Единицы измерения предельно допустимой концентрации. Нормирование предельно допустимых концентраций вредных веществ. Параметры воздуха рабочей зоны

В качестве основных критериев опасности загрязнения воздуха обычно используются предельно допустимые концентрации (ПДК) вредных примесей или соответствующие им (в ряде стран) стандарты качества воздуха.

Предельно допустимая концентрация - это концентрация вредного вещества в воздухе, которая не должна оказывать на человека прямого или косвенного воздействия при неограниченно долгом вдыхании

В нашей стране при установлении ПДК принимается первый, самый низкий из указанных ВОЗ уровней. Для его определения используются высокочувствительные тесты, такие, как изменение биопотенциалов головного мозга, позволяющие обнаружить минимальные воздействия токсических веществ на организм человека при кратковременном их вдыхании.
Для загрязняющих веществ, как правило, установлены два норматива:

  • норматив, рассчитанный на короткий период воздействия загрязняющих веществ (до 20 мин.). Этот норматив называется «предельно допустимые максимально разовые концентрации ».
  • норматив, рассчитанный на более продолжительный период воздействия (8 часов, сутки, по некоторым веществам год). В Российской Федерации данный норматив устанавливается для 8 и 24 часов и называется, соответственно, «предельно допустимые концентрации в воздухе рабочей зоны » или «предельно допустимые среднесуточные концентрации ».

Если говорить более точно, то:

ПДК – предельная допустимая концентрация загрязняющего вещества в атмосферном воздухе – концентрация, не оказывающая в течение всей жизни прямого или косвенного неблагоприятного действия на настоящее или будущее поколение, не снижающая работоспособности человека, не ухудшающая его самочувствия и санитарно-бытовых условий жизни.

Величины ПДК загрязняющих веществ в воздухе выражаются в мг/м 3 .

ПДК МР – предельно допустимая максимальная разовая концентрация химического вещества в воздухе населенных мест. Концентрация загрязняющего вещества, не вызывающая при вдыхании в течение 20-30 минут рефлекторных реакций в организме человека.

ПДК СС – предельно допустимая среднесуточная концентрация химического вещества в воздухе населенных мест, мг/м3. Эта концентрация, не оказывающая на человека прямого или косвенного вредного воздействия при неопределенно долгом (годы) вдыхании.

ПДК РЗ – предельно допустимая концентрация химического вещества в воздухе рабочей зоны. Это концентрация, которая при ежедневной (кроме выходных дней) работе в течение 8 ч и не более 40 ч в неделю, в течение всего рабочего стажа не должна вызывать заболеваний или отклонений в состоянии здоровья, обнаруживаемых современными методами исследований в процессе работы или в отдаленные сроки жизни настоящего и последующих поколений.

В том случае, если ПДК для вещества невозможно установить, то о степени его воздействия на окружающую среду и организм человека судят по временно допустимой концентрации (ВДК) или ориентировочно безопасному уровню воздействия (ОБУВ) .

ОБУВ бывает двух видов:

  1. Временно допустимая концентрация химического вещества в атмосферном воздухе населенных мест (ВДКав ОБУВ ) – это расчетный норматив со сроком действия 3 года, определяемый как концентрация, которая не должна оказывать на человека прямого или косвенного вредного воздействия при неопределенно долгом (годы) вдыхании.
  2. Временно допустимая концентрация химического вещества в воздухе рабочей зоны (ВДКрз ), или ориентировочный безопасный уровень воздействия (ОБУВ ) – это расчетный норматив со сроком действия 2 года, определяемый как концентрация, которая при работе не более 41 часа в неделю в течение всего рабочего стажа не должна вызвать заболеваний или отклонений состояния здоровья в процессе работы или в отдаленные сроки жизни настоящего или последующего поколения, обнаруживаемых современными методами исследования.

