Валентность в периоде. Что такое валентность: как определять и как использовать

Химическая формула отражает состав (структуру) химического соединения или простого вещества. Например, Н 2 О - два атома водорода соединены с атомом кислорода. Химические формулы содержат также некоторые сведения о структуре вещества: например, Fe(OH) 3 , Al 2 (SO 4) 3 - в этих формулах указаны некоторые устойчивые группировки (ОН, SO 4), которые входят в состав вещества - его молекулы, формульной или структурной единицы (ФЕ или СЕ).

Молекулярная формула указывает число атомов каждого элемента в молекуле. Молекулярная формула описывает только вещества с молекулярным строением (газы, жидкости и некоторые твердые вещества). Состав вещества с атомной или ионной структурой можно описать только символами формульных единиц.

Формульные единицы указывают простейшее соотношение между числом атомов разных элементов в веществе. Например, формульная единица бензола  СН, молекулярная формула  С 6 Н 6 .

Структурная (графическая) формула указывает порядок соединения атомов в молекуле (а также в ФЕ и СЕ) и число связей между атомами.

Рассмотрение таких формул привело к представлению о валентности (valentia - сила) - как о способности атома данного элемента присоединять к себе определенное число других атомов. Можно выделить три вида валентности: стехиометрическую (включая степень окисления), структурную и электронную.

Стехиометрическая валентность. Количественный подход к определению валентности оказался возможным после установления понятия «эквивалент» и его определения по закону эквивалентов. Основываясь на этих понятиях можно ввести представление о стехиометрической валентности - это число эквивалентов, которое может к себе присоединить данный атом, или - число эквивалентов в атоме. Эквиваленты определяются по количеству атомов водорода, то и V стх фактически означает число атомов водорода (или эквивалентных ему частиц), с которыми взаимодействует данный атом.

V стх = Z B или V стх = . (1.1)

Например, в SO 3 ( S= +6), Z B (S) равен 6 V стх (S) = 6.

Эквивалент водорода равен 1, поэтому для элементов в приведенных ниже соединениях Z B (Cl) = 1, Z B (О) =2, Z B (N) = 3, а Z B (C) = 4. Численное значение стехиометрической валентности принято обозначать римскими цифрами:

I I I II III I IV I

HCl, H 2 O, NН 3 , CH 4 .

В тех случаях, когда элемент не соединяется с водородом, валентность искомого элемента определяется по элементу, валентность которого известна. Чаще всего ее находят по кислороду, поскольку валентность его в соединениях обычно равна двум. Например, в соединениях:

II II III II IV II

CaO Al 2 O 3 CО 2 .

При определении стехиометрической валентности элемента по формуле бинарного соединения следует помнить, что суммарная валентность всех атомов одного элемента должна быть равна суммарной валентности всех атомов другого элемента.

Зная валентность элементов, можно составить химическую формулу вещества. При составлении химических формул можно соблюдать следующий порядок действий:

1. Пишут рядом химические символы элементов, которые входят в состав соединения: KO AlCl AlO ;

2. Над символами химических элементов проставляют их валентность:

I II III I III II

3. Используя выше сформулированное правило, определяют наименьшее общее кратное чисел, выражающих стехиометрическую валентность обоих элементов (2, 3 и 6, соответственно).

    Делением наименьшего общего кратного на валентность соответствующего элемента находят индексы:

I II III I III II

K 2 O AlCl 3 Al 2 O 3 .

Пример 1. Составить формулу оксида хлора, зная, что хлор в нем семивалентен, а кислород - двухвалентен.

Решение. Находим наименьшее кратное чисел 2 и 7 - оно равно 14. Разделив наименьшее общее кратное на стехиометрическую валентность соответствующего элемента, находим индексы: для атомов хлора 14/7 = 2, для атомов кислорода 14/2 = 7.

Формула оксида -Cl 2 O 7 .

Степень окисления также характеризует состав вещества и равна стехиометрической валентности со знаком "плюс" (для металла или более электроположительного элемента в молекуле) или “минус”.

 = ±V стх. (1.2)

w определяется через V стх, следовательно через эквивалент, и это означает, что w(Н) = ±1; далее опытным путем могут быть найдены w всех других элементов в различных соединениях. В частности, важно, что ряд элементов имеют всегда или почти всегда постоянные степени окисления.

Полезно помнить следующие правила определения степеней окисления.

1. w(Н) = ±1 (. w = +1 в Н 2 О, НCl; . w = –1 в NaH, CaH 2);

2. F (фтор) во всех соединениях имеет w = –1, остальные галогены с металлами, водородом и другими более электроположительными элементами тоже имеют w = –1.

3. Кислород в обычных соединения имеет. w = –2 (исключения – пероксид водорода и его производные – Н 2 О 2 или BaO 2 , в которых кислород имеет степень окисления –1, а также фторид кислорода OF 2 , степень окисления кислорода в котором равна +2).

