История тригонометрических функций. История возникновения тригонометрии. Тригонометрия в Индии

Лекция № 6

Тема: Зарождение и развитие тригонометрии

1.1. Зарождение и развитие тригонометрии.

1.2. Сферическая тригонометрия.

1.3. Тригонометрия в Европе до Эйлера.

1.4. Вклад Эйлера в развитие тригонометрии.

1.5. Последователи Эйлера в развитии тригонометрии.

1.1. ЗАРОЖДЕНИЕ И РАЗВИТИЕ ТРИГОНОМЕТРИИ.

Тригонометрия возникла и развивалась в древности как один из разделов астрономии, как ее вычислительный аппарат, отвечающий практическим нуждам человека.

Тригонометрия – слово греческое и в буквальном переводе означает измерение треугольников (trigwnon - треугольник, а metrew - измеряю).

В данном случае измерение треугольников следует понимать как решение треугольников, т.е. определение сторон, углов и других элементов треугольника, если даны некоторые из них. Большое количество практических задач, а также задач планиметрии, стереометрии, астрономии и других приводятся к задаче решения треугольников.

Возникновение тригонометрии связано с землемерением, астрономией и строительным делом. Хотя название науки возникло сравнительно недавно, многие относимые сейчас к тригонометрии понятия и факты были известны ещё 2000 лет назад.

Впервые способы решения треугольников, основанные на зависимостях между сторонами и углами треугольника, были найдены древнегреческими астрономами Гиппархом (2 в. до н. э.) и Клавдием Птолемеем (2 в. н. э.). Позднее зависимости между отношениями сторон треугольника и его углами начали называть тригонометрическими функциями.

Значительный вклад в развитие тригонометрии внесли арабские ученые Аль-Батани (850-929) и Абу-ль-Вафа, Мухамед-бен Мухамед (940-998), который составил таблицы синусов и тангенсов через 10 ’ с точностью до 1/60 4 . Теорему синусов уже знали индийский ученый Бхаскара (р. 1114, год смерти неизвестен) и азербайджанский астроном и математик Насиреддин Туси Мухамед (1201-1274). Кроме того, Насиреддин Туси в своей работе «Трактат о полном четырехстороннике» изложил плоскую и сферическую тригонометрию как самостоятельную дисциплину.

Длительную историю имеет понятие синус. Фактически различные отношения отрезков треугольника и окружности (а по существу, и тригонометрические функции) встречаются уже в III веке до н.э. в работах великих математиков Древней Греции – Евклида, Архимеда, Апполония Пергского. В римский период эти отношения достаточно систематично исследовались Менелаем (I век н.э.), хотя и не приобрели специального названия. Современный синус , например, изучался как полухорда, на которую опирается центральный угол величиной , или как хорда удвоенной дуги.

Слово косинус намного моложе. Косинус – это сокращение латинского выражения completely sinus , т. е. “дополнительный синус” (или иначе “синус дополнительной дуги”; cos  = sin (90  -  )).

Тангенсы возникли в связи с решением задачи об определении длины тени. Тангенс (а также котангенс) введен в X веке арабским математиком Абу-ль-Вафой, который составил и первые таблицы для нахождения тангенсов и котангенсов. Однако эти открытия долгое время оставались неизвестными европейским ученым, и тангенсы были заново открыты лишь в XIV веке немецким математиком, астрономом Регимонтаном (1467 г.). Он доказал теорему тангенсов. Региомонтан составил также подробные тригонометрические таблицы; благодаря его трудам плоская и сферическая тригонометрия стала самостоятельной дисциплиной и в Европе.

Название «тангенс», происходящее от латинского tanger (касаться), появилось в 1583 г. Tangens переводится как «касающийся» (линия тангенсов – касательная к единичной окружности).

Дальнейшее развитие тригонометрия получила в трудах выдающихся астрономов Николая Коперника (1473-1543) – творца гелиоцентрической системы мира, Тихо Браге (1546-1601) и Иогана Кеплера (1571-1630), а также в работах математика Франсуа Виета (1540-1603), который полностью решил задачу об определениях всех элементов плоского или сферического треугольника по трем данным.

Долгое время тригонометрия носила чисто геометрический характер, т. е. Факты, которые мы сейчас формулируем в терминах тригонометрических функций, формулировались и доказывались с помощью геометрических понятий и утверждений. Такою она была еще в средние века, хотя иногда в ней использовались и аналитические методы, особенно после появления логарифмов. Пожалуй, наибольшие стимулы к развитию тригонометрии возникали в связи с решением задач астрономии, что представляло большой практический интерес (например, для решения задач определения местонахождения судна, предсказания затемнения и т. д.). Астрономов интересовали соотношения между сторонами и углами сферических треугольников. И надо заметить, что математики древности удачно справлялись с поставленными задачами.

Начиная с XVII в., тригонометрические функции начали применять к решению уравнений, задач механики, оптики, электричества, радиотехники, для описания колебательных процессов, распространения волн, движения различных механизмов, для изучения переменного электрического тока и т. д. Поэтому тригонометрические функции всесторонне и глубоко исследовались, и приобрели важное значение для всей математики.

Аналитическая теория тригонометрических функций в основном была создана выдающимся математиком XVIII веке Леонардом Эйлером (1707-1783) членом Петербургской Академии наук. Громадное научное наследие Эйлера включает блестящие результаты, относящиеся к математическому анализу, геометрии, теории чисел, механике и другим приложениям математики. Именно Эйлер первым ввел известные определения тригонометрических функций, стал рассматривать функции произвольного угла, получил формулы приведения. После Эйлера тригонометрия приобрела форму исчисления: различные факты стали доказываться путем формального применения формул тригонометрии, доказательства стали намного компактнее проще,

Таким образом, тригонометрия, возникшая как наука о решении треугольников, со временем развилась и в науку о тригонометрических функциях.

1.2. СФЕРИЧЕСКАЯ ТРИГОНОМЕТРИЯ.

Сферическая тригонометрия — раздел тригонометрии, в котором изучаются зависимости между величинами углов и длинами сторон сферических треугольников. Применяется для решения различных геодезических и астрономических задач.

Основы сферической тригонометрии были заложены греческим математиком и астрономом Гиппархом во II веке до н. э. Важный вклад в её развитие внесли такие античные учёные, как Менелай Александрийский и Клавдий Птолемей. Сферическая тригонометрия древних греков опиралась на применение теоремы Менелая к полному четырёхстороннику на сфере. Древнегреческие математики излагали условие теоремы Менелая не на языке отношений синусов, а на языке отношений хорд. Для выполнения требуемых расчётов применялись таблицы хорд, аналогичные последующим таблицам синусов.

Как самостоятельная дисциплина сферическая тригонометрия сформировалась в работах средневековых математиков стран ислама. Наибольший вклад в её развитие в эту эпоху внесли такие учёные, как Сабит ибн Корра, Ибн Ирак, Кушьяр ибн Лаббан, Абу-л-Вафа, ал-Бируни, Джабир ибн Афлах, ал-Джайяни, Насир ад-Дин ат-Туси. В их работах были введены основные тригонометрические функции, сформулирована и доказана сферическая теорема синусов и ряд других теорем, применявшихся в астрономических и геодезических расчётах, ведено понятие полярного треугольника, позволявшее вычислять стороны сферического треугольника по трём его данным углам.

История сферической тригонометрии в Европе связана с трудами таких учёных, как Региомонтан, Николай Коперник, Франческо Мавролико.

З амена хорд синусами стала главным достижением Средневековой Индии. Такая замена позволила вводить различные функции, связанные со сторонами и углами прямоугольного треугольника. Таким образом, в Индии было положено начало тригонометрии как учению о тригонометрических величинах.

Индийские учёные пользовались различными тригонометрическими соотношениями. Тригонометрия необходима для астрономических расчётов, которые оформляются в виде таблиц. Первая таблица синусов имеется в «Сурья-сиддханте» и у Ариабхаты. Позднее учёные составили более подробные таблицы: например, Бхаскара приводит таблицу синусов через 1°.

Южноиндийские математики в 16 веке добивались больших успехов в области суммирования бесконечных числовых рядов. По-видимому, они занимались этими исследованиями, когда искали способы вычисления более точных значений числа π. Никаланта словесно приводит правила разложения арктангенса в бесконечный степенной ряд. А в анонимном трактате «Каранападдхати» («Техника вычислений») даны правила разложения синуса и косинуса в бесконечные степенные ряды. Нужно сказать, что в Европе к подобным результатам подошли лишь в 17-18 вв. Так, ряды для синуса и косинуса вывел Исаак Ньютон около 1666 г., а ряд арктангенса был найден Дж. Грегори в 1671 г. и Г. В. Лейбницем в 1673 г.

В 8 в. учёные стран Ближнего и Среднего Востока познакомились с трудами индийских математиков и астрономов и перевели их на арабский язык. В середине 9 века среднеазиатский учёный аль-Хорезми написал сочинение «Об индийском счёте». После того как арабские трактаты были переведены на латынь, многие идеи индийских математиков стали достоянием европейской, а затем и мировой науки.

1.3. тригонометриЯ В ЕВРОПЕ до Эйлера

Оказавшийся столь важным для развития учения о геометрических местах 1637 год не имел такого же значения для элементарной геометрии. В частности, сам Декарт ничего не сделал для тригонометрии как таковой. Как в его «Геометрии», так и в комментариях к ней тригонометрические функции углов фигуры выражались через отношения сторон связанных с ней прямоугольных треугольников.

Тем не менее тридцатые годы XVII столетия завершили в известной мере построение тригонометрии: мы имеем в виду создание логарифмических методов вычислений. Отметим, что в 1633 вышла «Британская тригонометрия» Бригса—Геллибранда, содержавшая во второй части наиболее употребительные приемы решения плоских и сферических треугольников, с учетом в первую очередь формул логарифмического характера. Наряду с аналогиями Непера Геллибранд применял формулы, определяющие половину угла по трем сторонам как для плоского (Ретик, ранее 1576, опубликовано в 1596), так и для сферического треугольника (Непер в Constructs, 1619). Случай трех данных углов в сферическом треугольнике Геллибранд приводил, впрочем, с помощью полярного треугольника к случаю трех данных сторон, не сообщая никаких формул. В таблицах, составлявших первую часть «Британской тригонометрии», авторы ввели десятичное деление градуса. Однако в опубликованной одновременно работе «Искусственная тригонометрия» Флакк снова пользовался старым шестидесятеричным делением и образовал тем самым основу всех позднейших таблиц.

Укажем еще на книгу Крюгера «Употребление логарифмической тригонометрии» (Данциг, 1634), принадлежащую также и к разбираемому нами периоду, поскольку новые издания ее вышли в 1648 и 1654. Крюгер применял неперовы аналогии в случаях сферических треугольников с данными a, b, f и а, р, с вполне по-современному. Для плоского треугольника с тремя данными сторонами а^>Ь^>с он привел длинное словесное указание, которое в наших обозначениях гласит, что прежде всего нужно определить вспомогательную величину х из уравнения

а затем из уравнения

найти угол β и из уравнения

угол γ . Здесь х обозначает разность р — q проекций сторон b, с на ВС. Этот обход теоремы косинуса был характерен для всей тогдашней английской тригонометрии (соответствующие чертежи имелись, например, у Оутреда и Дж. Ньютона. Восходил он к Descriptio Непера и основывался, по существу, на теореме о том, что

которая была известна в различных формах еще древним грекам и арабам.