Следует всегда помнить, что значение величин ПДК — это нормативные величины , которые меняются только по распоряжению главного санитарного врача или не меняются многие годы вовсе. Говорю это потому, что на моей практике эколога встречались случаи, когда человек занимающий должность эколога на предприятии с абсолютно серьезным видом говорил, что ПДК определяются непосредственно на источниках выбросов (!). Все ПДК жестко и ОБУВ регламентированы и прописаны в ГН (гигиенических нормативах):

  1. ГН 2.1.6.1338-03 Гигиенические нормативы «Предельно допустимые концентрации (ПДК) загрязняющих веществ в атмосферном воздухе населенных мест» (утв. Главным Государственным санитарным врачом РФ 31 мая 2003 г.) (скачать)
  2. ГН 2.1.6.1762-03 Гигиенические нормативы «Предельно допустимые концентрации (ПДК) микроорганизмов-продуцентов, бактериальных препаратов и их компонентов в воздухе рабочей зоны» (утв. Главным государственным санитарным врачом РФ 13 октября 2003 г.) (скачать)
  3. ГН 2.2.6.1763-03 Гигиенические нормативы «Предельно допустимые концентрации (ПДК) микроорганизмов-продуцентов, бактериальных препаратов и их компонентов в атмосферном воздухе населенных мест» (скачать)
  4. ГН 2.1.6.1764-03 Гигиенические нормативы «Ориентировочные безопасные уровни воздействия (ОБУВ) загрязняющих веществ в атмосферном воздухе населенных мест» Дополнение N 1 к ГН 2.1.6.1339-03 (утв. Главным государственным санитарным врачом РФ 13 октября 2003 г.) (скачать)
  5. ГН 2.1.6.1765-03 Гигиенические нормативы «Предельно допустимые концентрации (ПДК) загрязняющих веществ в атмосферном воздухе населенных мест» Дополнение N 1 к ГН 2.1.6.1339-03 (утв. Главным государственным санитарным врачом РФ 13 октября 2003 г.) (скачать)
  6. ГН 2.2.5.1313-03 «Предельно допустимые концентрации (ПДК) вредных веществ в воздухе рабочей зоны» (утв. Главным государственным санитарным врачом РФ 27 апреля 2003 г.) (скачать)
  7. и другие

Также все ПДК и ОБУВ загрязняющих веществ сводятся в справочники, например, вот в такой справочник , составленный на основании Гигиенических Нормативов.

ПРЕДЕЛЬНО ДОПУСТИМЫЕ КОНЦЕНТРАЦИИ (ПДК) - гигиенические нормативы, регламентирующие безопасное для человека загрязнение окружающей среды химическими (в т. ч. радиоактивными) веществами. ПДК - необходимые критерии при осуществлении сан. охраны воздуха рабочей зоны, атмосферы населенных мест, воды, почвы и продуктов питания. В СССР впервые ПДК (для хлористого водорода) была установлена и утверждена Наркомтрудом 30 августа 1922 г.

В качестве ПДК в воздухе рабочей зоны допускаются такие концентрации вредных веществ, которые при ежедневной (кроме выходных дней) работе в течение 8 час. (или при другой продолжительности, но не более 41 часа в неделю) в течение всего рабочего стажа не могут вызвать заболеваний или отклонений в состоянии здоровья, обнаруживаемых современными методами исследований как в период работы, так и в отдаленные сроки жизни настоящего и последующих поколений.

ПДК атмосферных загрязнений - максимальные концентрации вредных веществ, отнесенные к определенному времени осреднения (20- 30 мин., 24 часа, 1 мес., 1 год), которые при регламентированной вероятности их появлений не оказывают ни прямого, ни косвенного вредного действия на человека, его потомство и сан. условия жизни.

ПДК вредных веществ в воде водоемов - максимальные концентрации, которые при воздействии на организм человека в течение всей его жизни не оказывают прямого или опосредованного влияния на состояние здоровья настоящего и последующих поколений и не ухудшают гиг. условия водопользования населения.

ПДК экзогенных хим. веществ для почвы устанавливаются для предупреждения опасного для здоровья людей вторичного загрязнения контактирующих с почвой вод, воздуха и растений.

Для пищевых продуктов существуют нормы допустимых остаточных количеств вредных веществ (ДОК). Количество ПДК вредных веществ для воздуха определяется в мг/м3, для воды - в мг/л, для продуктов питания и почвы - в мг/кг. Предусмотрено установление максимально разовых и для высококумулятивных веществ среднесменных концентраций в воздухе рабочей зоны, максимально разовых и среднесуточных концентраций - в атмосферном воздухе населенных мест. В соответствии с ГОСТ 12.1.007 - 76 наряду с ПДК указывается класс опасности веществ (для регламентирования вентиляции, планировочного и аппаратурного оформления технологического процесса), а также агрегатное состояние вещества в реальных условиях контакта с людьми (для обоснования методов контроля). Вещества, способные проникать в организм через неповрежденную кожу, обозначаются специальным символом. Для каждого вещества, регламентируемого в атмосферном воздухе населенных мест, также обосновывается класс опасности. Обоснование ПДК в воде проводится с учетом одного из трех лимитирующих показателей вредности вещества - органолептического, общесанитарного или санитарно-токсикологического.