4. Щелочные (Li – Fr) и щелочно-земельные (Ca - Ra) металлы всегда имеют степень окисления, равную номеру группы, то есть +1 и +2, соответственно;

5. Al, Ga, In, Sc, Y, La и лантаноиды (кроме Се) – w = +3.

6. Высшая степень окисления элемента равна номеру группы периодической системы, а низшая = (№ группы - 8). Например, высшая w (S) = +6 в SO 3 , низшая w = -2 в Н 2 S.

7. Степени окисления простых веществ приняты равными нулю.

8. Степени окисления ионов равны их зарядам.

9. Степени окисления элементов в соединении компенсируют друг друга так, что их сумма для всех атомов в молекуле или нейтральной формульной единице равна нулю, а для иона - его заряду. Это можно использовать для определения неизвестной степени окисления по известным и составления формулы многоэлементных соединений.

Пример 2. Определить степень окисления хрома в солиK 2 CrO 4 и в ионеCr 2 O 7 2 - .

Решение. Принимаемw(К) = +1;w(О) =-2. Для структурной единицыK 2 CrO 4 имеем:

2 . (+1) + Х + 4 . (-2) = 0, отсюда Х =w(Сr) = +6.

Для иона Cr 2 O 7 2 - имеем: 2 . Х + 7 . (-2) =-2, Х =w(Cr) = +6.

То есть степень окисления хрома в обоих случаях одинакова.

Пример 3. Определить степень окисления фосфора в соединенияхP 2 O 3 иPH 3 .

Решение. В соединенииP 2 O 3 w(О) =-2. Исходя из того, что алгебраическая сумма степеней окисления молекулы должна быть равной нулю, находим степень окисления фосфора: 2 . Х + 3 . (-2) = 0, отсюда Х =w(Р) = +3.

В соединении PH 3 w(Н) = +1, отсюда Х + 3.(+1) = 0. Х =w(Р) =-3.

Пример 4. Напишите формулы оксидов, которые можно получить при термическом разложении перечисленных ниже гидроксидов:

H 2 SiO 3 ; Fe(OH) 3 ; H 3 AsO 4 ; H 2 WO 4 ; Cu(OH) 2 .

Решение. H 2 SiO 3 -определим степень окисления кремния:w(Н) = +1,w(О) =-2, отсюда: 2 . (+1) + Х + 3 . (-2) = 0.w(Si) = Х = +4. Составляем формулу оксида-SiO 2 .

Fe(OH) 3 -заряд гидроксогруппы равен-1, следовательноw(Fe) = +3 и формула соответствующего оксидаFe 2 O 3 .

H 3 AsO 4 -степень окисления мышьяка в кислоте: 3 . (+1) +X+ 4 . (-2) = 0.X=w(As) = +5. Таким образом, формула оксида-As 2 O 5 .

H 2 WO 4 -w(W) в кислоте равна +6, таким образом формула соответствующего оксида-WO 3 .

Cu(OH) 2 -так как имеется две гидроксогруппы, заряд которой равен-1, следовательноw(Cu) = +2 и формула оксида -CuO.

Большинство элементов имеют по несколько степеней окисления.

Рассмотрим, как с помощью таблицы Д.И. Менделеева можно определить основные степени окисления элементов.

Устойчивые степени окисления элементов главных подгрупп можно определять по следующим правилам:

1. У элементов I-III групп существуют единственные степени окисления - положительные и равные по величине номерам групп (кроме таллия, имеющего w = +1 и +3).

У элементов IV-VI групп, кроме положительной степени окисления, соответствующей номеру группы, и отрицательной, равной разности между числом 8 и номером группы, существуют еще промежуточные степени окисления, обычно отличающиеся между собой на 2 единицы. Для IV группы степени окисления, соответственно, равны +4, +2, -2, -4; для элементов V группы соответственно -3, -1 +3 +5; и для VI группы - +6, +4, -2.

3. У элементов VII группы существуют все степени окисления от +7 до -1, различающиеся на две единицы, т.е. +7,+5, +3, +1 и -1. В группе галогенов выделяется фтор, который не имеет положительных степеней окисления и в соединениях с другими элементами существует только в одной степени окисления -1. (Имеется несколько соединений галогенов с четными степенями окисления: ClO, ClO 2 и др.)

У элементов побочных подгрупп нет простой связи между устойчивыми степенями окисления и номером группы. У некоторых элементов побочных подгрупп устойчивые степени окисления следует просто запомнить. К таким элементам относятся:

Cr (+3 и +6), Mn (+7, +6, +4 и +2), Fe, Co и Ni (+3 и +2), Cu (+2 и +1), Ag (+1), Au (+3 и +1), Zn и Cd (+2), Hg (+2 и +1).