Как в алгебре, так и в тригонометрии нового времени прежде всего усовершенствована была форма. И здесь и там совершался постепенный переход от античного изложения с помощью пропорций и нередко длинных вычислительных рецептов к алгебраическому исчислению и уравнениям. В значительной мере этот прогресс был осуществлен теми же учеными. П. Эригон распространил свою символику и на тригонометрию. В качестве образца мы приведем лишь форму, в которой он изложил теорему косинусов для плоскости. Нужно заметить при этом, что на чертежах Эригона в вершинах углов стояли большие буквы, которые часто сами обозначали эти углы, а в тексте — малые, и что D представляет собой основание высоты, проведенной из А. Теорема имела у Эригона следующий вид:

В Англии весьма способствовал более символическому изложению тригонометрии

В сочинении Оутреда были даны первые (геометрические) доказательства обеих аналогий Непера. Непер, а также Бриге и Геллибранд опубликовали только самые формулы, притом в логарифмическом виде.

Аналитический вывод неперовых аналогий дал впервые Джон Ньютон в большом труде «Британская тригонометрия» (Лондон, 1658). Впрочем, этот вывод, как и другие доказательства вычислительного характера, приведенные Ньютоном, был еще весьма громоздким. Сочинение Дж. Ньютона представляло собой значительно улучшенное и дополненное новое издание одноименной работы Бригса — Геллибранда. В нем, как и в несколько более ранней «Британской астрономии» того же автора (Лондон, 1656), впервые регулярно употреблялись термины «косинус» и «котангенс». Для «синуса», «тангенса» и «секанса» это сделал еще Т. Финк 1583, так что теперь наименование тригонометрических функций было уже установлено, хотя и не стало пока общеупотребительным.

Упомянем здесь, что формулы, выражающие функции удвоенного угла через функции однократного), были в это же время дополнены формулой, записываемой в наших обозначениях в виде:

Эту теорему привел Джон Пелль в своей книге «Споры об истинном измерении круга» (Амстердам, 1647); там же она была доказана различными способами Робервалем и другими математиками. Более общее правило для tg( + β) и, кроме того, для sc ( + β) впервые вывел (геометрически) Я. Герман в Acta Erud., 1706. Забегая вперед, добавим, что формула

появилась лишь во «Введении» Эйлера (1748) и что важные формулы, позволяющие рационально выразить sin 2а и cos 2а через tg  , были установлены еще позднее И. Ламбертом в первой книге его «Очерков об употреблении математики», 1765.

Задачу об определении двух углов (β и γ ) треугольника по третьему углу а и логарифмам сторон Ь и с впервые решил по словам Томаса Стрита (Astronomia Carolina, Лондон, 1661) Роберт Андерсон, введший для этой цели вспомогательный угол. Он, в переводе на наши обозначения, положил tg  = b / c , вычислил  и затем определил угол β-γ :

Теорема была передана словесно; доказательство, предполагавшее известной теорему тангенсов, имело сложный геометрический характер. Отсюда этот прием перешел в большинство учебников.

Из энциклопедических изложений тригонометрии заслуживает упоминания благодаря ее большой ясности «Тригонометрия» (в книге II « Astronomia Britannica », Лондон, 1669) В. Уинга. Уинг опирался на Непера, Норвуда. Для каждого случая он приводил пример, вычисленный с помощью логарифмов, но иногда опускал доказательства. Случай сферического треугольника с тремя данными сторонами был разобран Уингом на основе формулы

как это нередко делали в то время вслед за Непером. Уинг пользовался сокращениями s., cs., t., ct . В «Компендии математики» (A mathematical Compendium , Лондон, 1674), составленном на основании заметок Дж. Мура, Н. Стефенсон писал S., Cos., Т., Cot., но иногда производил сокращения и по-другому (si:, si. со., cos и т. д.). Дж. Валлис в «Трактате об угловых сечениях» пользовался для обозначения синуса, косинуса, тангенса и котангенса соответственно буквами S, £, Т и т. С помощью этих обозначений он впервые придал основным формулам гониометрии вид уравнений

Нам чужды лишь «целый синус» (R), который долгое время еще продолжали применять, а также употребление функций секанса, косеканса, синус-верзуса (1 — cos) и синус-верзуса дополнительного угла.

В то время как у самого Валлиса эти немаловажные новшества играли скорее подчиненную роль (ибо в печати он применил их лишь в одной небольшой статье), Джон Кесуэлл, опираясь на них, составил «Плоскую и сферическую тригонометрии», которая также вышла в приложении к «Алгебре» Валлиса и в которой мы видим первое, более насыщенное формулами, изложение тригонометрии. В этой работе, например, формулы половинных углов по трем сторонам плоского треугольника были впервые выведены с помощью алгебраического преобразования теоремы косинусов. Большой прогресс в приемах Кесуэлла становится особенно ясным, если сравнить с его выводом громоздкие геометрические доказательства тех же формул, которые дал в своих «Математических этюдах» (кн. V ) Ф. Скаутен.

Теорему косинусов сферической тригонометрии Кесуэлл вывел из трехгранника, накладывая боковую грань на основание. По-видимому, это был первый случай вывода тригонометрических формул с помощью методов начертательной геометрии. Затем Кесуэлл алгебраически преобразовал теорему, причем получил формулы сферической тригонометрии для половинных углов.

Обозначив основание треугольника, как и Оутред, через В, боковые стороны через m , n , полупериметр через  1 ), он, например, нашел для тангенса половины угла при вершине пропорцию

которая без труда переходит в современную форму

Неперовы аналогии Кесуэлл сначала доказал искусственным образом геометрически, но затем он привел четыре теоремы из наследия священника Томаса Бекера, которые аналитически вывел из обычных теорем для прямоугольного треугольника и из которых затем получил с помощью выкладок также аналогии Непера.

Первой графически изображена была функция синуса. Роберваль вычертил ее график в связи с определением площади циклоиды. Именно, он начертил внутри циклоиды и на ее основании, с помощью закрепленного в левом конце основания образующего круга, линию, названную им Trochoidis comes (или также socia —«спутницей трохоиды»), тождественную с полным оборотом синусоиды. Название «линия синусов» встречается впервые у французского иезуита Онорэ Фабри в сочинении «Геометрический труд о линии синусов и циклоиде», опубликованном им под псевдонимом А. Фарбиуса и вообще относящемся к предыстории исчисления бесконечно малых. Валлис в части II своей «Механики» (1670) правильно разобрал вопрос о знаках синуса во всех четырех квадрантах и вычертил два полных оборота синусоиды, отметив при этом, что их бесчисленно много. В другом месте он указал, что линия синусов служит границей развернутой на плоскость поверхности «цилиндрического копыта». Несколько позднее он нарисовал ветви линии секансов, но не заметил, что в вершинах они должны, быть направлены горизонтально, и соединил обе половины под прямым углом. Дж. Грегори в своих «Геометрических этюдах» (1668) представил часть тангенсоиды, лежащую в первом квадранте. Кривые секанса, тангенса и косинуса для первого квадранта были изображены на одном чертеже в «Геометрических лекциях» (Лондон, 1670, 2-е изд., 1674) И. Барроу. Однако линия секансов вычерчена там по крайней мере весьма неточно, а на других чертежах линия тангенсов даже просто неверна. Знаки тангенса в различных квадрантах впервые правильно установил, не приведя ни чертежа, ни доказательства, Ланьи. Котес в «Различных произведениях», приложенных к «Гармонии мер» (опубликовано в 1722), дал правильные графики тангенса и секанса для двух оборотов. Но еще Ф. Майер, обладавший вообще весьма серьезными заслугами в области тригонометрии, считал синус и тангенс тупого угла положительными, а косинус и котангенс отрицательными.

Большие успехи, достигнутые к этому времени в Англии, лишь постепенно укрепились на материке Европы. В Германии в XVII столетии не появилось ни одной сколько-нибудь значительной книги по тригонометрии, и неоднократно выходили только краткие изложения, предназначенные для землемеров и сообщавшие теоремы без доказательства; авторы некоторых даже не пользовались логарифмическими вычислениями. Из этих книг мы назовем только весьма употребительные «Таблицы универсальной математики» (Виттенберг, 1664) Эгидия Штрауха и «Пандору математических таблиц» (Франкфурт, 1684 и 1688) Грюнебергера, во введении к которым был дан обзор тригонометрических теорем. A втор «Ясной математики» (Нюрнберг, 1689, 1695 и 1711) Иоганн Штурм, кратко говоривший в ней и о тригонометрии, пропустил секансы как линии, без которых можно легко обойтись.

Несколько больше мы находим у французов. Прежде всего мы должны указать на известные уже нам большие энциклопедические работы Дешаля и Озанама. «Курс или мир математики» 1674, три тома; 1690, четыре тома) Дешаля заключал в первом томе полный обзор плоской и сферической тригонометрии, хотя еще в традиционной форме, с геометрическими доказательствами и без сокращенных обозначений. Задачу о вычислении двух углов β и γ по их сумме и отношению их синусов он рассматривал несколько иначе, чем Стрит. Он полагал

sin β : sin γ = tg  : tg ψ ,

брал  произвольным и отсюда с помощью логарифмов определял ψ . Выведя (разумеется, в старинной форме) из вышеприведенной пропорции новую:

Введение бесконечных рядов побудило вновь заняться формулами для sin n  и cos n  , уже ранее известными для отдельных целочисленных значений п, и распространить их на случай произвольного п. Основание этим исследованиям было положено главным образом Виетом, который вывел такие формулы вплоть до n =10. Он, как и Бюрги (в одной неопубликованной рукописи), уже заметил закон образования коэффициентов. Хотя Оутред по существу не пошел дальше результатов Виета, но выражения, помещенные в конце первого издания его «Ключа к математике» 1631), вплоть до n = 5, уже значительно превосходили по алгебраической форме изложение Виета.

Последний результат Оутреда здесь имел вид:

B sin а)в — 5 B sin а K - f 5-2 sin а = 2 sin 5а.

Оутред здесь указывал, что радиус вообще можно положить равным 1; однако осуществил это лишь Эйлер. Во втором издании в 1648 Оутред дал соответствующую формулу для sin 7  . Он составил еще более обширный трактат о «сечениях угла» (опубликован в Opuscula math , hactenus inedita , Оксфорд, 1677). Там формула, соответствующая приведенной нами, гласила:

В своих работах Ланьи; которые были посвящены «гониометрии», введенной им в качестве новой науки об измерении всех углов. Первая была почти целиком посвящена одному чисто геометрическому методу, который состоял в том, что отношение между соответствующей углу дугой и полуокружностью представлялось в форме цепной дроби с помощью накладывания дуги на полуокружность, остатка — на дугу и т. д., продолжающегося, пока остаток не окажется уже неприметным. Другой, чисто аналитический прием был подробнее приведен преимущественно во второй статье. По существу он заключался в употреблении ряда для арктангенса. Но для уточнения вычислений Ланьи почти повсюду ввел замечательные усовершенствования. Так, например, он определял меньший острый угол прямоугольного треугольника со сторонами 3, 4, 5 с точностью до 1/60 10 градуса. В третьей статье он привел выражение для общего члена ряда, получающегося из ряда арктангенса при сложении каждых двух последовательных его членов, и определил границы погрешности, если ряд обрывается на некотором определенном члене. В четвертой статье Ланьи указал, до каких пор следует продолжать вычисления при определении по его методу одного из острых углов прямоугольного треугольника по сторонам.

Немаловажные успехи были сделаны еще до Эйлера в XVIII столетии и в решении треугольников. В первую очередь все более приближалась к современной форма, хотя иногда еще пропорции выражались словесно. Пример был подан и здесь И. Ньютоном в его «Универсальной арифметике» 1707. Он занимается задачей о решении треугольника по основанию; сумме боковых сторон и углу при вершине. Ньютон проводит биссектрису угла устанавливает пропорцию

с: (a + b ) = sin 1/2 γ : sin 

В проблемах XI и XII Ньютон задает три стороны, сам вводит строчные буквы, полагая, впрочем, АВ = а, АС=Ь и ВС = с, и словесно устанавливает пропорцию. Выводимые им дальше формулы для половинного угла и формула Герона для площади треугольника были хотя и не новы, но появились у него в привычной для нас форме.