Примеры действующих нормативов ПДК нек-рых вредных веществ в воздухе рабочей зоны, атмосферном воздухе населенных мест и воде водоемов санитарно-бытового водопользования приведены в таблицах 1-4.

ПДК вредных веществ в воздухе рабочей зоны устанавливаются поэтапно. Первый этап приурочивается к периоду лабораторной разработки новых соединений и заканчивается обоснованием ориентировочного безопасного уровня воздействия. Второй этап относится к периоду полузаводских испытаний и проектированию производства. На этом этапе обосновывается ПДК в хрон, и пожизненном (для изучения канцерогенеза, процессов преждевременного старения и др.) экспериментах на животных. Третий этап начинается после внедрения веществ в производство в сроки, устанавливаемые в зависимости от токсикологической характеристики вещества и гиг. характеристики производства, но не позднее чем через 3-5 лет с момента внедрения, и заключается в уточнении ПДК путем сопоставления условий труда работающих и состояния их здоровья.

Этапность установления ПДК хим. веществ в воде водоемов следующая. На первом этапе устанавливаются пороговые концентрации хим. веществ по органолептическому и общесанитарному признаку вредности, проводятся токсикологические исследования для расчета максимально не действующей концентрации. На втором этапе проводятся подострые опыты на животных с применением экспресс-эксперимен-тальных методов и последующей экстраполяцией полученных результатов на длительные сроки воздействия. На третьем этапе ставятся хрон, эксперименты, а на четвертом - проводятся пожизненные эксперименты с целью изучения канцерогенного действия и героэффекта. В зависимости от класса опасности изучаемого вещества исследования могут быть завершены для веществ 4-го класса опасности на первом этапе, для веществ 3-го класса - на втором этапе, для веществ 2-го класса - на третьем этапе и для веществ 1-го класса - на четвертом этапе.

Предельно допустимые концентрации радиоактивных веществ обозначаются иначе. При внутреннем облучении за счет поступления радионуклидов в организм устанавливают допустимую концентрацию (ДК) - отношение предельно допустимого годового поступления (ПДП), или предела годового поступления (ПГП) радиоактивного вещества, к объему (V) воды или воздуха, с к-рым оно поступает в организм человека в течение года. Для контактирующих с источниками ионизирующего излучения по роду своей профессиональной деятельности объем воздуха принимается равным 2,5-106 л в год; для лиц, которые не работают непосредственно с источниками излучения, но по условиям проживания или размещения рабочих мест могут подвергаться воздействию ионизирующего излучения, объем воздуха равен 7,3-106д в год, а объем воды - 800 л в год.

Предельно допустимое годовое поступление (ПДП) - такое количество радиоактивных веществ, поступающих в организм профессионального работника в течение года, к-рое за 50 лет создает в критическом органе эквивалентную дозу, равную 1 ПДД (см. Предельно допустимая доза излучения). При ежегодном поступлении радиоактивного вещества в организм на уровне ПДП эквивалентная доза за любой год будет равна или меньше 1 ПДД (в зависимости от времени достижения равновесного содержания радиоактивного вещества в организме). Предел годового поступления (ПГП) - количество радиоактивных веществ, поступающих в организм ограниченных групп населения в течение года, к-рое за 70 лет создает в критическом органе эквивалентную дозу, равную 0,1 ПДД.

Допустимые концентрации радионуклидов благородных газов (аргона, криптона, ксенона) и короткоживущих радионуклидов углерода, азота и кислорода рассчитаны исходя из допустимой мощности дозы их внешнего бета- и гамма-излучения. Для большинства радионуклидов численные значения ПДП, ПГП и ДК рассчитаны исходя из равновесного их накопления в критическом органе, равного допустимому содержанию. При планировании мероприятий по защите и для оперативного контроля за радиационной обстановкой с целью предотвращения превышения дозового предела должны устанавливаться контрольные уровни поступления в организм радионуклидов. До установления контрольных уровней они принимаются равными допустимым, установленным нормами радиационной безопасности (НРБ-76). Допустимые концентрации радионуклидов определяются в кюри/л (для воздуха и воды) и в кюри/кг (для продуктов питания).