Для составления формул трех- и многоэлементных соединений по степеням окисления необходимо знать степени окисления всех элементов. При этом количество атомов элементов в формуле определяется из условия равенства суммы степеней окисления всех атомов заряду формульной единицы (молекулы, иона). Например, если известно, что в незаряженной формульной единице имеются атомы K, Cr и О со степенями окисления равными +1, +6 и -2 соответственно, то этому условию будут удовлетворять формулы K 2 CrO 4 , K 2 Cr 2 O 7 , K 2 Cr 3 O 10 и многие другие; аналогично этому иону с зарядом -2, содержащему Cr +6 и O - 2 будут соответствовать формулы CrO 4 2 - , Cr 2 O 7 2 - , Cr 3 O 10 2 - , Cr 4 O 13 2 - и т.д.

3. Электронная валентность V ‑ число химических связей, образуемых данным атомом.

Например, в молекуле H 2 O 2 Н ¾ О

V стх (O) = 1, V к. ч.(O) = 2, V .(O) = 2

То есть, имеются химические соединения, в которых стехиометрическая и электронная валентности не совпадают; к ним, например, относятся и комплексные соединения.

Координационная и электронная валентности более подробно рассматриваются в темах “Химическая связь” и “Комплексные соединения”.

Инструкция

Определим элементов при условии, что мы знаем формулу . Для этого среди компонентов вещества найдем по таблицам те элементы, которые имеют постоянную валентность. Запишем над каждым элементом его валентность, обозначив ее римской цифрой. Например, рассмотрим соединение серы, и - H2SO4 или серную . Кислород имеет постоянную валентность II, водород имеет валентность I.

Теперь рассмотрим элементы с непостоянной валентностью. Так, сера может иметь валентность II, IV или VI. Два атома водорода занимают 2 валентные у атомов кислорода. Тогда суммарно у атомов кислорода остается 2*4 - 2 = 6 валентных . И эти 6 свободных валентных связей приходятся на один- атом серы. Следовательно, сера в этом шестивалентна.

Обратите внимание

Ученые определили валентности многих элементов на основании данных химического анализа.

В одних случаях можно говорить о валентности одного химического элемента, входящего в формулу вещества, а в других можно определить только валентность группы, но не отдельных элементов. Так, например, для HClO4 про остаток ClO4 можно сказать, что он одновалентен, так как к нему присоединяется 1 атом водорода, а водород - одновалентный элемент.

Полезный совет

Зная валентности элементов, входящих в состав вещества, можно определить его формулу. Зная формулу вещества, можно определить валентности его элементов.

Источники:

  • Определение валентности
  • валентность серы

Со школы или даже раньше каждый знает, всё вокруг, включая и нас самих, состоит их атомов – наименьших и неделимых частиц. Благодаря способности атомов соединяться друг с другом, многообразие нашего мира огромно. Способность эта атомов химического элемента образовывать связи с другими атомами называют валентностью элемента .

Инструкция

Понятие вошло в химию в девятнадцатом веке, тогда за её единицу была принята валентность атома водорода. Валентность другого элемента может быть определена как число водорода, которое присоединяет к себе один атом другого вещества. Аналогично валентности по водороду определяется валентность по кислороду, которая, как правило, равна двум и, значит, позволяет определить валентность других элементов в соединениях несложными арифметическими действиями. Валентность элемента по кислороду равняется удвоенному числу атомов кислорода, которое может присоединить один атом данного элемента .

Для определения валентности элемента можно воспользоваться и формулой. Известно, что существует определенное соотношение между валентностью элемента , его эквивалентной массой и молярной массой его атомов. Связь между этими качествами формулой: Валентность = Молярная масса атомов/Эквивалентная масса. Так как масса – это то количество, которое необходимо для замещения одного моля водорода или для реакции с одним молем водорода, то чем больше в сравнении с массой эквивалентной, тем большее число атомов водорода может заместить или присоединить к себе атом элемента , а значит тем выше валентность.

Связь между химическими элемента ми имеет различную . Это может быть ковалентная связь, ионная, металлическая. Для образования связи атому необходимо иметь: электрический , неспаренный валентный , свободную валентную орбиталь или неподеленную пару валентных электронов. Вместе эти особенности определяют валентное состояние и валентные способности атома.

Зная число электронов атома, которое равно порядковому номеру элемента в Периодической системе элементов, руководствуясь принципами наименьшей энергии,принципом Паули и правилом Хунда можно построить электронную конфигурацию атома. Эти построения позволят проанализировать валентные возможности атома. Во всех случаях, в первую очередь реализуются возможности связи за счет наличия неспаренных валентных электронов, дополнительные валентные способности, такие как свободная орбиталь или неподеленная пара валентных электронов, могут остаться нереализованными, если на это недостаточно энергии.И всего вышесказанного можно сделать вывод, что проще всего определить валентность атома в каком-либо соединении, и гораздо сложнее выяснить валентные способности атомов. Впрочем практика сделает простым и это.