В Германии в это время большое распространение получили сочинения Вольфа. Однако и в них еще не были использованы достижения англичан ни по содержанию, ни в отношении формы теорем. Следует только отметить вид, который сообщил Вольф правилу Непера для прямоугольного сферического треугольника. Во Франции после сочинений Дешаля и Озанама появилась довольно объемистая книга Депарсье «Новые курсы тригонометрии» (1741), которая содержала хорошие семизначные таблицы синусов, тангенсов и секансов, значения которых приводились с интервалом в одну минуту, и восьмизначные таблицы логарифмов синусов и тангенсов с интервалом 10 минут.

Наиболее выдающимся представителем тригонометрии до Эйлера был, однако, Ф. фон-Оппель. И он принадлежал к числу последователей Майера. В книге «Анализ треугольников» (1746) Оппель поставил целью аналитически развить всю плоскую и сферическую тригонометрию из немногих предложений, выведенных геометрическим путем. Свое намерение он, действительно, осуществил, хотя буквенное обозначение Майера весьма затрудняет чтение его книги. Наиболее важно, что оба так называемых уравнения Молльвейде приводились здесь в современной нам форме. Оппель вывел их посредством вычислений из геометрически доказанной теоремы тангенсов.

Оппель первый вполне систематически основал сферическую тригонометрию на рассмотрении рассеченного у верхнего ребра трехгранника, обе боковые грани которого накладывались на плоскость основания. С помощью такого чертежа он вывел теоремы синусов и косинусов, заметил, что из этих двух теорем можно вывести все прочие формулы, и показал, как с помощью дополнительного треугольника можно получить для каждой формулы взаимную с ней. Он вывел очень много таких формул, не интересуясь, однако, их приведением к логарифмическому виду, так что, например, аналогии Непера у него отсутствовали.

1.4. ВКЛАД Эйлера в РАЗВИТИЕ тригонометрии

Понятно, что столь ярко выраженный аналитический гений, каким являлся Эйлер, раз занявшись вычислительной тригонометрией, должен был значительно продвинуть ее вперед. Повод обратиться к тригонометрии представился ему в уже неоднократно упоминавшемся «Введении в анализ» (1748). В восьмой главе его первого тома Эйлер впервые ввел в анализ угловые функции как числовые величины, с которыми можно производить вычисления, как со всякими другими, так, чтобы впредь они уже не оказывали влияния на размерность выражений. И хотя Эйлер и не определил нигде тригонометрические функции явно как отношения сторон прямоугольного треугольника, но всегда рассматривал их именно так. Если отвлечься от несущественных мелочей, то изложение и символика Эйлера были вполне современными. Уже в одной работе в 1729 (1735) он записал теорему косинусов сферической тригонометрии в виде

cos: ВС = cos: АВ cos: AC + cos A sAB sAC;

целый синус, который все еще употребляло большинство прежних авторов, здесь уже был принят равным 1. Обозначения тригонометрических функций во «Введении» были таковы: sin . A . z или sin . z (A = arcus ), cos . A . z или cos . z , tang . z , cot . z и т. д.

В начале названной главы были впервые систематически установлены формулы для sin (z +), sin (z +  ) и т. д. Написав:

Эйлер раскрыл скобки и получил таким путем формулу для cosnz ; аналогично он нашел формулу для sinnz . Беря п бесконечно большим, a z бесконечно малым, так что cosz = l и sinz = z , он вывел из этих формул бесконечные ряды для синуса и косинуса. Отсюда он получил ряды для синуса, косинуса, тангенса и котангенса, отчасти опубликованные им уже в Comm . Ac . Petr ., 1739 (1750). Затем он исчерпывающим образом показал, как можно использовать эти ряды для вычисления тригонометрических таблиц. Позднее в Nov . Comm . Ac . Petr ., 1754/55 (1760) он вывел дальнейшие ряды для sin n  , cos n  , sin m  , cos n  , следующие по функциям углов, кратных . На связь между показательной и тригонометрическими функциями Эйлер натолкнулся уже в одной работе о рядах, помещенной в Comm . Ac . Petr ., 1740 (1750). Соответствующую определяющую формулу для синуса он дал в Misc . Berol ., 1743, но доказаны были формулы для синуса и косинуса только во «Введении». О результатах Эйлер, очевидно, ничего не знал. Формулы

cos х = (e ix + e - ix ) и sin x = (e ix — e - ix )

он получил во «Введении» из выражений

полагая п =  . К этому он присоединил еще формулу

Определение sin (x + iy ) и cos (x + iy ) он впервые дал в 1749.

Суммирование рядов синусов и косинусов, аргументы которых растут в арифметической прогрессии, Эйлер произвел уже в 1748. Во «Введении» он вновь вернулся к этому вопросу с более общей точки зрения. Позднее (Петербург, 1783) он занялся аналогичными рядами, аргументы которых образуют геометрическую прогрессию. Представлением тригонометрических функций в виде произведений Эйлер начал заниматься уже в 1734-35 (1740), где разложил в бесконечное произведение синус. То же самое он провел для синуса и косинуса в 1740 (1750). Все это вместе с некоторыми дополнениями было включено во «Введение», в 14-й главе которого он также детально занялся вопросом об умножении и делении углов, т. е. о тригонометрических функциях кратных углов. Мы указывали в первой части, что в этих разнообразных исследованиях Эйлер действовал более творчески, нежели критически. Это столь глубоко коренилось в его натуре, что он оставил без внимания возражения, сделанные ему главным образом Николаем I Бернулли уже в 1742 и 1743. Эйлер продолжал производить вычисления над любыми бесконечными рядами, распространял теоремы о конечных многочленах на бесконечные и придавал любые значения индексу п, в начале доказательства считавшемуся целочисленным. Несмотря на это, получаемые им результаты обычно бывали справедливы, хотя в некоторых случаях он пришел и к ошибочным выводам, как, например, в упоминавшейся статье в Nov . Comm . Ac . Petr ., 1754-55 (1760).

Во втором томе «Введения» (глава 22-я) Эйлер применил к решению трансцендентных уравнений, вроде s = cos s или s = sin 2 s и т. п., правило ложного положения. Как сообщает он сам, он придумал подобные задачи с целью посмотреть, нельзя ли приблизиться таким путем к квадратуре круга. Позднее, когда Ламберт уже доказал иррациональность , Эйлер вновь занялся подобными рассмотрениями, подчеркивая, что работа Ламберта отнюдь еще не доказала невозможность квадратуры круга.

Прежде чем перейти к заслугам Эйлера в сферической тригонометрии, упомянем еще о двух тригонометрических разложениях, лежащих несколько в стороне. Эйлер нашел их, развивая предложенный Декартом и затем неоднократно открывавшийся вновь способ построения окружности данной длины (Декарт, Амстердам, 1701). Это бесконечный ряд

tg  + tg + tg +...= - 2 ctg 2 

и бесконечное произведение

cos  coscos ... = ,

которое Эйлер другим путем вывел уже в 1737 (1744).

Сферической тригонометрией Эйлер специально занялся в двух больших статьях, подойдя при этом к ней с различных точек зрения. В первой, помещенной в Mem . Ac . Berl ., 1753 (1755) он совершенно общим образом построил сферическую тригонометрию как геометрию треугольников, составленных на поверхности сферы линиями кратчайшего расстояния. Эйлер исходил из прямоугольного треугольника, обозначив катет АР через х, катет РМ через у, гипотенузу AM через s [рис. 4]. Если О — полюс большого круга (экватора), на котором лежит АР, а Ор — меридиан, бесконечно близкий к ОР, то

Mm = ds, mn = dy, Pp = dx

и линия Мп, лежащая на параллельном круге широты у, равна dxcosy , так что

ds =  .

Далее, Эйлер искал условия, при которых интеграл этого элемента дуги будет иметь минимальное значение, и получил, таким образом, 10 уравнений, возникающих из правила Непера. Здесь в первый раз появились обозначения, которые мы теперь склонны считать само собой разумеющимися и отсутствие которых часто придавало такой неудобный вид прежним работам. Мы имеем в виду обозначение трех сторон буквами а, b , с, а противолежащих вершин и углов треугольника буквами А, В, С. То, что мы обозначаем последние по большей части буквами а,  ,  , конечно, менее существенно. Греческие буквы были введены лишь в XIX столетии, хотя иногда а,  ,  , применялись уже А. Кестнером в его «Основаниях арифметики, геометрии и тригонометрии» (Геттинген, 1759; 6-е изд. 1800). Новые обозначения позволили Эйлеру записать свои десять уравнений вполне в современном виде. Затем он получил из них шесть различных основных уравнений для прямоугольного треугольника. Соответствующим образом Эйлер поступил и в случае общего сферического треугольника. Определив минимум одной из сторон, он прежде всего нашел пять фундаментальных уравнений, из которых затем вывел теорему синусов, обе теоремы косинусов и так называемое правило котангенса (впервые встречающееся у Виета); последнее появилось у него в форме

sin a tg С — sin В tg с = cos a cos B tg C tgc,

переходящей в употребляемую ныне при делении на tgCtgc . Эйлер записывал каждую теорему в трех видах, которые получаются друг из друга циклической перестановкой, хотя сам Эйлер ею не пользовался. О полярном треугольнике Эйлер не упоминал, и вообще, с точки зрения полноты, в статье имелось несколько малозначительных пробелов. Зато применения и преобразования фундаментальных теорем были в высшей степени богатые.

Среди прочего материала здесь имелись все формулы для половинных углов, правда, без сокращенных обозначений полусумм сторон и углов, затем четыре аналогии Непера—Бригса, употребление вспомогательного угла в теореме косинусов, причем последняя приводилась еще в новой форме:

cos a =

сообщалась и формула, полярная с приведенной.

Прибавим, что вслед за этой статьей Эйлер в том же томе Mem . Ac . Berl . поместил работу, подробно излагавшую тригонометрию на поверхности сфероида, особо учитывая вопросы, связанные с измерением земли. Аналогичные исследования были произведены позднее дю-Сежуром .

Во второй статье по сферической тригонометрии Эйлер принял для построения системы ее формул элементарную основу. Он исходил здесь из трехгранника, который пересекал соответствующими плоскостями, с тем, чтобы после применить теоремы плоской тригонометрии (подобно Копернику). Он вывел, таким образом, теорему синусов, теорему косинусов для сторон и новую формулу, связывающую пять элементов:

cos A sin с = cos a sin b — sin a cos b cos С ,

отметив, что эти три формулы содержат в себе всю сферическую тригонометрию. Полученное здесь третье уравнение Эйлер подверг неоднократным преобразованиям. Он вывел из него так называемую формулу котангенсов, теорему косинусов для углов и, с помощью теоремы синусов, полярную с ней формулу. Лишь после этого он ввел полярный треугольник и объяснил его способ применения, привел, частично выведя их по-новому, логарифмические формулы и с полным правом заявил, что его статья дает полное изложение системы сферической тригонометрии.

1.5. последователи Эйлера а развитии тригонометрии

В числе последователей Эйлера имелся ряд выдающихся математиков. Особенно многое сделал в области сферической тригонометрии петербургский академик А. И. Лексель. Он показал, что геометрическим местом вершин всех треугольников с общим основанием и равной площадью является малый круг и что произведения синуса стороны (или, соответственно, угла) и соответствующей высоты имеют постоянную величину d. И с помощью этих равенств, представляющих собой обобщения формулы Герона, он вывел изящные выражения для тангенсов сферических радиусов вписанного в треугольник и описанного кругов, установил формулы для cos ½ (A ± B ± C ), доказал теорему, соответствующую в сферическом четырехугольнике, вписанном в круг, теореме Птолемея, распространил на шар еще некоторые другие предложения планиметрии.