Установление ПДК базируется на принципах опережения разработки нормативов внедрению новых хим. соединений в народное хозяйство, на приоритете мед. показаний перед технической достижимостью на момент исследования веществ и перед другими технико-экономическими критериями, на принципе по-роговости всех типов действия хим. соединений (в т. ч. мутагенного и канцерогенного) на целостный организм с учетом необходимости комплексного подхода к установлению порогов вредного действия. ПДК утверждаются М3 СССР, а контроль за их соблюдением возложен на органы и учреждения санитарно-эпидемиологической службы.

Ориентировочные безопасные уровни воздействия (ОБУВ) - временные ориентировочные гиг. нормативы, ограничивающие содержание вредных веществ в объектах окружающей среды (воздухе рабочей зоны, атмосферном воздухе населенных мест, воде и др.) с целью обеспечения безопасных условий труда и быта. Это понятие введено вместо ранее применявшегося «расчетные ПДК» во избежание терминологической путаницы. ОБУВ применяются на стадии исследовательской и опытно-промышленной разработки, на стадии испытаний новых веществ и технологических процессов. Они обосновываются расчетным путем по параметрам токсикометрии, полученным в результате краткосрочных экспериментов на лабораторных животных при однократном и повторном (до 1 мес.) воздействии, и путем интерполяций и экстраполяций в рядах соединений, близких по физическим, химическим свойствам и биологическому действию. Большинство методов обоснования ОБУВ исключает определение порога хрон, действия веществ как наиболее трудоемкой и продолжительной части исследований. Величины ОБУВ утверждаются М3 СССР на ограниченный срок (для воздуха рабочей зоны опытных и полупромышленных установок - на 2 года, для атмосферного воздуха населенных мест - на 3 года), после чего они в зависимости от перспективы применения вещества и имеющейся информации о его токсических свойствах должны быть заменены на ПДК или переут-верждены на новый срок либо отменены.

В соответствии с требованиями ГОСТ 12.1.007 - 76 для ОБУВ должны быть разработаны методы контроля в воздухе рабочей зоны. ОБУВ в атмосферном воздухе населенных мест могут быть использованы для целей предупредительного санитарного надзора (см.) при отсутствии методов хим. контроля.

Понятие «предельно допустимые концентрации», принятое в СССР, отличается от соответствующих зарубежных регламентаций. Так, в США распространено понятие «величины порогового предела» - Threshold Limit Values (TLV), что означает среднюю концентрацию вредных веществ за смену. Величины ПДК и TLV для отдельных веществ иногда различаются в десятки раз в связи с различиями принципов и методов гиг. нормирования. В нашей стране ПДК устанавливаются на основании данных медико-биологических исследований, а в США при обосновании TLV этот принцип не является обязательным.

Таблицы

Таблица 1. ПРЕДЕЛЬНО ДОПУСТИМЫЕ КОНЦЕНТРАЦИИ НЕКОТОРЫХ ВРЕДНЫХ ВЕЩЕСТВ В ВОЗДУХЕ РАБОЧЕЙ ЗОНЫ 1

Приводятся как пример. Условные обозначения: п - пары и (или) газы; а - аэрозоли; п+а - смесь паров и аэрозоля; * - вещество опасно при поступлении через кожу; ** - среднесменная ПДК.

Наименование вещества

ПДК, мг/м3

Преимущественное агрегатное состояние в воздухе в условиях производства

опасности

Азота окислы (в пересчете на N02)

Акролеин

Аллил цианистый*

Алмаз металлизированный

Альдегид кротоновый

Альдегид масляный

n-Аминоанизол (п-анизи-дин)*

а-Аминоантрахинон

м-Аминобензотрифторид

Аминопласты (пресс-порошки)