Видео по теме

Совет 3: Как определить валентность химических элементов

Валентность химического элемента - это способность атома присоединять или замещать определенное число других атомов или атомных групп с образованием химической связи. Нужно помнить, что некоторые атомы одного и того же химического элемента могут иметь разную валентность в разных соединениях.

Вам понадобится

  • таблица Менделеева

Инструкция

Водород принято считать одновалентным и двухвалентным элементами соответственно. Мерой валентности является число атомов водорода или кислорода, которые элемент присоединяет для образования гидрида или .Пусть X - элемент, валентность которого нужно определить. Тогда XHn - этого элемента, а XmOn - его оксид.Пример: - NH3, здесь у валентность 3. Натрий одновалентен в соединении Na2O.

Для определения валентности элемента нужно умножить количество атомов водорода или кислорода в соединении на валентность водорода и кислорода соответственно, а затем разделить на число атомов химического элемента, валентность которого находится.

Валентность элемента может быть определена и по другим атомам с известной . В различных атомы одного и того же элемента могут проявлять различные валентности. Например, двухвалентна в соединениях H2S и CuS, четырехвалентна в соединениях SO2 и SF4, шестивалентна в соединениях SO3 и SF6.

Максимальную валентность элемента равной числу электронов во внешней электронной атома. Максимальная валентность элементов одной и той же группы периодической системы обычно соответствует ее порядковому номеру. К примеру, валентность атома углерода С должна быть равной 4.

Видео по теме

Химия для каждого школьника начинается с таблицы Менделеева и фундаментальных законов. И уже только потом, уяснив для себя, что же изучает эта сложная наука, можно приступать к составлению химических формул. Для грамотной записи соединения нужно знать валентность атомов, составляющих его.

Инструкция

Для примера можно использовать два вещества – HCl и H2O. Это хорошо известные всем и вода. В первом веществе содержится один атом водорода (H) и один атом хлора (Cl). Это говорит о том, в данном соединении они образуют одну , то есть удерживают возле себя один атом. Следовательно, валентность и одного, и другого равна 1. Так же просто определить валентность элементов, составляющих молекулу воды. Она содержит два водорода и один атом кислорода. Следовательно, атом кислорода образовал две связи для присоединения двух водородов, а они, в свою очередь, по одной связи. Значит, валентность кислорода равна 2, а водорода – 1.

Но иногда приходится сталкиваться с вещества ми более сложными по и свойствам составляющих их атомов. Существует два типа элементов: с постоянной ( , водород и др.) и непостоянной валентность ю. У атомов второго типа это число зависит от соединения, в состав которого они входят. В качестве примера можно привести (S). Она может иметь валентности 2, 4, 6 и иногда даже 8. Определить способность таких элементов, как сера, удерживать вокруг себя другие атомы, немного сложнее. Для этого необходимо знать других составляющих вещества .

Запомните правило: произведение количества атомов на валентность одного элемента в соединении должна совпадать с таким же произведением для другого элемента. Это можно проверить вновь обратившись к молекуле воды (H2O):
2 (количество водорода) * 1 (его валентность ) = 2
1 (количество кислорода) * 2 (его валентность ) = 2
2 = 2 – значит все определено верно.

Теперь проверьте этот алгоритм на более сложном веществе, например, N2O5 – оксиде . Ранее указывалось, что кислород имеет постоянную валентность 2, поэтому можно составить :
2 (валентность кислорода) * 5 (его количество) = Х (неизвестная валентность азота) * 2 (его количество)
Путем несложных арифметических вычислений можно определить, что валентность азота в данного соединения равна 5.

Валентность - это способность химических элементов удерживать определенное количество атомов других элементов. В то же самое время, это число связей, образуемое данным атомом с другими атомами. Определить валентность достаточно просто.

Инструкция

Примите к сведению, что валентность атомов одних элементов постоянна, а других - переменна, то есть, имеет свойство меняться. Например, водород во всех соединениях одновалентен, поскольку образует только одну . Кислород способен образовывать две связи, являясь при этом двухвалентным. А вот у может быть II, IV или VI. Все зависит от элемента, с которым она соединяется. Таким образом, сера - элемент с переменной валентностью.

Заметьте, что в молекулах водородных соединений вычислить валентность очень просто. Водород всегда одновалентен, а этот показатель у связанного с ним элемента будет равняться количеству атомов водорода в данной молекуле. К примеру, в CaH2 кальций будет двухвалентен.

Запомните главное правило определения валентности: произведение показателя валентности атома какого-либо элемента и количества его атомов в какой-либо молекуле произведению показателя валентности атома второго элемента и количества его атомов в данной молекуле.