Ряд статей по сферической тригонометрии опубликовали два

других петербургских академика — Н. Фус и Шуберт. И. Т. Майер младший дал логарифмическую трактовку плоской теоремы косинусов («Капитальный курс практической геометрии», т. 1,Геттинген, 1777). Следует упомянуть и Кестнера с его «Геометрическими статьями» (1790/91), хотя он все еще употреблял целый синус. Неудачным в отношении формы было также построение сферической тригонометрии, данное в 1783 (1786) Ж. П. де-Гюа.

Лагранж содействовал успехам тригонометрии, применив к непосредственному решению уравнений ряды, что было особенно важно для практических целей астрономии и геодезии. O н решил с помощью мнимых величин гониометрическое уравнение tg x = m tg y относительно х. Это уравнение он связал с формулами для прямоугольного треугольника и с аналогиями Непера. Подобные разложения в ряды встречались, впрочем, еще у Ламберта.

Превосходной книгой, имевшей в романских странах почти такое же значение, как учебник Клюгеля в германских, оказалась опубликованная впервые в 1786 «Плоская и сферическая тригонометрия» (итальянское и французское издание, Париж) Каньоли. Каньоли производил вычисления все еще над тригонометрическими линиями, но радиус круга брал равным единице, и если он не перенял обозначения элементов треугольника, введенные Эйлером, то вообще примкнул к нему полностью и всю свою работу построил на аналитической основе. Несмотря на то, что в этом направлении сделано было уже многое, ему все же удалось в ряде пунктов внести некоторые усовершенствования. Стоит упомянуть о его приведении к логарифмическому виду с помощью вспомогательного угла плоской теоремы косинусов (по способу Майера), а также сферической теоремы косинусов. B ывод новых формул для сферических прямоугольных треугольников, имевших назначением ббльшую точность вычислений, и далее установление изящных формул, связывающих элементы сферического треугольника с элементами соответствующего ему треугольника, составленного из хорд. Независимо от Кестнера, Каньоли решил уравнение a cos А + b sin А = n с помощью подстановок а = т cos В и b = т sin В, он добавил важное отношение между шестью элементами сферического треугольника: sin с sin a + cos с cos a cos В = sin A sin С — cos A cos С cos b , а также вывод суммы тригонометрического ряда, причем распространил суммирование на случай n -х степеней таких функций.

С. Лакруа в своем «Элементарном курсе прямолинейной и сферической тригонометрии и т. д.» (Париж, 1798/99) в противоположность Каньоли ввел символику Эйлера, но зато почти всюду сохранил в формулах R .

К изложению непосредственных успехов тригонометрии мы присоединим краткий обзор формы, которую постепенно приняла система тригонометрии в учебниках. Мы неоднократно отмечали, что, за исключением Клюгеля, все прочие авторы еще вводили в качестве целого синуса радиус г, отчасти, правда, лишь с целью удовлетворить все еще сохранявшуюся потребность в однородности выражений. Только для упрощения формул часто г полагался равным единице. Отнюдь не было еще усвоено большинством математиков и определение знаков отрезков. Поэтому знаки функций углов, б o льших 90°, отчетливо устанавливались лишь при помощи гониометрических формул, причем для тангенса особенно важной являлась пропорция

tg  : r = sin  : cos 

Эта форма пропорции, а также применение радиуса г, часто продолжали сохраняться и в других случаях даже в XIX столетии. Зато получило почти всеобщее распространение современное обозначение функций, данное Эйлером. В больших книгах, вроде «Начал геометрии» (1794) Лежандра, «Теоретической математики» (Росток, 1760) и «Системы математики» Карстена, функции отрицательных аргументов рассматривались совершенно правильно, начало чему положило уже «Введение в анализ» Эйлера.

Гониометрические формулы еще часто выводились каждая сама по себе и притом геометрически. Правда, Лежандр и Каньоли вывели основные формулы из теоремы сложения, но только Клюгель ясно выразил основоположное значение этой теоремы. Обосновать самую теорему сложения и для углов, б o льших 90°, счел необходимым один Лежандр. «Высшую тригонометрию» включил в свою работу, кроме Клюгеля, также еще Каньоли. Также поступили Карстен, А. Р. Модюи в своих «Началах сферической астрономии и т. д.» (Париж, 1765), а в особенно широком объеме Л. Бертран во втором томе своего труда, вышедшего под названием «Новое изложение элементарной части математики» (Женева, 1778).

Обозначение углов, предложенное Эйлером, переняли только Клюгель и Кестнер. У других авторов, в силу отсутствия единообразной символики, формулы были ненужным образом усложнены. Наиболее полная система формул для плоского треугольника, включая так называемые уравнения Молльвейде, выведенная при этом совсем по-современному, имелась у Каньоли. Однако даже вычисление плоских прямоугольных треугольников получило современный простой вид только в XIX столетии, когда отказались от целого синуса.

Сферическая тригонометрия излагалась в учебниках почти сплошь аналитически. Исключением явилась «Trigonometrie spherique» (Париж, 1757) С. Валетта, который примкнул к «Построению сферической тригонометрии» Бошковича, нашел заново все, что входило в «Аналемму» Птолемея, и графически развил всю сферику. Во всех остальных книгах и после выхода второй работы Эйлера сначала устанавливались все формулы для прямоугольного треугольника, а затем отдельно рассматривался косоугольный треугольник, который для этого разбивался с помощью высоты на два прямоугольных. Применение теорем к составляющим прямоугольным треугольникам давало после исключения высоты систему пяти уравнений, имевшуюся еще в «Началах арифметики и геометрии» (1739) Зегнера и перешедшую во все.

В заключение мы сжато рассмотрим попытки построить всю тригонометрию на возможно более простой основе. Уже Кестнер в позднейших изданиях «Оснований» (например, 3-е изд., 1774) вывел главные формулы тригонометрии из теоремы синусов и того, что А + В + С= 180°, а Оппель еще ранее показал, как можно получить все формулы сферической тригонометрии из теорем синусов и косинусов. Еще ранее Ф. К. Майер указывал на возможность достигнуть этого с помощью одной лишь теоремы косинусов. Осуществил эту возможность только де-Гюа.

Лагранж, начавший с того же, что и де-Гюа, благодаря значительно более искусному обращению с формулами, впервые придал выводу всех прочих тригонометрических равенств современный вид (1798/99). Прежде всего он доказал соотношение Эйлера. Столь же просто вывел он и правило котангенса. Лагранж подчеркивал, что с помощью этих четырех формул можно решить любую задачу, однако он также вывел, постоянно пользуясь полярным треугольником, все остальные известные уже нам формулы. Статья Лагранжа представляла собой достойное увенчание успехов тригонометрии на пороге XIX столетия.

PAGE \* MERGEFORMAT 1

Муниципальное бюджетное общеобразовательное учреждение

средняя общеобразовательная школа №10

с углубленным изучением отдельных предметов

Проект выполнил:

Павлов Роман

ученик 10б класса

Руководитель:

учитель математики

А

г. Елец, 2012

1.Введение.

3. Мир тригонометрии.

· Тригонометрия в физике.

· Тригонометрия в планиметрии.

· Тригонометрия в искусстве и архитектуре.

· Тригонометрия в медицине и биологии.

3.2 Графические представления о превращении «мало интересных» тригонометрических функций в оригинальные кривые (с помощью компьютерной программы «Функции и графики»).

· Кривые в полярных координатах (Розетки).

· Кривые в декартовых координатах (Кривые Лиссажу).

· Математические орнаменты.

4. Заключение.

5. Список литературы.

Цель проекта - развитие интереса к изучению темы «Тригонометрия» в курсе алгебры и начала анализа через призму прикладного значения изучаемого материала; расширение графических представлений, содержащих тригонометрические функции; применение тригонометрии в таких науках, как физика, биология. Не последнюю роль она играет и в медицине, и, что самое интересное, без нее не обошлось даже в музыке и архитектуре.

Объект исследования - тригонометрия

Предмет исследования - прикладная направленность тригонометрии; графики некоторых функций, с использованием тригонометрических формул.

Задачи исследования:

1.Рассмотреть историю возникновения и развития тригонометрии.

2.Показать на конкретных примерах практические приложения тригонометрии в различных науках..

3.Раскрыть на конкретных примерах возможности использования тригонометрических функций, позволяющие «мало интересные» функции превращать в функции, графики которых имеют весьма оригинальный вид.

Гипотеза - предположения : Связь тригонометрии с окружающим миром, значение тригонометрии в решении многих практических задач, графические возможности тригонометрических функций позволяют «материализовать» знания школьников. Это позволяет лучше понять жизненную необходимость знаний, приобретаемых при изучении тригонометрии, повышает интерес к изучению данной темы.

Методы исследования - анализ математической литературы по данной теме; отбор конкретных задач прикладного характера по данной теме; компьютерное моделирование на основе компьютерной программы. Открытая математика «Функции и графики» (Физикон).

1. Введение

« Одно осталось ясно, что мир устроен

грозно и прекрасно».

Н. Рубцов

Тригонометрия - это раздел математики, в котором изучаются зависимости между величинами углов и длинами сторон треугольников, а также алгебраические тождества тригонометрических функций. Сложно представить, но с этой наукой мы сталкиваемся не только на уроках математики, но и в нашей повседневной жизни. Вы могли не подозревать об этом, но тригонометрия встречается в таких науках, как физика, биология, не последнюю роль она играет и в медицине, и, что самое интересное, без нее не обошлось даже в музыке и архитектуре. Значительную роль в развитии навыков применения на практике теоретических знаний, полученных при изучении математики, играют задачи с практическим содержанием. Каждого изучающего математику, интересует как и где применяются полученные знания. Ответ на этот вопрос и дает данная работа.

2.История развития тригонометрии.

Слово тригонометрия составилось из двух греческих слов: τρίγονον (тригонон-треугольник) и и μετρειν (метрейн - измерять) в буквальном переводе означает измерение треугольников .

Именно эта задача - измерение треугольников или, как принято теперь говорить, решение треугольников, т. е. определение всех сторон и углов треугольника по трем его известным элементам (стороне и двум углам, двум сторонам и углу или трем сторонам)- с древнейших времен составляла основу практических приложений тригонометрии.

Как и всякая другая наука, тригонометрия выросла из человеческой практики, в процессе решения конкретных практических задач. Первые этапы развития тригонометрии тесно связаны с развитием астрономии . Большое влияние на развитие астрономии и тесно связанной с ней тригонометрии оказали потребности развивающегося мореплавания, для которого требовалось умение правильно определять курс корабля в открытом море по положению небесных светил. Значительную роль в развитии тригонометрии сыграла потребность в составлении географических карт и тесно связанная с этим необходимость правильного определения больших расстояний на земной поверхности.

Основополагающее значение для развития тригонометрии в эпоху ее зарождения имели работы древнегреческого астронома Гиппарха (середина II века до н. э.). Тригонометрия как наука, в современном смысле этого слова не было не только у Гиппарха, но и у других ученых древности, так как они еще не имели понятия о функциях углов и даже не ставили в общем виде вопроса о зависимости между углами и сторонами треугольника. Но по существу они, пользуясь известными им средствами элементарной геометрии, решали те задачи, которыми занимается тригонометрия. При этом основным средством получения нужных результатов было умение вычислять длины круговых хорд на основании известных соотношений между сторонами правильных трех-, четырех-, пяти - и десятиугольника и радиусом описанного круга.