Ангидрид борный

Ангидрид масляный

Ангидрид малеиновый

Ангидрид метакриловой кислоты

Ангидрид мышьяковый

Ангидрид селенистый

Ангидрид сернистый

Ангидрид серный

Ангидрид хромовый

Ацетальдегид

Ацетонитрил

Ацетонциангидрин*

Ацетофенон*

Бензальхлорид

Бензил цианистый*

Бензоил хлористый

Бензотрихлорид

п-Бензохинон

Бисхлорметилбензол

Бисхлорметилнафталин

Бор фтористый

Бромбензол

Бромофор

Бутиловый эфир акриловой кислоты

1,4-Бутиндиол

Винилацетат

Винилбутиловый эфир

Винилиденхлорид(1,1 ди-хлорэтилен)

2-В инилпиридин*

Вольфрам

Гексаметилендиамин

Гексаметилендиизоциа-

Гексафторпропилен

Гексахлорацетон

Гексахлорбензол*

Гексахлорциклопентади-

Германий

Гидразин-гидрат*

р-Гидрооксиэтилмеркап-

Гидроперекись изопропил-бензола

1,2-Дибромпропан

Дивинил (1,3 бутадиен)

Диизопропиламин

Дикобальтоктакарбонил

Дикумилметан*

U , О-Диметил-О-нитрофе-нилтиофосфат (метафос)*

0,0-Диметил-(1 -окси-2 , 2 , 2-трихлорэтил) фосфонат (хлорофос)*

Диметиламин

Д иметиланил ин *

Диметилбензиламин

4 , 4-Диметилдиоксан-1, 4

4 , 4-Диметилдиоксан-1, 3

Диметилсульфид*

Диметилформамид

Диметилхлортиофосфат

Диметилэтаноламин

Динитрил адипиновой кислоты

Динитрил перфтоглютаро-вой кислоты

Динитробензол*

Динитро-о-крезол*

Динитророданбензол*

Динитротолуол*

Динитрофенол*

Дитолилметан

Дифенила окись хлорированная*

Дифенилолпропан

Дифенилы хлорированные*

3,4-Дихлоранилин*

1, З-Дихлорбутен-2

Дихлоргидрин

1,2-Дихлоризобутан

1,3-Дихлоризобутилен

3,З-Дихлорметилоксаци-клобутан

3,4-Дихлорнитробензол*

1,З-Дихлорпропилен

3,4-Д ихлорфенилизоциа-нат

Дихлорэтан*

Дициклопентадиен*

Диэтиламин

|3-Диэтиламиноэтилмер-

Диэтилбензол

Додецилмеркаптан (третичный)

Изобутилен хлористый

Изопропиламинодифенил-

Изопропилнитрат

Изопропилнитрит*

Изопропилхлоркарбонат

Кадмия стеарат по (Cd)

Капролактам

Кислота акриловая

Кислота борная

Кислота валериановая

Кислота капроновая

Кислота метакриловая

Кислота пентафторпропио-новая

Кислота серная

Кислота терефталевая

Кислота трифторуксусная

Кислота уксусная

Кислота хлорпеларгоно-вая

Кобальт металлический

Кобальта окись

Ксантогенат калия бутиловый

Ксилидин*

Метил бромистый

Метил хлористый

2-Метил-5-винилпиридин*

Метилдигидропиран*

Метилизотиоцианат*

1 -Метилнафталин

Метилпирролидон

Метилпропилкетон

Метилен бромистый

Талия бромид

Талия йодид

Тетрагидрофуран

Тетранитрометан

Тетрахлоргексатриен*

Тетрахлорнонан

Тетрахлорундекан

Тетрахлорэтан*

Тетрахлорэтилен

Тетраэтилсвинец*

Тетраэтоксисилан

Титан четыреххловистый (по НС1)

Толуидин*

Толуилендиамин*

Толуилендиизоцианат

Третбутилперацетат

Третбутилпербензоат

Триксиленилфосфат*

Триметиламин

Триметилолпропан (этри-ол)

Тринитротолуол*

Трифторпропиламин

Трифторэтиламин

1,1,3-Трихлорацетон Трихлорбензол

Трихлорнафталин*

Трихлорпропан

Трихлорпропилен

Трихлорфенолят меди

Триэтиламин

Триэтоксисилан

Уайт-спирит (в пересчете

Углеводороды алифатические предельные Ct-С10 (в пересчете на С)