Посмотрите на буквенную формулу, обозначающую это равенство: V1 x K1 = V2 x K2, где V - это валентность атомов элементов, а К - количество атомов в молекуле. С ее помощью легко определить показатель валентности любого элемента, если известны остальные данные.

Рассмотрите пример с молекулой оксида серы SО2. Кислород во всех соединениях двухвалентен, поэтому, подставляя значения в пропорцию: Vкислорода х Кислорода = Vсеры х Ксеры, получаем: 2 х 2 = Vсеры х 2. От сюда Vсеры = 4/2 = 2. Таким образом, валентность серы в данной молекуле равна 2.

Видео по теме

Валентность – один из основных терминов, употребляемых в теории химического строения. Это понятие определяет способность атома образовывать химические связи и количественно представляет собой число связей, в которых он участвует.

Инструкция

Валентность (от лат. valentia – «сила») – показатель способности атома присоединять к себе другие атомы, образуя с ними химические связи внутри молекулы. Общее число связей, в которых может участвовать атом, равняется числу его неспаренных электронов. Такие связи называются ковалентными.

Неспаренные электроны – это свободные электроны внешней оболочки атома, которые соединяются в пары с внешними электронами другого атома. При этом каждая такая пара называется электронной, а такие электроны – валентными. Исходя из этого, валентности может звучать так: это число электронных пар, по которым данный атом связан с другими атомами.

Максимальный показатель валентности химических элементов одной группы периодической системы, как правило, равен порядковому номеру группы. В различных атомы одного элемента могут иметь разную валентность. Полярность образующихся не учитывается, поэтому валентность не имеет знака. Она не может быть ни нулевой, ни отрицательной величиной.

Количественной любого химического элемента принято считать число одновалентных атомов водорода или двухвалентных атомов кислорода. Однако при определении валентности можно использовать и другие элементы, валентность которых точно известна.

Иногда понятие валентности отождествляют с понятием «степень окисления», однако это неверно, хотя в некоторых случаях эти показатели совпадают. Степень окисления – формальный термин, означающий возможный заряд, который получил бы атом, если бы его электроны в электронных перешли к более электроотрицательным атомам. При этом степень окисления выражается в единицах заряда и может иметь знак, в отличие от валентности. Этот термин получил распространение в неорганической , поскольку в неорганических соединениях судить о валентности. Валентность же используется в органической химии, поскольку большинство органических соединений имеет молекулярное строение.

Видео по теме

Это способность атома вступать во взаимодействие с другими атомами, образуя с ними химические связи. В создание теории валентности внесли большой вклад многие ученые, прежде всего, немец Кекуле и наш соотечественник Бутлеров. Электроны , которые принимают участие в образовании химической связи, называют валентными.

Вам понадобится

  • Таблица Менделеева.

Тема урока: «Валентность. Определение валентности по формулам их соединений»

Тип урока : изучение и первичное закрепление новых знаний

Организационные формы: беседа, индивидуальные задания, самостоятельная

Цели урока:

Дидактические:

Опираясь на знания учащихся, повторить понятия “химическая формула”;

Способствовать формированию у учащихся понятия “валентность” и умению определять валентность атомов элементов по формулам веществ;

Акцентировать внимание школьников на возможности интеграции курсов химии, математики.

Развивающие:

Продолжить формирование умений формулировать определения;

Разъяснять смысл изученных понятий и объяснять последовательность действий при определении валентности по формуле вещества;

Способствовать обогащению словарного запаса, развитию эмоций, творческих способностей;

Развивать умение выделять главное, существенное, сравнивать, обобщать, развивать дикцию, речь.

Воспитательные:

Воспитывать чувство товарищества, умение работать коллективно;

Повысить уровень эстетического воспитания учащихся;

Ориентировать учащихся на здоровый образ жизни.

Планируемые результаты обучения:

Предметные: знать определение понятия «валентность».

Уметь определять валентность элементов по формулам бинарных соединений. Знать валентность некоторых химических элементов.

Метапредметные: формировать умение работать по алгоритму для решения учебных и познавательных задач.

Личностные: формирование ответственного отношения к учению, готовности учащихся к самообразованию на основе мотивации к обучению.

Основные виды деятельности учащихся. Определять валентность элементов в бинарных соединениях.

Основные понятия: валентность, постоянная и переменная валентность.

Оборудование для учащихся: учебник Г.Е. Рудзитис, Ф.Г. Фельдман «Химия. 8 класс». - М.: Просвещение, 2015; на каждом столе “Алгоритм определения валентности” (приложение 2); раздаточный материал.

Ход урока

Деятельность учителя

Деятельность учащихся

1.Организационный момент

Учитель приветствует учащихся, определяет готовность к уроку, создает благоприятный микроклимат в классе

Приветствуют учителя, демонстрируют готовность к уроку

2.Актуализация знаний

Фронтальная беседа с учащимися по пройденной теме “Химическая формула”.