Гиппарх составил первые таблицы хорд, т. е. таблицы, выражающие длину хорды для различных центральных углов в круге постоянного радиуса. Это были, по существу, таблицы двойных синусов половины центрального угла. Впрочем, оригинальные таблицы Гиппарха(как и почти все им написанное) до нас не дошли, и мы можем составить себе о них представление главным образом по сочинению « Великое построение» или (в арабском переводе) « Альмагест» знаменитого астронома Клавдия Птолемея , жившего в середине II века н. э.

Птолемей делил окружность на 360 градусов, а диаметр - на 120 частей. Он считал радиус равным 60 частям(60¢¢). Каждую из частей он делил на 60¢, каждую минуту на 60¢¢,секунду на 60 терций (60¢¢¢) и т. д., применяя указанное деление, Птолемей выражал сторону правильного вписанного шестиугольника или хорду, стягивающую дугу в 60° в виде 60 частей радиуса(60ч), а сторону вписанного квадрата или хорду в 90° приравнивал числу 84ч51¢10².Хорду в 120°- сторону вписанного равностороннего треугольника - он выражал числом 103ч55¢23² и т. д. Для прямоугольного треугольника с гипотенузой, равной диаметру круга, он записывал на основании теоремы Пифагора: (хорда a)2+(хорда|180-a|)2=(диаметру)2, что соответствует современной формуле sin2a+cos2a=1.

«Альмагест» содержит таблицу хорд через полградуса от 0° до 180°, которая с нашей современной точки зрения представляет таблицу синусов для углов от 0° до 90° через каждые четверть градуса.

В основе всех тригонометрических вычислений у греков лежала известная еще Гиппарху теорема Птолемея: «прямоугольник, построенный на диагоналях вписанного в круг четырехугольника, равен сумме прямоугольников, построенных на противолежащих сторонах» (т. е. произведение диагоналей равно сумме произведений противоположных сторон). Пользуясь этой теоремой, греки умели (с помощью теоремы Пифагора) по хордам двух углов вычислить хорду суммы (или хорду разности) этих углов или хорду половины данного угла, т. е. умели получать результаты, которые мы получаем теперь по формулам синуса суммы(или разности) двух углов или половины угла.

Новые шаги в развитии тригонометрии связаны с развитием математической культуры народов Индии, Средней Азии и Европы (V- XII) .

Важный шаг вперед в период с V по XII век был сделан индусами, которые в отличие от греков стали рассматривать и употреблять в вычислениях уже не целую хорду ММ¢(см. чертеж) соответствующего центрального угла, а только ее половину МР, т. е. то, что мы теперь называем линией синуса a- половины центрального угла.

Наряду с синусом индусы ввели в тригонометрию косинус, точнее говоря, стали употреблять в своих вычислениях линию косинуса. (Сам термин косинус появился значительно позднее в работах европейских ученых впервые в конце XVI в. из так называемого « синуса дополнения», т. е. синуса угла, дополняющего данный угол до 90°. «Синус дополнения» или (по латыни) sinus complementi стали сокращенно записывать как sinus co или co-sinus).

Им были известны также соотношения cosa=sin(90°-a) и sin2a+cos2a=r2 , а также формулы для синуса суммы и разности двух углов.

Следующий этап в развитии тригонометрии связан со странами

Средней Азии, Ближнего Востока, Закавказья(VII- XV в.)

Развиваясь в тесной связи с астрономией и географией,- среднеазиатская математика имела ярко выраженный « вычислительный характер» и была направлена на разрешение прикладных задач измерительной геометрии и тригонометрии, причем тригонометрия сформировалась в особую математическую дисциплину в значительной мере именно в трудах среднеазиатских ученых. Из числа сделанных ими важнейших успехов следует в первую очередь отметить введение всех шести тригонометрических линий: синуса, косинуса, тангенса, котангенса, секанса и косеканса, из которых лишь первые две были известны грекам и индусам.

https://pandia.ru/text/78/114/images/image004_97.gif" width="41" height="44"> =a×ctgj шеста определенной длины (а=12) для j=1°,2°,3°……

Абу-ль-Вафа из Хоросана, живший в Х веке (940-998) , составил аналогичную «таблицу тангенсов», т. е. вычислил длину тени b=a×=a×tgj, отбрасываемой горизонтальным шестом определенной длины (а=60) на вертикальную стену (см. чертеж).

Следует отметить, что сами термины « тангенс» (в буквальном переводе - «касающийся») и «котангенс» произошли из латинского языка и появились в Европе значительно позднее (XVI-XVIIвв.). Среднеазиатские же ученые называли соответствующие линии «тенями»: котангенс-«первой тенью», тангенс - «второй тенью».

Абу-ль-Вафа дал совершенно точное геометрическое определение линии тангенса в тригонометрическом круге и присоединил к линиям тангенса и котангенса линии секанса и косеканса. Он же выразил (словесно) алгебраические зависимости между всеми тригонометрическими функциями и, в частности, для случая, когда радиус круга равен единице. Этот чрезвычайно важный случай был рассмотрен европейскими учеными на 300 лет позднее. Наконец, Абу-ль-Вафа составил таблицу синусов через каждые 10¢.

В трудах среднеазиатских ученых тригонометрия превратилась из науки, обслуживающей астрономию, в особую математическую дисциплину, представляющую самостоятельный интерес.

Тригонометрия отделяется от астрономии и становится самостоятельной наукой. Это отделение обычно связывают с именем азербайджанского математика Насирэддина Туси ().

Впервые в европейской науке стройное изложение тригонометрии дано в книге « О треугольниках разных родов» ,написанной Иоганном Мюллером , более известным в математике под именем Региомонтана(). Он обобщает в ней методы решения прямоугольных треугольников и дает таблицы синусов с точностью до 0,0000001. При этом замечательно то, что он полагал радиус круга равнымили, т. е. выразил значения тригонометрических функций в десятичных дробях, перейдя фактически от шестидесятиричной системы счисления к десятичной.

Английский ученый XIV века Брадвардин () первый в Европе ввел в тригонометрические вычисления котангенс под названием «прямой тени» и тангенс под названием «обратной тени».

На пороге XVIIв. В развитии тригонометрии намечается новое направление- аналитическое. Если до этого главной целью тригонометрии считалось решение треугольников, вычисление элементов геометрических фигур и учение о тригонометрических функциях строилось на геометрической основе, то в XVII-XIX вв. тригонометрия постепенно становится одной из глав математического анализа. О свойствах периодичности тригонометрических функций знал еще Виет , первые математические исследования которого относились к тригонометрии.

Швейцарский математик Иоганн Бернулли () уже применял символы тригонометрических функций.

В первой половине XIXв. французский ученый Ж. Фурье доказал, что всякое периодическое движение может быть представлено в виде суммы простых гармонических колебаний.

Огромное значение в истории тригонометрии имело творчество знаменитого петербургского академика Леонарда Эйлера(), он придал всей тригонометрии современный вид.

В своем труде «Введение в анализ»(1748 г.) Эйлер разработал тригонометрию как науку о тригонометрических функциях, дал ей аналитическое изложение, выведя всю совокупность тригонометрических формул из немногих основных формул.

Эйлеру принадлежит окончательное решение вопроса о знаках тригонометрических функций во всех четвертях круга, вывод формул приведения для общих случаев.

Введя в математику новые функции - тригонометрические, стало целесообразным поставить вопрос о разложении этих функций в бесконечный ряд. Оказывается, такие разложения возможны:

Sinx=x-https://pandia.ru/text/78/114/images/image008_62.gif" width="224" height="47">

Эти ряды позволяют значительно облегчить составление таблиц тригонометрических величин и для нахождения их с любой степени точности.

Аналитическое построение теории тригонометрических функций, начатое Эйлером, было завершено в работах , Гаусса, Коши, Фурье и других.

« Геометрические рассмотрения,- пишет Лобачевский,- необходимы до тех пор в начале тригонометрии, покуда они не послужат к открытию отличительного свойства тригонометрических функций…Отсюда делается тригонометрия совершенно независимой от геометрии и имеет все достоинства анализа».

В наше время тригонометрия больше не рассматривается как самостоятельная ветвь математики. Важнейшая ее часть-учение о тригонометрических функциях - является частью более общего, построенного с единой точки зрения учения о функциях, изучаемых в математическом анализе; другая же часть - решение треугольников - рассматривается как глава геометрии.

3.Мир тригонометрии.

3.1 Применение тригонометрии в различных науках.

Тригонометрические вычисления применяются практически во всех областях геометрии, физики и инженерного дела.

Большое значение имеет техника триангуляции, позволяющая измерять расстояния до недалеких звезд в астрономии, между ориентирами в географии, контролировать системы навигации спутников. Следует отметить применение тригонометрии в следующих областях: техника навигации, теория музыки, акустика, оптика, анализ финансовых рынков, электроника, теория вероятностей, статистика, биология, медицина (включая ультразвуковое исследование (УЗИ), компьютерная томография, фармацевтика, химия, теория чисел, сейсмология, метеорология, океанология, картография, многие разделы физики, топография, геодезия, архитектура, фонетика , экономика, электронная техника, машиностроение, компьютерная графика, кристаллография.

Тригонометрия в физике.

Гармонические колебания.

Когда какая-либо точка движется по прямой линии попеременно то в одну, то в другую сторону, то говорят, что точка совершает колебания.

Одним из простейших видов колебаний является движение по оси проекции точки М, которая равномерно вращается по окружности. Закон этих колебаний имеет вид x= Rcos(https://pandia.ru/text/78/114/images/image010_59.gif" width="19" height="41 src="> .

Обычно вместо этой частоты рассматривают циклическую частоту w=, показывающую угловую скорость вращения, выраженную в радианах в секунду. В этих обозначениях имеем: x= R cos(w t+ a). (2)

Число a называют начальной фазой колебания .

Изучение колебаний всякого рода важно уже по одному тому, что с колебательными движениями или волнами мы сталкиваемся весьма часто в окружающем нас мире и с большим успехом используем их (звуковые волны, электромагнитные волны).

Механические колебания.

Механическими колебаниями называют движения тел, повторяющиеся точно (или приблизительно) через одинаковые промежутки времени. Примерами простых колебательных систем могут служить груз на пружине или маятник. Возьмем, например, гирю, подвешенную на пружине (см. рис.) и толкнем ее вниз. Гиря начнет колебаться вниз и вверх..gif" align="left" width="132 height=155" height="155">.gif" width="72" height="59 src=">.jpg" align="left" width="202 height=146" height="146">График колебания (2) получается из графика колебания(1) сдвигом влево

на . Число a называют начальной фазой.

https://pandia.ru/text/78/114/images/image020_33.gif" width="29" height="45 src=">), где l -длина маятника, а j0-начальный угол отклонения. Чем длиннее маятник, тем медленнее он качается.(Это хорошо видно на рис.1-7 прилож. VIII). На рис.8-16 ,приложения VIII хорошо видно, как изменение начального отклонения влияет на амплитуду колебаний маятника, период при этом не меняется. Измеряя период колебания маятника известной длины, можно вычислять ускорение земного тяготения g в различных точках земной поверхности.

Разряд конденсатора.

Не только многие механические колебания происходят по синусоидальному закону. И в электрических цепях возникают синусоидальные колебания. Так в цепи, изображенной в правом верхнем углу модели, заряд на обкладках конденсатора изменяется по закону q = CU + (q0 – CU) cos ωt, где С- емкость конденсатора, U –напряжение на источнике тока, L –индуктивность катушки, https://pandia.ru/text/78/114/images/image022_30.jpg" align="left" width="348" height="253 src=">Благодаря модели конденсатора, имеющейся в программе « Функции и графики» можно устанавливать параметры колебательного контура и строить, соответствующие графики g(t)и I(t). На графиках 1-4 хорошо видно как влияет напряжение на изменение силы тока и заряда конденсатора, при этом видно, что при положительном напряжении заряд также принимает положительные значения. На рис.5-8 приложения IX показано, что при изменении емкости конденсатора(при изменении индуктивности катушки на рис. 9-14 приложения IX) и сохранении неизменными остальных параметров меняется период колебаний, т. е. меняется частота колебаний силы тока в цепи и меняется частота заряда конденсатора..(см. приложение IX).

