решения, т.е. перебор при поиске решения весьма велик; динамически изменяющимися данными и знаниями.

Классификация ЭК приведена в табл. 6.5.

Таблица 6.5 – Классификация экспертных систем

Признак классификация Виды ЭС
назначение Ø -общего назначения. -специализированные (проблемно-ориентированные для задач диагностики, проектирования, прогнозирования, предметно-ориентированные для специфических задач, например, контроля ситуаций на атомных электростанциях)
степень зависимости от внешней среды -статические (не зависящие от внешней среды), -динамические (учитывающие динамику внешней среды и предназначенные для решения задач в реальном времени)
тип использования -изолированные, -ЭС на входе/выходе других систем, -гибридные (интегрированные с базами данных и другими программными продуктами)
стадии создания -исследовательские образцы (разработанные за 1-2 месяца с минимальной БЗ), -демонстрационные (разработанные за 2-4 месяца на языке типа LISP, PROLOG, CLIPS и др.), -промышленные (разработанные за 4-8 месяцев на языке типа CLIPS с полной БЗ), -коммерческие (разработанные за 1,5-2 года на языке типа С++, Java с полной БЗ)

Полностью оформленная статическая экспертная система имеет шесть существенных компонент: машину логического вывода (решатель, интерпретатор); базу данных (рабочую память); базу знаний; компоненты приобретения знаний; объяснительный компонент; диалоговый компонент. Все шесть компонент являются важными, и, хотя система, основанная на знаниях, может обойтись без одной-двух из них, в общем, она может быть представлена в следующем виде.

База знаний - содержит факты (или утверждения) и правила. Факты представляют собой краткосрочную информацию в том отношении, что они могут изменяться, например, в ходе консультации. Правила представляют более долговременную информацию о том, как порождать новые факты или гипотезы из того, что сейчас известно. В настоящее время часто понятие базы знаний пытаются заменить базой данных. Основное различие последнего состоит в том, что база знаний обладает большими творческими возможностями, а база данных обычно пассивна: данные либо там есть, либо их нет. База знаний, с другой стороны, активно пополняется новой и недостающей информацией.

Подсистема логического вывода (логическая машина вывода) , используя исходные данные из рабочей памяти (БД) и базы знаний (БЗ), формирует такую последовательность правил, которая приводит к решению задачи. Различают прямую и обратную цепочки рассуждений. Прямая цепочка – это цепочка, которая ведет от данных к гипотезам, при этом в процессе диалога до получения ответа может быть задано неограниченное количество вопросов. Обратная цепочка рассужденийявляется попыткой найти данные для доказательства или опровержения некоторой гипотезы. На практике в чистом виде не встречаются ни одна из рассмотренных цепочек рассуждений. Объясняется не однозначностью данных, используемых при рассуждениях.

Редактор знаний (компонент приобретения знаний автоматизирует процесс наполнения ЭС знаниями, источником которых является эксперт либо группа экспертов.

Объяснительный компонент разъясняет пользователю, как система получила решение задачи (или почему она не получила решение) и какие знания при этом использовала, что повышает доверие пользователя к полученному результату.

Интерфейс пользователя (диалоговый компонент ) ориентирован на организацию дружественного общения с пользователем как в ходе решения задач, так и в процессе приобретения знаний и объяснения результатов работы.

База данных (БД) предназначена для хранения исходных и промежуточных данных решаемой в текущий момент задачи.

Статические ЭС используются в приложениях, где можно не учитывать изменения, происходящие за время решения задачи.

В случаях, когда необходимо учитывать динамику, т.е. изменения, происходящие в окружающем мире, в архитектуру ЭС вводится два компонента: подсистема моделирования внешнего мира и подсистема связи с внешним окружением, которая осуществляет связи с внешним миром через систему датчиков и контроллеров, либо используя СУБД. Кроме того, существенным изменениям подвергаются и остальные подсистемы.

Архитектура динамической ЭС приведена на рис. 6.13.