Задание 1: Что здесь написано?

Учитель демонстрирует формулы, отпечатанные на отдельных листах (приложение 1).

Задание 2: индивидуальная работа по карточкам (двое учащихся работают у доски). После окончания расчетов проверка.

Карточка № 1. Рассчитайте относительную молекулярную массу данных веществ: NaCl, K2O.

Карточка № 2. Рассчитайте относительную молекулярную массу данных веществ: CuO, SO2.

Учащиеся отвечают на вопросы учителя, читают формулы на «химическом языке»

Учащиеся получают карточки: первый вариант - № 1, второй вариант - № 2 и выполняют задания. Двое учащихся выходят к доске и производят расчеты на обратной стороне доски. Когда выполнят задания, проверяют все вместе правильность, если есть ошибки, находят пути их устранения.

3.Изучение нового материа

1. Объяснение учителя. Постановка проблемы.

Понятие о валентности.

До сих пор мы пользовались готовыми формулами, приведёнными в учебнике. Химические формулы можно вывести на основании данных о составе веществ. Но чаще всего при составлении химических формул учитываются закономерности, которым подчиняются элементы, соединяясь между собой.

Задание: сравните качественный и количественный состав в молекулах: HCl , H2O, NH3, CH4.

Что общего в составе молекул?

Чем они отличаются друг от друга?

Проблема: Почему различные атомы удерживают различное количество атомов водорода?

Вывод: У атомов разная способность удерживать определённое количество других атомов в соединениях. Это и называется валентностью. Слово “валентность” происходит от лат. valentia - сила.

Запишите определение в тетрадь:

Валентность - это свойство атомов удерживать определённое число других атомов в соединении.

Валентность обозначается римскими цифрами.

Валентность атома водорода принята за единицу, а у кислорода - два.

1.Отметить валентность известного элемента: I

2. найти общее число единиц валентности известного элемента:

3.общее число единиц валентности делят на количество атомов другого элемента и узнают его валентность:

Слушают учителя

Наличие атомов водорода.

HCl - один атом хлора удерживает один атом водорода

H2O - один атом кислорода удерживает два атома водорода

NH3 - один атом азота удерживает три атома водорода

CH4 - один атом углерода удерживает четыре атома водорода.

Фиксируют проблему, высказывают предположения, совместно с учителем приходят к выводу.

Записывают определение, слушают объяснения учителя.

Используя алгоритм определения валентности, записывают в тетрадь формулу и определяют валентность элементов

Слушают объяснения учителя

4.Первичная проверка усвоенных знаний

Упражнение 1: определить валентность элементов в веществах. Задание в раздаточном материале.

Упражнение 2: В течение трёх минут необходимо выполнить одно из трёх заданий по выбору. Выбирайте только то задание, с которым вы справитесь. Задание в раздаточном материале.

Прикладной уровень (“4”).

Творческий уровень (“5”).

Учитель выборочно проверяет тетради учащихся, за правильно выполненные задания ставит оценки.

тренажёр: ученики цепочкой выходят к доске и определяют валентности элементов в предложенных формулах

Учащиеся выполняют предложенные задания, выбирая тот уровень, на который, по их мнению, они способны. Анализируют ответы вместе с учителем

5.Подведение итогов урока

Беседа с учащимися:

Какую проблему мы поставили в начале урока?

К какому выводу мы пришли?

Дать определение “валентности”.

Чему равна валентность атома водорода? Кислорода?

Как определить валентность атома в соединении?

Оценка работы учащихся в целом и отдельных учащихся.

Отвечают на вопросы учителя. Анализируют свою работу на уроке.

6.Домашнее задание

§ 16, упр. 1, 2, 5, тестовые задания

Записывают задание в дневник

7.Рефлексия

Организует выбор учащимися адекватной оценки своего отношения к уроку и состояния после проведенного урока (приложение 3, распечатать для каждого)

Выполняют оценку своих ощущений после проведенного урока

Литература:

Гара Н. Н. Химия: уроки в 8 классе: пособие для учителя / Н. Н. Гара. - М.: Просвещение, 2014.

Контрольно-измерительные материалы. Химия 8 класс/Сост. Н.П. Троегубова. - М.: ВАКО, 2013.

Рудзитис Г.Е., Фельдман Ф.Г. «Химия. 8 класс». - М.: Просвещение, 2015.

Троегубова Н.П. Поурочные разработки по химии 8 класс. - М.: ВАКО, 2014.

Журнал «Биология» - www.1september.ru - технология личностно-ориентированного обучения.

Приложение 1

Что означает следующая запись?

а) 4H; 7Fe; H2; 4H2 б) NaCl; AlBr3; FeS

Приложение 2

Алгоритм определения валентности.