Как соединить две трубы.

Приведенные примеры могут создать впечатление, что синусоиды встречаются только в связи с колебаниями. Однако это не так. Например, синусоиды используются при соединении двух цилиндрических труб под углом друг к другу. Чтобы соединить две трубы таким образом, надо срезать их наискосок.

Если развернуть срезанную наискосок трубу, то она окажется ограниченной сверху синусоидой. В этом можно убедиться, обернув свечку бумагой, срезав ее наискосок и развернув бумагу. Поэтому, чтобы получить ровный срез трубы, можно сначала обрезать металлический лист сверху по синусоиде и свернуть его в трубу.

Теория радуги.

Впервые теория радуги была дана в 1637 году Рене Декартом . Он объяснил радугу, как явление, связанное с отражением и преломлением света в дождевых каплях.

Радуга возникает из-за того, что солнечный свет испытывает преломление в капельках воды, взвешенных в воздухе по закону преломления:

где n1=1, n2≈1,33 – соответственно показатели преломления воздуха и воды, α – угол падения, а β – угол преломления света.

Северное сияние

Проникновение в верхние слои атмосферы планет заряженных частиц солнечного ветра определяется взаимодействием магнитного поля планеты с солнечным ветром.

Сила, действующая на движущуюся в магнитном поле заряженную частицу называется, силой Лоренца. Она пропорциональна заряду частицы и векторному произведению поля и скорости движения частицы

Задачи по тригонометрии с практическим содержанием.

https://pandia.ru/text/78/114/images/image026_24.gif" width="25" height="41">.

Определение коэффициента трения.

Тело веса Р положено на наклонную плоскость с углом наклона a. Тело под действием своего собственного веса прошло ускоренно путь S в t секунд. Определить коэффициент трения k.

Сила давления тела на наклонную плоскость =kPcosa.

Сила, которая тянет тело вниз равна F=Psina-kPcosa=P(sina-kcosa).(1)

Если тело движется по наклонной плоскости, то ускорение а=https://pandia.ru/text/78/114/images/image029_22.gif" width="20" height="41">==gF ;следовательно, .(2)

Из равенств (1) и (2) следует, что g(sina-kcosa)=https://pandia.ru/text/78/114/images/image032_21.gif" width="129" height="48">=gtga-.

Тригонометрия в планиметрии.

Основные формулы при решении задач по геометрии с применением тригонометрии :

sin²α=1/(1+ctg²α)=tg²α/(1+tg²α); cos²α=1/(1+tg²α)=ctg²α/(1+ctg²α);

sin(α±β)=sinα*cosβ±cosα*sinβ; cos(α±β)=cosα*cos+sinα*sinβ.

Соотношение сторон и углов в прямоугольном треугольнике:

1) Катет прямоугольного треугольника равен произведению другого катета на тангенс противолежащего угла.

2) Катет прямоугольного треугольника равен произведению гипотенузы на синус прилежащего угла.

3) Катет прямоугольного треугольника равен произведению гипотенузы на косинус прилежащего угла.

4) Катет прямоугольного треугольника равен произведению другого катета на котангенс прилежащего угла.

Задача1: На боковых сторонах АВ и С D равнобокой трапеции ABCD взяты точки М и N таким образом, что прямая MN параллельна основаниям трапеции. Известно, что в каждую из образовавшихся малых трапеций MBCN и AMND можно вписать окружность, причем радиусы этих окружностей равны r и R соответственно. Найти основания AD и BC.

Дано: ABCD-трапеция, AB=CD, MєAB, NєCD, MN||AD, в трапеции MBCN и AMND можно вписать окружность с радиусом r и R соответственно.

Найти: AD и BC.

Решение:

Пусть O1 и O2 – центры вписанных в малые трапеции окружностей. Прямая О1К||CD.

В ∆ O1O2K cosα =O2K/O1O2 = (R-r)/(R+r).

Т. к. ∆O2FD прямоугольный, то O2DF = α/2 => FD=R*ctg(α/2). Т. к. AD=2DF=2R*ctg(α/2),

аналогично BC = 2r* tg(α/2).

cos α = (1-tg²α/2)/(1+tg²(α/2)) => (R-r)/(R+r)= (1-tg²(α/2))/(1+tg²(α/2)) => (1-r/R)/(1+r/R)= (1-tg²α/2)/(1+tg²(α/2)) => tg (α/2)=√(r/R) => ctg(α/2)= √(R/r), тогда AD=2R*ctg(α/2), BC=2r*tg(α/2), находим ответ.

Ответ : AD=2R√(R/r), BC=2r√(r/R).

Задача2 : В треугольнике ABC известны стороны b, c и угол между медианой и высотой, исходящими из вершины A. Вычислить площадь треугольника ABC.

Дано: ∆ ABC, AD-высота, AE-медиана, DAE=α, AB=c, AC=b.

Найти: S∆ABC.

Решение:

Пусть CE=EB=x, AE=y, AED=γ. По теореме косинусов в ∆AEC b²=x²+y²-2xy*cosγ(1); а в ∆ACE по теореме косинусов c²=x²+y²+2xy*cosγ(2). Вычитая из 1 равенства 2 получим c²-b²=4xy*cosγ(3).

Т. К. S∆ABC=2S∆ACE=xy*sinγ(4), тогда разделив 3 равенство на 4 получим: (c²-b²)/S=4*ctgγ, но ctgγ=tgαб, следовательно S∆ABC= (с²-b²)/4*tgα.

Ответ: (с²- )/4*tg α .

Тригонометрия в искусстве и архитектуре.

Архитектура не единственная сфера науки, в которой используются тригонометрические формулы. Большинство композиционных решений и построений рисунков проходило именно с помощью геометрии. Но теоретические данные мало что значат. Хочу привести пример на построение одной скульптуры французского мастера Золотого века искусства.

Пропорциональное соотношение в построении статуи было идеально. Однако при поднятии статуи на высокий пьедестал, она смотрелась уродливой. Скульптором не было учтено, что в перспективе к горизонту уменьшаются многие детали и при взгляде снизу вверх уже не создается впечатления ее идеальности. Велось множество расчетов, чтобы фигура с большой высоты смотрелась пропорционально. В основном они были основаны на методе визирования, то есть приблизительного измерения, на глаз. Однако коэффициент разности тех или иных пропорций позволили сделать фигуру более приближенной к идеалу. Таким образом, зная примерное расстояние от статуи до точки зрения, а именно от верха статуи до глаз человека и высоту статуи, можно рассчитать синус угла падения взгляда с помощью таблицы (тоже самое мы можем сделать и с нижней точкой зрения), тем самым найдем точку зрения (рис.1)

Ситуация меняется (рис2), так как статую поднимают на высоту АС и НС увеличиваются, можно рассчитать значения косинуса угла С, по таблице найдем угол падения взгляда. В процессе можно рассчитать АН, а также синус угла С, что позволит проверить результаты с помощью основного тригонометрического тождества cos 2 a+ sin 2 a = 1.

Сравнив измерения АН в первом и во втором случаи можно найти коэффициент пропорциональности. Впоследствии мы получим чертеж, а потом скульптуру, при поднятии которой зрительно фигура будет приближена к идеалу.

https://pandia.ru/text/78/114/images/image037_18.gif" width="162" height="101">.gif" width="108 height=132" height="132">

Тригонометрия в медицине и биологии.

Модель биоритмов

Модель биоритмов можно построить с помощью тригонометрических функций. Для построения модели биоритмов необходимо ввести дату рождения человека, дату отсчета (день, месяц, год) и длительность прогноза (кол-во дней).

Движение рыб в воде происходит по закону синуса или косинуса, если зафиксировать точку на хвосте, а потом рассмотреть траекторию движения. При плавании тело рыбы принимает форму кривой, которая напоминает график функции y=tgx.

Формула сердца

В результате исследования, проведенного студентом иранского университета Шираз Вахидом-Резой Аббаси, медики впервые получили возможность упорядочить информацию, относящуюся к электрической активности сердца или, другими словами, электрокардиографии.
Формула, получившая название тегеранской, была представлена широкой научной общественности на 14-й конференции географической медицины и затем - на 28-й конференции по вопросам применения компьютерной техники в кардиологии , состоявшейся в Нидерландах. Эта формула представляет собой комплексное алгебраически-тригонометрическое равенство, состоящее из 8 выражений, 32 коэффициентов и 33 основных параметров, включая несколько дополнительных для расчетов в случаях аритмии. Как утверждают медики, эта формула в значительной степени облегчает процесс описания основных параметров деятельности сердца, ускоряя, тем самым, постановку диагноза и начало собственно лечения.

Тригонометрия помогает нашему мозгу определять расстояния до объектов.

Американские ученые утверждают, что мозг оценивает расстояние до объектов, измеряя угол между плоскостью земли и плоскостью зрения. Строго говоря, идея "измерения углов" не является новой. Еще художники Древнего Китая рисовали удаленные объекты выше в поле зрения, несколько пренебрегая законами перспективы. Сформулировал теорию определения расстояния по оценке углов арабский ученый XI века Альхазен. После долгого забвения в середине прошлого столетия идею реанимировал психолог Джеймс Гибсон (James Gibson), строивший свои выводы на основе опыта работы с пилотами военной авиации. Однако после того о теории

вновь позабыли.

Результаты нового исследования, как можно предположить, окажутся небезынтересны инженерам, конструирующим системы навигации для роботов, а также специалистам, которые работают над созданием максимально реалистичных виртуальных моделей. Возможны и приложения в области медицины, при реабилитации пациентов с повреждениями определенных областей мозга.

3.2 Графические представления о превращении «мало интересных» тригонометрических функций в оригинальные кривые.

Кривые в полярных координатах.

с. 16ис. 19Розетки.

В полярных координатах выбираются единичный отрезок e, полюс О и полярная ось Ох. Положение любой точки М определяется полярным радиусом ОМ и полярным углом j, образованным лучом ОМ и лучом Ох. Число r, выражающее длину ОМ через е (ОМ=rе) и численное значение угла j, выраженного в градусах или в радианах, называются полярными координатами точки М.

Для любой точки, отличной от точки О, можно считать 0≤j<2p и r>0. однако при построении кривых, соответствующих уравнениям вида r=f(j), переменному j естественно придавать любые значения (в том числе и отрицательные, и превышающие 2p), а r может оказаться как положительным, так и отрицательным.

Для того чтобы найти точку (j, r), проведем из точки О луч, образующий с осью Ох угол j , и отложим на нем (при r>0) или на его продолжении в противоположную сторону (при r>0) отрезок ½ r ½е.

Все значительно упростится, если предварительно построить координатную сетку, состоящую из концентрических окружностей с радиусами е,2е,3е и т. д.(с центром в полюсе О) и лучей, для которых j=0°,10°,20°,…,340°,350°; эти лучи будут пригодны и при j<0°, и при j>360°; например, при j=740° и при j=-340° мы попадем на луч, для которого j=20°.

Исследованию данных графиков помогает компьютерная программа « Функции и графики» . Пользуясь, возможностями этой программы исследуем некоторые интересные графики тригонометрических функций.

1 .Рассмотрим кривые, заданные уравнениями: r= a+ sin3 j

I. r=sin3j (трилистник ) (рис.1)

II. r=1/2+sin3j (рис.2), III. r=1+ sin3j (рис.3), r=3/2+ sin3j (рис.4) .

У кривой IV наименьшее значение r=0,5 и лепестки имеют незаконченный вид. Таким образом при а >1 лепестки трилистника имеют незаконченный вид.