Экспертная система может работать в двух режимах: приобретения знаний и решения задачи (режим консультации или режим использования). В режиме приобретения знаний общение с ЭС осуществляет эксперт, который, используя компонент приобретения знаний, наполняет систему информацией, позволяющей ЭС в режиме консультации самостоятельно (без эксперта) решать задачи из проблемной области. Эксперт описывает проблемную область в виде совокупности правил и данных. Данные определяют объекты, их характеристики и значения, существующие в области экспертизы, правила – способы манипулирования данными, характерные для рассматриваемой области.

Рисунок 6.13 – Архитектура динамической экспертной системы

В режиме консультации общение с ЭС осуществляет конечный пользователь, которого интересует результат и (или) способ его получения. В качестве конечного пользователя, может и эксперт, и программист, и лицо, принимающее решение – ЛПР.

В режиме консультации данные о задаче пользователя после обработки их диалоговым компонентом поступают в рабочую память. Машина логического вывода на основе входных данных, общих данных о проблемной области и правил из БЗ формирует решение задачи.

Экспертная система отличается от прочих прикладных программ наличием следующих признаков:

Моделирует не столько физическую (или иную) природу определенной проблемной области, сколько механизм мышления человека применительно к решению задач в этой проблемной области, основное внимание уделяя воспроизведению компьютерными средствами методики решения проблем, которая применяется экспертом;

Помимо выполнения вычислительных операций, формирует определенные соображения и выводы, основываясь на тех знаниях, которыми она располагает. Знания в системе представлены, как правило, на некотором специальном языке и хранятся отдельно от собственно программного кода, который и формирует выводы и соображения;

При решении задач основными являются эвристические и приближенные методы, которые, в отличие от алгоритмических, не всегда гарантируют успех, т.к. не требуют исчерпывающей исходной информации и обеспечивают определенную степень уверенности (или неуверенности), что предлагаемое решение является верным.

Экспертные системы отличаются и от других видов программ из области искусственного интеллекта:

Имеют дело с предметами реального мира, операции с которыми обычно требуют наличия значительного опыта, накопленного человеком. Множество программ из области искусственного интеллекта являются сугубо исследовательскими, и основное внимание в них уделяется абстрактным математическим проблемам или упрощенным вариантам реальных проблем, целью выполнения такой программы – «повышение уровня интуиции» или отработка методики. Экспертные системы имеют ярко выраженную практическую направленность в научной или коммерческой области;

Должна за приемлемое время найти решение, которое было бы не хуже, чем то, которое может предложить специалист в этой предметной области;

Должна обладать способностью объяснить, почему предложено именно такое решение, и доказать его обоснованность.

В разработке ЭС принимают участие:

Эксперт в проблемной области, задачи которой будет решать ЭС;

Инженер по знаниям - специалист по разработке ЭС (используемые им технологии, методы называют технологией (методами) инженерии знаний);

Программист по разработке инструментальных средств, предназначенных для ускорения разработки ЭС.

В основе разработки ЭС лежит процесс передачи потенциального опыта решения проблемы от некоторого источника знаний и преобразование его в вид, который позволяет использовать эти знания в программе. Передача знаний выполняется в процессе достаточно длительных и пространных собеседований между специалистом по проектированию экспертной системы (инженером по знаниям) и экспертом в определенной предметной области, способным достаточно четко сформулировать имеющийся у него опыт.

Исследователи рассматривают функцию приобретения знаний в качестве одного из главных «узких мест» технологии экспертных систем. Это объясняется следующими причинами:

Во многих проблемных областях специалисты пользуются собственным жаргоном, который трудно перевести на обычный «человеческий» язык, потому требуется много дополнительных вопросов для уточнения его логического или математического значения;

Факты и принципы, лежащие в основе многих специфических областей знания эксперта, не могут быть четко сформулированы в терминах математической теории или детерминированной модели, свойства которой хорошо понятны;

Для решения проблемы в определенной области эксперту недостаточно обладать суммой знаний о фактах и принципах в этой области: насколько надежны различные источники информации и как можно расчленить сложную проблему на более простые, которые можно решать более или менее независимо и т.д.

Экспертный анализ включает многие вещи, кажущиеся эксперту само собой разумеющимися, но для постороннего отнюдь таковыми не являющиеся.