Алгоритм определения валентности

Пример

1. Запишите формулу вещества.

2. Обозначьте известную валентность элемента

3. Найдите число единиц валентности атомов известного элемента, умножив валентность элемента на количество его атомов

2
II
Cu2O

4. Поделите число единиц валентности атомов на количество атомов другого элемента. Полученный ответ и является искомой валентностью

2
I II
H2S

2
I II
Cu2O

5. Сделайте проверку, то есть подсчитайте число единиц валентностей каждого элемента

I II
H2S
(2=2)

I II
Cu2O
(2=2)

На уроке я работал: активно/пассивно

Своей работой на уроке я: доволен/не доволен

Урок для меня показался: коротким/длинным

За урок я: не устал/устал

Мое настроение: стало лучше/стало хуже

Материал урока мне был: понятен/не понятен, интересен/скучен.

Раздаточный материал.

Упражнение 1: определить валентность элементов в веществах:

SiH4, CrO3, H2S, CO2, CO, SO3, SO2, Fe2O3, FeO, HCl, HBr, Cl2O5, Cl2O7, РН3, K2O, Al2O3, P2O5, NO2, N2O5, Cr2O3, SiO2, B2O3, SiH4, Mn2O7, MnO, CuO, N2O3.

Упражнение 2:

В течение трёх минут необходимо выполнить одно из трёх заданий по выбору. Выбирайте только то задание, с которым вы справитесь.

Репродуктивный уровень (“3”). Определите валентность атомов химических элементов по формулам соединений: NH3, Au2O3, SiH4, CuO.

Прикладной уровень (“4”). Из приведённого ряда выпишите только те формулы, в которых атомы металлов двухвалентны: MnO, Fe2O3 , CrO3, CuO, K2O, СаH2.

Творческий уровень (“5”). Найдите закономерность в последовательности формул: N2O, NO, N2O3 и проставьте валентности над каждым элементом.

Одной из важных в изучении школьных тем является курс, касающийся валентности. Об этом пойдет речь в статье.

Валентность – что это такое?

Валентность в химии означает свойство атомов химического элемента привязывать к себе атомы другого элемента. В переводе с латыни – сила. Выражается она в числах. Например, валентность водорода всегда будет равняться единице. Если взять формулу воды – Н2О, ее можно представить в виде Н – О – Н. Один атом кислорода смог связать с собой два атома водорода. Значит, количество связей, которые создает кислород, равно двум. И валентность этого элемента будет равняться двум.

В свою очередь, водород будет двухвалентным. Его атом может быть соединен только с одним атомом химического элемента. В данном случае с кислородом. Говоря точнее, атомы в зависимости от валентности элемента, образуют пары электронов. Сколько таких пар образовано – таковой и будет валентность. Числовое значение именуется индексом. У кислорода индекс 2.

Как определить валентность химических элементов по таблице Дмитрия Менделеева

Посмотрев на таблицу элементов Менделеева, можно заметить вертикальные ряды. Их называют группами элементов. От группы зависит и валентность. Элементы первой группы имеют первую валентность. Второй – вторую. Третьей – третью. И так далее.

Есть также элементы с постоянным индексом валентности. Например, водород, группа галогенов, серебро и так далее. Их необходимо выучить обязательно.


Как определить валентность химических элементов по формулам?

Иногда сложно определить по таблице Менделеева валентность. Тогда нужно смотреть конкретную химическую формулу. Возьмем оксид FeO. Здесь и у железа, как у кислорода, индекс валентности будет равняться двум. А вот в оксиде Fe2O3 – по-другому. Железо будет трехвалентным.


Нужно помнить всегда разные способы определения валентности и не забывать их. Знать постоянные ее числовые значения. У каких элементов они есть. И, конечно, пользоваться таблицей химических элементов. А также изучать отдельные химические формулы. Лучше представлять их в схематическом виде: Н – О – Н, например. Тогда видны связи. И количество черточек (тире) будет числовым значением валентности.

Атомы химических элементов могут образовывать различное число связей. Эта способность имеет специальное название – валентность. Давайте разберемся, как определить валентность по таблице Менделеева, узнаем, в чем заключается ее отличие от степени окисления, увидим закономерности, характерные для , углерода, фосфора, цинка, научимся находить валентность химических элементов.

Вконтакте

Основные сведения

Валентность – это возможность атомов различных химических элементов образовывать связи между собой. Другими словами можно сказать, что это способность атома присоединить к себе определенное количество других атомов.

Важно! Это не всегда постоянное число для одного и того же элемента. В разных соединениях элемент может обладать различными значениями.

Определение по таблице Д.И. Менделеева

Для определения этой способности атома по необходимо знать, что такое группы и подгруппы периодической таблицы .

Это вертикальные столбцы, которые делят все элементы по определенному признаку. В зависимости от признака, выделяют подразделения элементов.