2.Рассмотрим кривые при а=0; 1/2; 1;3/2

При а=0 (рис.1),при а=1/2 (рис.2), при а=1 (рис.3) лепестки имеют законченный вид, при а=3/2 будет пять незаконченных лепестков., (рис.4).

3.В общем случае у кривой r=https://pandia.ru/text/78/114/images/image042_15.gif" width="45 height=41" height="41">), т. к. в этом секторе 0°≤≤180°..gif" width="20" height="41">.gif" width="16" height="41"> для одного лепестка потребуется «сектор», превышающий 360°.

На рис1-4 показан вид лепестков при =https://pandia.ru/text/78/114/images/image044_13.gif" width="16" height="41 src=">.gif" width="16" height="41 src=">.

4.Уравнения, найденные немецким математиком-натуралистом Хабенихтом для геометрических форм, встречающихся в мире растений. Например, уравнениям r=4(1+cos3j) и r=4(1+cos3j)+4sin23j соответствуют кривые, изображенные на рис.1.2 .

Кривые в декартовых координатах.

Кривые Лиссажу.

Много интересных кривых можно построить и в декартовых координатах. Особенно интересно выглядят кривые, уравнения которых даны в параметрическом виде:

Где t-вспомогательное переменное(параметр). Например, рассмотрим кривые Лиссажу, характеризуемые в общем случае уравнениями:

Если за параметр t взять время, то фигуры Лиссажу будут представлять собой результат сложения двух гармонических колебательных движений, совершаемых во взаимно перпендикулярных направлениях. В общем случае кривая располагается внутри прямоугольника со сторонами 2а и2в.

Рассмотрим это на следующих примерах

I. x=sin3t; y=sin 5t (рис.1)

II. x=sin 3t; y=cos 5t (рис.2)

III. x=sin 3t; y=sin 4t.(рис.3)

Кривые могут быть замкнутыми и незамкнутыми.

Например, замена уравнений I уравнениями: x=sin 3t; y=sin5(t+3) превращает незамкнутую кривую в кривую замкнутую.(рис.4)

Интересны и своеобразны линии, соответствующие уравнениям вида

у =arcsin(sin k(x- a )).

Из уравнения y=arcsin(sinx) следует:

1) и 2)siny=sinx.

При этим двум условиям удовлетворяет функция у=х. Графиком ее в интервале (-;https://pandia.ru/text/78/114/images/image053_13.gif" width="77" height="41"> будем иметь у=p-х, так как sin(p-x)=sinx и в этом интервале

. Здесь график изобразится отрезком ВС.

Так как sinx –периодическая функция с периодом 2p, то ломаная АВС, построенная в интервале(,) повторится на других участках.

Уравнению y=arcsin(sinkx) будет соответствовать ломаная линия с периодом https://pandia.ru/text/78/114/images/image058_13.gif" width="79 height=48" height="48">

удовлетворяют координаты точек, которые лежат одновременно выше синусоиды (для них у>sinx) и ниже кривой y=-sinx, т. е. « область решений» системы будет состоять из закрашенных на рис.1 областей.

2.Рассмотрим неравенства

1) (y-sinx)(y+sinx)<0.

Для решения данного неравенства сначала строим графики функций: y=sinx; y=-sinx.

Затем закрашиваем области, где y>sinx и одновременно y<-sinx; затем закрашиваем области, где y< sinx и одновременно y>-sinx.

Этому неравенству будут удовлетворять области, закрашенные на рис.2

2)(y2-arcsin2(sinx))(y2-arcsin2(sin(x+ )))<0

Перейдем к следующему неравенству:

(y-arcsin(sinx))(y+arcsin(sinx)){ y-arcsin(sin(x+ ))}{y+arcsin(sin(x+ ))}<0

Для решения данного неравенства сначала строим графики функций: y=±arcsin(sinx); y=±arcsin(sin(x+)) .

Составим таблицу возможных вариантов решений.

1 множитель

имеет знак

2 множитель

имеет знак

3 множитель

имеет знак

4 множитель

имеет знак

Затем рассматриваем и закрашиваем решения следующих систем.

)| и |y|>|sin(x-)|.

2) Второй множитель меньше нуля, т..gif" width="17" height="41">)|.

3) Третий множитель меньше нуля, т.е. |y|<|sin(x-)|, другие множители положительны, т. е. |y|>|sinx| и |y|>|sin(x+Учебные дисциплины" href="/text/category/uchebnie_distciplini/" rel="bookmark">учебных дисциплинах , технике, в быту.

Использование моделирующей программы « Функции и графики» значительно расширило возможности проведения исследований, позволило материализовать знания при рассмотрении приложений тригонометрии в физике. Благодаря этой программе проведены лабораторные компьютерные исследования механических колебаний на примере колебаний маятника, рассмотрены колебания в электрической цепи. Использование компьютерной программы позволило исследовать интересные математические кривые, задаваемые с помощью тригонометрических уравнений и построением графиков в полярных и декартовых координатах. Графическое решение тригонометрических неравенств привело к рассмотрению интересных математических орнаментов.

5.Список использованной литературы.

1. ., Атанасов математических задач с практическим содержанием: Кн. для учителя.-М.:Просвещение,с.

2. .Виленкин в природе и технике: Кн. для внеклассного чтения IX-X кл.-М.:Просвещение,5с(Мир знаний).

3. Доморяд игры и развлечения. Гос. изд. физ-мат. лит. М,9стр.

4. .Кожуров тригонометрии для техникумов. Гос. изд. технико-теоретической лит. М.,1956

5. Кн. для внеклассного чтения по математике в старших классах. Гос. учебно-пед. изд. Мин. Просв. РФ, М.,с.

6. ,Тараканова тригонометрии. 10 кл..-М.:Дрофа,с.

7. О тригонометрии и не только о ней: пособие для учащихся 9-11 кл.. –М.:Просвещение,1996-80с.

8. Шапиро задач с практическим содержанием в преподавании математики. Кн. для учителя.-М.:Просвещение,1990-96с.

Тригонометрия возникла и развивалась в древности как один из разделов астрономии, как ее вычислительный аппарат; отвечающий практическим нуждам человека. Именно астрономия определила тот факт, что сферическая тригонометрия возникла раньше плоской.

Некоторые тригонометрические сведения были известны древним вавилонянам и египтянам, но основы этой науки заложены в Древней Греции, Древнегреческие астрономы успешно решали отдельные вопросы из тригонометрии, связанные с астрономией. Однако они рассматривали не линии синуса, косинуса и др., а хорды. Роль линии синусов угла ее у них выполняла хорда, стягивающая дугу, равную 2а.

Греческий астроном Гиппарх во II в. до н. э. составил таблицу числовых значений хорд в зависимости от величин стягиваемых ими дуг. Более полные сведения из тригонометрии содержатся в известном «Альмагесте» Птолемея.

Птолемей делилокружностьна360 градусов, а диаметр - на 120 частей. Он считал радиус равным 60 частям (60Ч). Каждую, из частей он делил на 60", а каждую минуту на 60", секунду - на 60 терций (60"") и т. д. Говоря иными словами, он воспользовался шестидесятеричной системой счисления, по всей вероятности, позаимствованной им от вавилонян. Применяя указанное деление, Птолемей выражал сторону правильного вписанного шестиугольника или хорду, стягивающую дугу в 60° в виде 60 частей радиуса (60 Ч), а сторону вписанного квадрата или хорду в 90° приравнивал числу 84 Ч 5110". Хорду в 120° - сторону вписанного равностороннего треугольника - он выражал числом 103 Ч 55"23"и т.д.

Применив известные из геометрии теоремы, ученый нашел зависимости, которые равнозначны следующим современным формулам при условии:


Воспользовавшись этими соотношениями и выраженными в частях радиуса значениями хорд 60°" и 72°, он вычислил хорду, стягивающую дугу в 6°, затем 3°; 1,5° и, наконец, -0,75°. (Значение хорды в Г он выражал приближенно.)

Сделанные расчеты позволили Птолемею составить таблицу, которая содержала хорды от 0 до 180°, вычисленные с точностью до 1" радиуса.

Эта таблица, сохранившаяся до нашего времени, равнозначна таблице синусов от 0 до 90° с шагом 0, 25° с пятью верными десятичными знаками.

Названия линий синуса и косинуса впервые были введены индийскими учеными. Они же составили первые таблицы синусов, хотя и менее точные, чем птолемеевы. В Индии и начинается по существу учение о тригонометрических величинах, названное позже гониометрией (от «гониа», - угол и «мехрио» - измеряю).

Дальнейшее развитие учение о тригонометрических величинах получило в IX-XV вв. в странах Среднего и Ближнего Востока в трудах ряда математиков, которые не только воспользовались существовавшими в то время достижениями в этой области, но и сделали свой значительный вклад в науку.

Известный Мухаммад ибн Муса ал-Хорезми (IX в.) составил таблицы синусов и котангенсов. Ал-Хабаш или (Ахмед ибн Абдаллах ал-Марвази) вычислил таблицы для тангенса, котангенса и косеканса.

Важное значение в развитии тригонометрии имели труды ал-Баттани (ок. 850-929) и Абу-л-Вафы ал-Бузджани (940-998). Последний вывел теорему синусов сферической тригонометрии, вычислил для синусов таблицу с интервалом в 15", значения в которой приведены с точностью до 8-го десятичного знака, нашел отрезки, соответствующие секансу и косекансу.

Абу Райхан Мухаммад ибн Ахмад-ал-Беруни (по другой транскрипции Бируни (973-1048)) обобщил и при этом уточнил результаты, которых достигли его предшественники в области тригонометрии. В труде «Канон Мас"уда» он изложил все известные в то время положения из тригонометрии и существенно дополнил их. Важное нововведение, предпринятое Абу-л-Вафой, подтвердил и ал-Беруни. Вместо деления радиуса на части, сделанного Птолемеем, они брали единичный радиус. Ал-Беруни подробно объяснил причину этой замены, показав, что все вычисления с единичным радиусом значительно проще.

Насир ад-Дин Мухаммад ат-Туси (1201-1274) в «Трактате о полном четырехстороннике» впервые изложил тригонометрические сведения как самостоятельный отдел математики, а не придаток к астрономии. Его трактат впоследствии оказал большое влияние на работы Региомонтана (1436-1476).

В первой половине XV в. Джемшид ибн Масуд ал-Каши вычислил с большой точностью тригонометрические таблицы с шагом в. Г, которые на протяжении 250 лет оставались непревзойденными.

В Европе XII-XV вв., после того как были переведены с арабского и греческого языков на латинский некоторые классические математические и астрономические произведения, развитие тригонометрии продолжалось. При решении плоских треугольников широко применялась теорема синусов, вновь открытая жившим в Южной Франции Львом Герсонидом (1288-1344), тригонометрия которого была в 1342 г. переведена на латинский язык. Самым видным европейским представителем этой эпохи в области тригонометрии был Региомонтан. Его обширные таблицы синусов через Г с точностью до 7-й значащей цифры и его мастерски изложенный тригонометрический труд «Пять книг о треугольниках всех видов» имели большое значение для дальнейшего развития, тригонометрии в XVI-XVII вв.