Основными методологическими принципами построения ЭС (как любых СОЗ):

- информационный – объектом является все то, что является источником информации;

- системности – объект, представляющий собой совокупность взаимосвязанных объектов, называется системой. Всякий объект может являться элементом одновременно многих систем;

- отражения – любой объект обладает различными свойствами, проявляющимися в рамках соответствующих систем, элементом которых является объект;

- структурности – структура системы отражает структуру предметной области; знания организуются в БЗ, имеющую определенную структуру, механизм доступа и алгоритмы использования.

В настоящее время сложилась определенная технология разработки ЭС, которая включает следующие этапы: идентификация, концептуализация, формализация, выполнение, тестирование и опытная эксплуатация (рис.6.13).

Рисунок 6.13 – Этапы разработки ЭС

На этапе идентификации осмысливаются задачи, которые предстоит решить будущей ЭС, и формируются требования к ней, определяется, что надо сделать и какие ресурсы необходимо задействовать.

Идентификациязадачи заключается в составлении неформального описания общих характеристик задачи; подзадач, выделяемых внутри задачи; ключевые объекты, их входные (выходные) данные; предположительный вид решения, знания, относящиеся к решаемой задаче. Начальное неформальное описание задачи экспертом используется инженером по знаниям для уточнения терминов и ключевых понятий. Эксперт корректирует описание задачи, объясняет, как решать ее и какие рассуждения лежат в основе того или иного решения.

При проектировании ЭС типичными ресурсами являются источники знаний, время разработки, вычислительные средства и объем финансирования. Для эксперта источниками знаний служат его предшествующий опыт по решению задачи, книги, известные примеры решения задач, а для инженера по знаниям - опыт в решении аналогичных задач, методы представления знаний и манипулирования ими, программные инструментальные средства.

На этапе концептуализации проводится содержательный анализ проблемной области, выявляются используемые понятия и их взаимосвязи, определяются методы решения задач, определяются особенности задачи: типы доступных данных; исходные и выводимые данные; подзадачи общей задачи; применяемые стратегии и гипотезы; виды взаимосвязей между объектами ПО, типы используемых отношений (иерархия, причина-следствие, часть-целое и т.п.); процессы, применяемые в ходе решения; состав знаний, используемых при решении задачи; типы ограничений, накладываемых на процессы, которые применены в ходе решения; состав знаний, используемых для обоснования решений. На этом этапе строится концептуальная модель предметной области. Для ее построения можно использовать:

Признаковый (атрибутивный) подход, который предполагает наличие полученной от экспертов информации в виде троек объект-атрибут-значение атрибута и наличие обучающей информации. Этот подход развивается в рамках направления, получившего название «машинное обучение»;

Структурный (когнитивный), реализуемый путем выделения элементов предметной области, их взаимосвязей и семантических отношений.

На этапе формализации все ключевые понятия и отношения выражаются на некотором формальном языке, который либо выбирается из числа уже существующих, либо создается заново, определяется состав средств и способы представления декларативных и процедурных знаний, формируется описание решения задачи ЭС на предложенном (инженером по знаниям) формальном языке.

Результатом этапа формализации является указание способов представления знаний (фреймы, сценарии, семантические сети и т.д.) и определение способов манипулирования этими знаниями (логический вывод, аналитическая модель, статистическая модель и др.) и интерпретации знаний.

На этапе выполнения создаются один или несколько прототипов ЭС, решающих требуемые задачи, по результатам тестирования и опытной эксплуатации создается конечный продукт, пригодный для промышленного использования.

В ходе этапа тестирования производится оценка выбранного способа представления знаний в ЭС в целом.

На этапе опытной эксплуатации проверяется пригодность ЭС для конечного пользователя.

По сути, интеллектуальный анализ данных - это обработка информации и выявление в ней моделей и тенденций, которые помогают принимать решения. Принципы интеллектуального анализа данных известны в течение многих лет, но с появлением больших данных они получили еще более широкое распространение.

Большие данные привели к взрывному росту популярности более широких методов интеллектуального анализа данных, отчасти потому, что информации стало гораздо больше, и она по самой своей природе и содержанию становится более разнообразной и обширной. При работе с большими наборами данных уже недостаточно относительно простой и прямолинейной статистики. Имея 30 или 40 миллионов подробных записей о покупках, недостаточно знать, что два миллиона из них сделаны в одном и том же месте. Чтобы лучше удовлетворить потребности покупателей, необходимо понять, принадлежат ли эти два миллиона к определенной возрастной группе, и знать их средний заработок.