Этими столбцами элементы делятся на тяжелые и легкие элементы, а также подгруппы — галогены, инертные газы и тому подобное.

Итак, для определения способности элемента образовывать связи нужно руководствоваться двумя правилами:

  • Высшая валентность элемента равна номеру его группы.
  • Низшая валентность находится как разница между числом 8 и номером группы, в которой расположен данный элемент.

Например, фосфор проявляет высшую валентность V – P 2 O 5 и низшую (8-5)=3– PF 3 .

Стоит также отметить несколько основных характеристик и особенностей при определении этого показателя:

  • Валентность водорода всегда I – H 2 O, HNO 3 , H 3 PO 4 .
  • Валентность всегда равна II – CO 2 , SO 3 .
  • У металлов, которые расположены в главной подгруппе, этот показатель всегда равен номеру группы – Al 2 O 3 , NaOH, KH.
  • Для неметаллов чаще всего проявляются только две валентности – высшая и низшая.

Также существуют элементы, у которых может быть 3 или 4 разных значений этого показателя. К ним относятся хлор, бор, йод, хром, сера и другие. Например, хлор обладает валентностью I, III, V, VII – HCl, ClF 3 ,ClF 5 ,HClO 4 соответственно.

Определение по формуле

Для определения по формуле можно воспользоваться несколькими правилами:

  1. Если известна валентность (V) одного из элементов в двойном соединении: допустим, есть соединение углерода и кислорода СО 2 , при этом мы знаем, что валентность кислорода всегда равна II, тогда можем воспользоваться таким правилом: произведение числа атомов на его V одного элемента должно равняться произведению числа атомов другого элемента на его V. Таким образом, валентность можно найти так – 2×2 (в молекуле 2 атома кислорода с V= 2), то есть валентность углерода равняется 4 . Рассмотрим еще несколько примеров: P 2 O 5 – тут валентность фосфора = (5*2)/2 = 5. HCl – валентность хлора будет равна I, так как в этой молекуле 1 атом водорода, и V= 1.
  2. Если известна валентность нескольких элементов, которые составляют группу: в молекуле гидроксида натрия NaOH валентность кислорода равняется II, а валентность водорода – I, таким образом группа -OH обладает одной свободной валентностью, так как кислород присоединил только один атом водорода и еще одна связь свободна. К ней и присоединится натрий. Можно сделать вывод, что натрий – одновалентный элемент.

Разница между степенью окисления и валентностью

Очень важно понимать принципиальную разницу между этими понятиями. Степень окисления – это условный электрический заряд , которым обладает ядро атома, в то время как валентность – это количество связей, которые может установить ядро элемента.

Рассмотрим подробнее, что такое степень окисления. Согласно современной теории о строении атома, ядро элемента состоит из положительно заряженных протонов и нейтронов без заряда, а вокруг него находятся электроны с отрицательным зарядом, которые уравновешивают заряд ядра и делают элемент электрически нейтральным.

В случае, если атом устанавливает связь с другим элементом, он отдает или принимает электроны , то есть выходит из состоянии баланса и начинает обладать электрическим зарядом. При этом если атом отдает электрон, он становится положительно заряженным, а если принимает – отрицательным.

Внимание! В соединении хлора и водорода HCl водород отдает один электрон и приобретает заряд +1, а хлор принимает электрон и становится отрицательным -1. В сложных соединениях, HNO 3 и H 2 SO 4 , степени окисления будут такими – H +1 N +5 O 3 -2 и H 2 +1 S +6 O 4 -2 .

Сравнивая два этих определения, можно сделать вывод, что валентность и степень окисления часто совпадают: валентность водорода +1 и валентность I, степень окисления кислорода -2 и V II, но очень важно помнить, что это правило выполняется не всегда !

В органическом соединении углерода под названием формальдегид и формулой HCOH у углерода степень окисления 0, но он обладает V, равной 4. В перекиси водорода H 2 O 2 у кислорода степень окисления +1, но V остается равной 2. Поэтому не следует отождествлять два этих понятия, так как в ряде случаев это может привести к ошибке.

Валентности распространенных элементов

Водород

Один из самых распространенных элементов во вселенной, встречается во многих соединениях и всегда обладает V=1 . Это связано со строением его внешней электронной орбитали, на которой у водорода находится 1 электрон.

На первом уровне может находиться не более двух электронов одновременно, таким образом, водород может либо отдать свой электрон и образовать связь (электронная оболочка останется пустой), либо принять 1 электрон, также образовав новую связь (электронная оболочка полностью заполнится).

Пример: H 2 O – 2 атома водорода с V=1 связаны с двухвалентным кислородом; HCl – одновалентные хлор и водород; HCN – синильная кислота, где водород также проявляет V, равную 1.



Просмотров