На пороге XVII в. в развитии тригонометрии намечается новое направление - аналитическое. Если до этого главной целью тригонометрии считалось решение треугольников, вычисление элементов геометрических фигур и учение о тригонометрических функциях строилось на геометрической основе, то в XVII-XIX вв. тригонометрия постепенно становится одной из глав математического анализа. Она находит широкое применение в механике, физике и технике, особенно при изучении колебательных движений и других периодических процессов. О свойстве периодичности тригонометрических функций знал еще Виет, первые математические исследования которого относились к тригонометрии. Швейцарский математик Иоганн Бернулли (1642-1727) уже применял символы тригонометрических функций. И если развитие алгебраической символики, введение отрицательных чисел и направленных отрезков содействовали расширению понятия угла и дуги, то развитие учения о колебательных движениях, о звуковых, световых и электромагнитных волнах привело к тому, что основным содержанием тригонометрии стало изучение и описание колебательных процессов. Из физики известно, что уравнение гармонического колебания (например, колебания маятника, переменного электрического тока) имеет вид:

Графиками гармонических колебаний являются синусоиды, поэтому в физике и технике сами гармонические колебания часто называют синусоидальными колебаниями.

В первой половине XIX в. французский ученый Ж. Фурье доказал, что всякое периодическое движение может быть представлено (с любой степенью точности) в виде суммы простых гармонических колебаний.

Расширение представлений о тригонометрических функциях привело к обоснованию их на новой, аналитической базе: тригонометрические функции определяются независимо от геометрии при помощи степенных рядов и других понятий математического анализа.

Развитию аналитической теории тригонометрических функций содействовали И. Ньютон и Л. Эйлер. Основоположником этой теории следует считать Л. Эйлера. Он придал всей тригонометрии современный вид. Дальнейшее развитие теории было продолжено в XIX в. Н.И.Лобачевским и другими учеными. В наше время тригонометрия больше не рассматривается как самостоятельная ветвь математики. Важнейшая ее часть - учение о тригонометрических функциях,- является частью более общего, построенного с единой точки зрения учения о функциях, изучаемых в математическом анализе; другая же часть - решение.треугольников - рассматривается как глава геометрии (плоской и сферической).

Конец работы -

Эта тема принадлежит разделу:

Доклад история возникновения тригонометрических функций

Доклад.. история возникновения тригонометрических функций.. краткий обзор развития тригонометрии тригонометрия возникла и развивалась в..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

1.1 Этапы развития тригонометрии как науки

Тригонометрия является одним из наиболее молодых отделов элементарной математики, получивших окончательное оформление лишь в XVIII в., хотя отдельные идеи её относятся к глубокой древности, к античному миру и к математическому творчеству индусов (К. Птолемей, II в., Аль Баттани, IX в., и др.). Европейские математики достигли высокой степени совершенства в вычислении таблиц натуральных синусов и тангенсов (Региомонтанус, XV в., Ретикус и Питискус, XVI в., и др.).

Само название «тригонометрия» греческого происхождения, обозначающее «измерение треугольников»: (тригонон) – треугольник, (метрейн) – измерение.

Научная разработка тригонометрии осуществлена Л. Эйлером в его труде «Jntroductio in analysis infinitorum» (1748). Он создал тригонометрию как науку о функциях, дал ей аналитическое изложение, вывел всю совокупность формул из немногих основных формул. Обозначение сторон малыми буквами и противолежащих углов - соответствующими большими буквами позволило ему упростить все формулы, внести в них ясность и стройность. Эйлеру принадлежит мысль рассматривать тригонометрические функции как отношения соответствующих линий к радиусу круга, т. е. как числа, причём радиус круга как «полный синус» он принял за единицу. Эйлер получил ряд новых соотношений, установил связь тригонометрических функций с показательными, дал правило знаков функций для всех четвертей, получил обобщённую формулу приведения и освободил тригонометрию от многих ошибок, которые допускались почти во всех европейских учебниках математики.

Сочинение Л. Эйлера в дальнейшем послужило фундаментом для учебников тригонометрии. Одно из первых руководств, «Сокращённая математика» С. Румовского (1760), отдел «Начальные основания плоской тригонометрии», начинает изложение следующим образом: «Тригонометрия плоская есть знание через Арифметические выкладки сыскивать треугольники, которые геометрия черченьем находит». Всё изложение сводится к решению треугольников (самые простые случаи), вычисления проводятся весьма сложным путём, учение о функциях отсутствует.

Таким образом, тригонометрия возникла на геометрической основе, имела геометрический язык и применялась к решению геометрических задач. Развитие алгебраической символики позволило записывать тригонометрические соотношения в виде формул; применение отрицательных чисел позволило рассматривать направленные углы и дуги и распространить понятие тригонометрических линий (определенных отрезков в круге) для любых углов. В этот период создалась база для изучения тригонометрических функций как функций числового аргумента, основа аналитической теории тригонометрических (круговых) функций. Аналитический аппарат, позволяющий вычислять значения тригонометрических функций с любой степенью точности, был разработан Ньютоном.

Современный вид тригонометрия получила в трудах великого ученого, члена Российской академии наук Л. Эйлера (1707 – 1783). Эйлер стал рассматривать значения тригонометрических функций как числа – величины тригонометрических линий в круге, радиус которого принят за единицу («тригонометрический круг» или «единичная окружность»). Эйлер дал окончательное решение о знаках тригонометрических функций в разных четвертях, вывел все тригонометрические формулы из нескольких основных, установил несколько неизвестных до него формул, ввел единообразные обозначения. Именно в его трудах впервые встречаются записи . Он также открыл связь между тригонометрическими и показательной функциями от комплексного аргумента. На основании работ Л. Эйлера были составлены учебники тригонометрии, излагавшие ее в строгой научной последовательности.

Аналитическое (не зависящее от геометрии) построение теории тригонометрических функций, начатое Эйлером, получило завершение в трудах великого русского ученого Н.И. Лобачевского.

Современная точка зрения на тригонометрические функции как на функции числового аргумента во многом обусловлена развитием физики, механики, техники. Эти функции легли в основу математического аппарата, при помощи которого изучаются различные периодические процессы: колебательные движения, распространение волн, движения механизмов, колебание переменного электрического тока. Как показал Ж. Фурье (1768 – 1830), всякое периодическое движение с любой степенью точности можно представить в виде суммы простейших синусоидальных (гармонических) колебаний. Если в начале развития тригонометрии соотношение лишь выражало зависимость между площадями квадратов, построенных на сторонах переменного прямоугольного треугольника с гипотенузой равной 1, то в последующем это отношение стало отражать также сложение двух колебательных движений с происходящей при этом интерференцией.

Таким образом, на первоначальных стадиях своего развития тригонометрия служила средством решения вычислительных геометрических задач. Ее содержанием считалось вычисление элементов простейших геометрических фигур, то есть треугольников. Но в современной тригонометрии самостоятельное и столь же важное значение имеет изучение свойств тригонометрических функций. Этот период развития тригонометрии был подготовлен всем ходом развития механики колебательных движений, физики звуковых, световых и электромагнитных волн.

В этот период даны обобщения многим терминам тригонометрии и, в частности, выведены соотношения для , где n – натуральное число, и др. Функции и рассматриваются теперь как суммы степенных рядов:

Почти также изложен и учебник В. Никитина и П. Суворова.
Вполне научное изложение тригонометрии даёт акад. М. Е. Головин в своём учебнике «Плоская и сферическая тригонометрия с алгебраическими доказательствами», 1789. В этой книге можно найти все важнейшие формулы тригонометрии почти в том виде, в каком принято излагать их в XIX в. (за исключением обратных тригонометрических функций). Автор не нашёл нужным загромождать изложение введением секанса и косеканса, так как эти функции в редких случаях применяются на практике.
В 1804 г. выходит учебник Н. Фусса. Книга предназначена для гимназий. «Плоская тригонометрия,- говорит автор,- есть наука, имеющая предметом из трёх данных и числами изображённых частей прямолинейного треугольника определять три прочие его части». Учебник состоит из 4 равных частей. Общие понятия, решение треугольников, приложение тригонометрии к практической геометрии и геодезии и, наконец, теорема сложения. Учебник Н. Фусса отмежёвывается от сферической тригонометрии.

Шаг вперёд делает академик М. В. Остроградский в 1851 г. В своём конспекте по тригонометрии для руководства в военно-учебных заведениях он выступает как сторонник определения тригонометрических функций, на первом этапе их изучения, как отношений сторон в прямоугольном треугольнике с последующим обобщением их определения и распространением его на углы любой величины.


Комплект под редакцией А.Г. Мордковича, хотя оставлять без внимания остальные учебники тоже не стоит. § 3. Методика преподавания темы «Тригонометрические функции» в курсе алгебры и начал анализа В изучении тригонометрических функций в школе можно выделить два основных этапа: ü Первоначальное знакомство с тригонометрическими функциями...

Учащихся, школьную документацию, сделать выводы о степени усвоения данного понятия. Подвести итог об исследовании особенностей математического мышления и процесса формирования понятия комплексного числа. Описание методов. Диагностические: I этап. Беседа проводилась с учителем математики, которая в 10Є классе преподает алгебру и геометрию. Беседа состоялась по истечении некоторого времени с начала...

Слово «тригонометрия» греческого происхождения. В переводе на русский язык оно означает «измерение треугольников». Как и все другие разделы математики, зародившиеся в глубокой древности, тригонометрия возникла в результате попыток решить те задачи, с которыми человеку приходилось сталкиваться на практике. Среди таких задач следует прежде всего назвать задачи землемерия и астрономии.

В том, что тригонометрия относится к древним наукам, нас убеждает хотя бы такой факт. Для предсказания момента наступления солнечного или лунного затмения необходимо произвести расчеты, требующие привлечения тригонометрии. Весьма точно предсказывали затмения еще древне-вавилонские ученые. По-видимому, они уже владели элементарными тригонометрическими понятиями.

Первые достоверно засвидетельствованные тригонометрические таблицы были составлены во втором веке до н. э. Их автором был греческий астроном Г и п п а р х. Таблицы эти до нас не дошли, но в усовершенствованном виде они были включены в «Альмагест» («Великое построение») александрийского астронома Птолемея. Таблицы Птолемея подобны таблицам синусов от 0° до 90°, составленным через каждые четверть градуса. В «Альмагесте», в частности, есть формулы для синуса и косинуса суммы двух углов, содержатся также элементы сферической тригонометрии.(Сферическая тригонометрия рассматривает углы и другие фигуры не на плоскости, а на сфере.)

В средние века наибольшие успехи в развитии тригонометрии были достигнуты учеными Средней Азии и Закавказья. В это время к тригонометрии начинают относиться как к самостоятельной науке, не связывая ее, как прежде, с астрономией. Большое внимание уделяется задаче решения треугольников. Одним из самых примечательных сочинений по тригонометрии этого периода является «Трактат о четырехугольнике» Насир Эддина (XIII век). В этом трактате введен ряд новых тригонометрических понятий, по-новому доказаны некоторые уже известные результаты. Основные работы по тригонометрии в Европе были выполнены почти на два столетия позднее. Здесь следует прежде всего отметить немецкого ученого Региомонтана (XV век). Его главное произведение «Пять книг о различного рода треугольниках» содержит достаточно полное изложение основ тригонометрии. От наших нынешних учебников по тригонометрии это сочинение отличается в основном лишь отсутствием удобных современных обозначений. Все теоремы сформулированы словесно. После появления «Пяти книг» Региомонтана тригонометрия окончательно выделилась в самостоятельную науку, не зависящую от астрономии. Региомонтаном составлены также довольно подробные тригонометрические таблицы.

Развитие алгебраической символики и введение в математику отрицательных чисел позволило рассматривать отрицательные углы; появилась возможность рассматривать тригонометрические функции числового аргумента. Развитие математики позволило вычислять значения тригонометрических функций любого числа с любой наперед заданной точностью.

Существенный вклад в развитие тригонометрии внес Эйлер. Им дано современное определение тригонометрических функций и указано на тесную связь этих функций с показательными функциями.

В настоящее время тригонометрические функции лежат в основе специального математического аппарата, так называемого гармонического анализа, при помощи которого изучаются различного рода периодические процессы: колебательные движения, распространение волн, некоторые атмосферные явления и пр.



Просмотров