Эти бизнес-требования привели от простого поиска и статистического анализа данных к более сложному интеллектуальному анализу данных. Для решения бизнес-задач требуется такой анализ данных, который позволяет построить модель для описания информации и в конечном итоге приводит к созданию результирующего отчета. Этот процесс иллюстрирует .

Рисунок 1. Схема процесса

Процесс анализа данных, поиска и построения модели часто является итеративным, так как нужно разыскать и выявить различные сведения, которые можно извлечь. Необходимо также понимать, как связать, преобразовать и объединить их с другими данными для получения результата. После обнаружения новых элементов и аспектов данных подход к выявлению источников и форматов данных с последующим сопоставлением этой информации с заданным результатом может измениться.

Инструменты интеллектуального анализа данных

Интеллектуальный анализ данных ― это не только используемые инструменты или программное обеспечение баз данных. Интеллектуальный анализ данных можно выполнить с относительно скромными системами баз данных и простыми инструментами, включая создание своих собственных, или с использованием готовых пакетов программного обеспечения. Сложный интеллектуальный анализ данных опирается на прошлый опыт и алгоритмы, определенные с помощью существующего программного обеспечения и пакетов, причем с различными методами ассоциируются разные специализированные инструменты.

Например, IBM SPSS®, который уходит корнями в статистический анализ и опросы, позволяет строить эффективные прогностические модели по прошлым тенденциям и давать точные прогнозы. IBM InfoSphere® Warehouse обеспечивает в одном пакете поиск источников данных, предварительную обработку и интеллектуальный анализ, позволяя извлекать информацию из исходной базы прямо в итоговый отчет.

В последнее время стала возможна работа с очень большими наборами данных и кластерная/крупномасштабная обработка данных, что позволяет делать еще более сложные обобщения результатов интеллектуального анализа данных по группам и сопоставлениям данных. Сегодня доступен совершенно новый спектр инструментов и систем, включая комбинированные системы хранения и обработки данных.

Можно анализировать самые разные наборы данных, включая традиционные базы данных SQL, необработанные текстовые данные, наборы "ключ/значение" и документальные базы. Кластерные базы данных, такие как Hadoop, Cassandra, CouchDB и Couchbase Server, хранят и предоставляют доступ к данным такими способами, которые не соответствуют традиционной табличной структуре.

В частности, более гибкий формат хранения базы документов придает обработке информации новую направленность и усложняет ее. Базы данных SQL строго регламентируют структуру и жестко придерживаются схемы, что упрощает запросы к ним и анализ данных с известными форматом и структурой.

Документальные базы данных, которые соответствуют стандартной структуре типа JSON, или файлы с некоторой машиночитаемой структурой тоже легко обрабатывать, хотя дело может осложняться разнообразной и переменчивой структурой. Например, в Hadoop, который обрабатывает совершенно "сырые" данные, может быть трудно выявить и извлечь информацию до начала ее обработки и сопоставления.

Основные методы

Несколько основных методов, которые используются для интеллектуального анализа данных, описывают тип анализа и операцию по восстановлению данных. К сожалению, разные компании и решения не всегда используют одни и те же термины, что может усугубить путаницу и кажущуюся сложность.

Рассмотрим некоторые ключевые методы и примеры того, как использовать те или иные инструменты для интеллектуального анализа данных.

Ассоциация

Ассоциация (или отношение), вероятно, наиболее известный, знакомый и простой метод интеллектуального анализа данных. Для выявления моделей делается простое сопоставление двух или более элементов, часто одного и того же типа. Например, отслеживая привычки покупки, можно заметить, что вместе с клубникой обычно покупают сливки.

Создать инструменты интеллектуального анализа данных на базе ассоциаций или отношений нетрудно. Например, в InfoSphere Warehouse есть мастер, который выдает конфигурации информационных потоков для создания ассоциаций, исследуя источник входной информации, базис принятия решений и выходную информацию. приведен соответствующий пример для образца базы данных.

Рисунок 2. Информационный поток, используемый при подходе ассоциации

Классификация

Классификацию можно использовать для получения представления о типе покупателей, товаров или объектов, описывая несколько атрибутов для идентификации определенного класса. Например, автомобили легко классифицировать по типу (седан, внедорожник, кабриолет), определив различные атрибуты (количество мест, форма кузова, ведущие колеса). Изучая новый автомобиль, можно отнести его к определенному классу, сравнивая атрибуты с известным определением. Те же принципы можно применить и к покупателям, например, классифицируя их по возрасту и социальной группе.

Кроме того, классификацию можно использовать в качестве входных данных для других методов. Например, для определения классификации можно применять деревья принятия решений. Кластеризация позволяет использовать общие атрибуты различных классификаций в целях выявления кластеров.

Исследуя один или более атрибутов или классов, можно сгруппировать отдельные элементы данных вместе, получая структурированное заключение. На простом уровне при кластеризации используется один или несколько атрибутов в качестве основы для определения кластера сходных результатов. Кластеризация полезна при определении различной информации, потому что она коррелируется с другими примерами, так что можно увидеть, где подобия и диапазоны согласуются между собой.

Метод кластеризации работает в обе стороны. Можно предположить, что в определенной точке имеется кластер, а затем использовать свои критерии идентификации, чтобы проверить это. График, изображенный на , демонстрирует наглядный пример. Здесь возраст покупателя сравнивается со стоимостью покупки. Разумно ожидать, что люди в возрасте от двадцати до тридцати лет (до вступления в брак и появления детей), а также в 50-60 лет (когда дети покинули дом) имеют более высокий располагаемый доход.

Рисунок 3. Кластеризация

В этом примере видны два кластера, один в районе $2000/20-30 лет и другой в районе $7000-8000/50-65 лет. В данном случае мы выдвинули гипотезу и проверили ее на простом графике, который можно построить с помощью любого подходящего ПО для построения графиков. Для более сложных комбинаций требуется полный аналитический пакет, особенно если нужно автоматически основывать решения на информации о ближайшем соседе .

Такое построение кластеров являет собой упрощенный пример так называемого образа ближайшего соседа . Отдельных покупателей можно различать по их буквальной близости друг к другу на графике. Весьма вероятно, что покупатели из одного и того же кластера разделяют и другие общие атрибуты, и это предположение можно использовать для поиска, классификации и других видов анализа членов набора данных.

Метод кластеризации можно применить и в обратную сторону: учитывая определенные входные атрибуты, выявлять различные артефакты. Например, недавнее исследование четырехзначных PIN-кодов выявили кластеры чисел в диапазонах 1-12 и 1-31 для первой и второй пар. Изобразив эти пары на графике, можно увидеть кластеры, связанные с датами (дни рождения, юбилеи).

Прогнозирование

Прогнозирование ― это широкая тема, которая простирается от предсказания отказов компонентов оборудования до выявления мошенничества и даже прогнозирования прибыли компании. В сочетании с другими методами интеллектуального анализа данных прогнозирование предполагает анализ тенденций, классификацию, сопоставление с моделью и отношения. Анализируя прошлые события или экземпляры, можно предсказывать будущее.

Например, используя данные по авторизации кредитных карт, можно объединить анализ дерева решений прошлых транзакций человека с классификацией и сопоставлением с историческими моделями в целях выявления мошеннических транзакций. Если покупка авиабилетов в США совпадает с транзакциями в США, то вполне вероятно, что эти транзакции подлинны.

Последовательные модели

Последовательные модели, которые часто используются для анализа долгосрочных данных, ― полезный метод выявления тенденций, или регулярных повторений подобных событий. Например, по данным о покупателях можно определить, что в разное время года они покупают определенные наборы продуктов. По этой информации приложение прогнозирования покупательской корзины, основываясь на частоте и истории покупок, может автоматически предположить, что в корзину будут добавлены те или иные продукты.

Деревья решений

Дерево решений, связанное с большинством других методов (главным образом, классификации и прогнозирования), можно использовать либо в рамках критериев отбора, либо для поддержки выбора определенных данных в рамках общей структуры. Дерево решений начинают с простого вопроса, который имеет два ответа (иногда больше). Каждый ответ приводит к следующему вопросу, помогая классифицировать и идентифицировать данные или делать прогнозы.

Рисунок 5. Подготовка данных

Источник данных, местоположение и база данных влияют на то, как будет обрабатываться и объединяться информация.

Опора на SQL

Наиболее простым из всех подходов часто служит опора на базы данных SQL. SQL (и соответствующая структура таблицы) хорошо понятен, но структуру и формат информации нельзя игнорировать полностью. Например, при изучении поведения пользователей по данным о продажах в модели данных SQL (и интеллектуального анализа данных в целом) существуют два основных формата, которые можно использовать: транзакционный и поведенческо-демографический.

При работе с InfoSphere Warehouse создание поведенческо-демографической модели в целях анализа данных о покупателях для понимания моделей их поведения предусматривает использование исходных данных SQL, основанных на информации о транзакциях, и известных параметров покупателей с организацией этой информации в заранее определенную табличную структуру. Затем InfoSphere Warehouse может использовать эту информацию для интеллектуального анализа данных методом кластеризации и классификации с целью получения нужного результата. Демографические данные о покупателях и данные о транзакциях можно скомбинировать, а затем преобразовать в формат, который допускает анализ определенных данных, как показано на .

Рисунок 6. Специальный формат анализа данных

Например, по данным о продажах можно выявить тенденции продаж конкретных товаров. Исходные данные о продажах отдельных товаров можно преобразовать в информацию о транзакциях, в которой идентификаторы покупателей сопоставляются с данными транзакций и кодами товаров. Используя эту информацию, легко выявить последовательности и отношения для отдельных товаров и отдельных покупателей с течением времени. Это позволяет InfoSphere Warehouse вычислять последовательную информацию, определяя, например, когда покупатель, скорее всего, снова приобретет тот же товар.

Из исходных данных можно создавать новые точки анализа данных. Например, можно развернуть (или доработать) информацию о товаре путем сопоставления или классификации отдельных товаров в более широких группах, а затем проанализировать данные для этих групп, вместо отдельных покупателей.

Рисунок 7. Структура MapReduce

В предыдущем примере мы выполнили обработку (в данном случае посредством MapReduce) исходных данных в документальной базе данных и преобразовали ее в табличный формат в базе данных SQL для целей интеллектуального анализа данных.

Для работы с этой сложной и даже неструктурированной информацией может потребоваться более тщательная подготовка и обработка. Существуют сложные типы и структуры данных, которые нельзя обработать и подготовить в нужном вам виде за один шаг. В этом случае можно направить выход MapReduce либо для последовательного преобразования и получения необходимой структуры данных, как показано на , либо для индивидуального изготовления нескольких таблиц выходных данных.

Рисунок 8. Последовательная цепочка вывода результатов обработки MapReduce

Например, за один проход можно взять исходную информацию из документальной базы данных и выполнить операцию MapReduce для получения краткого обзора этой информации по датам. Хорошим примером последовательного процесса является регенеририрование информации и комбинирование результатов с матрицей решений (создается на втором этапе обработки MapReduce) с последующим дополнительным упрощением в последовательную структуру. На этапе обработки MapReduce требуется, чтобы весь набор данных поддерживал отдельные шаги обработки данных.

Независимо от исходных данных, многие инструменты могут использовать неструктурированные файлы, CSV или другие источники данных. Например, InfoSphere Warehouse в дополнение к прямой связи с хранилищем данных DB2 может анализировать неструктурированные файлы.

Заключение

Интеллектуальный анализ данных - это не только выполнение некоторых сложных запросов к данным, хранящимся в базе данных. Независимо от того, используете ли вы SQL, базы данных на основе документов, такие как Hadoop, или простые неструктурированные файлы, необходимо работать с данными, форматировать или реструктурировать их. Требуется определить формат информации, на котором будет основываться ваш метод и анализ. Затем, когда информация находится в нужном формате, можно применять различные методы (по отдельности или в совокупности), не зависящие от требуемой базовой структуры данных или набора данных.



Просмотров