Углерод четыреххлористый*

Углерода окись

n-Фенетидин солянокислый

^-Феноксифенол*

Формальдегид

Формамид

Фосфористый водород

Фтористый водород

Фурфурол

2-Хлор-4,6-бис-этиламино-симм-триазин (симазин)

Хлора двуокись

Хлорангидрид акриловой кислоты

Хлорангидрид метакрило-вой кислоты

Хлорангидрид трихлоруксусной кислоты*

л*-Х лор анилин*

гг-Хлоранилин*

Хлорбензол*

Хлористый водород

Хлористый 5-зтокеифенил-1,2-тиазтионий

Хлоропрен

л-Хлорфенилизоцианат

Метилен хлористый

2-Метилфуран (сильван)

Монобутиламин

Моновинилацетилен

Моноизопропиламин

Монометиламин

Монохлорстирол

Мышьяковистый водород

Натрий роданистый (технический)

Нафталин

Нафталины хлорированные (высшие)*

а-Нафтохинон

Нитрил акриловой кислоты*

п-Нитроанизол*

п-Нитроанилин*

о-Нитроанилин*

ж-Нитробензотрифторид

Нитробутан

Нитроксилол*

Нитрометан

Нитросоединения бензола*

Нитроформ

Нитрофоска бесхлорная Нитрофоска сульфатная

Нитрофоска фосфорная

Нитрохлорбензол

Нитроциклогексан

п-0 ксидифениламин

Октафтордихлорциклогек-

Иентахлорацетон

Пентахлорнитробензол

Пентахлорфенол*

Пентахлорфенолят натрия*

Перфторизобутилен

Перхлорметилмеркаптан

Пиколины (семь изомеров)

Поливинилхлорид

Полихлорпинен*

н-Пропиламин

Пропилпропионат

Пропилена окись*

Растворитель 646 (по толуолу)

Ртуть двухлористая (сулема)

Ртуть металлическая

Свинец и его неорганические соединения

Селен аморфный

Сероводород*

Сероуглерод

Синильной кислоты соли (в пересчете на HCN)*

Спирт амиловый

Спирт бутиловый

Спирт н-гексиловый

Спирт изооктиловый (2-этилгексанол)

Спирт н-нониловый

Спирт н-октиловый

Спирт пропаргиловый

Спирт пропиловый

Спирт тетрафторпропило-вый

Спирт трифторэтиловый

Спирт этиловый

Стрептомицин

Сульфат аммония

п-Хлорфенол*

2-Хлорэтансульфахлорид*

Хрома трихлорид (гексагидрид) в пересчете на Сг

Цианамид свободный*

Цианистый водород*

Циклогексан

Циклогексанон

Циклогексиламин

Циклогексиламина карбонат

Циклогексиламина хромат*

Циклопентадиен

Циклопентадиенилтрикар-бонил марганца

Цинка окись

Щелочи едкие (растворы в пересчете на NaOH)

Экстралин

Эпихлоргидрин

8-Этил-К-гексаметилентио-карбамат (ялан)

Этилацетат

2-Этилгексеналь

Этилена окись

Этилендиамин

Этилендиацетат

Этиленимин*

Этиленмеркаптан

Этиленсульфид *

Этилмеркурхлорид (по Hg)*

Этилмеркурфосфат (по Hfr)*

Этилтолуол

Таблица 2. ПРЕДЕЛЬНО ДОПУСТИМЫЕ КОНЦЕНТРАЦИИ НЕКОТОРЫХ АЭРОЗОЛЕЙ ПРЕИМУЩЕСТВЕННО ФИБРОГЕННОГО ДЕЙСТВИЯ 1

Наименование вещества

ПДК, мг/м3

Класс опасности

Алюминий и его сплавы (в пересчете на А1)

Алюминия окись в виде аэрозоля дезинтеграции (глинозем, электрокорунд, монокорунд)

Алюминия окись (в т. ч. с примесью двуокиси кремния) в виде аэрозоля конденсации

Аэросил, модифицированный бутиловым спиртом (бутосил)

Аэросил, модифицированный диметилдихлорсиланом

Железа окись с примесью окислов марганца до 3%

Железа окись с примесью фтористых или марганцевых со

единений (от 3 до 6%)

Железный и никелевый агломераты

кремния двуокись аморфная в виде аэрозоля конденсации при содержании ее в пыли св. 70% (возгоны электротермического производства кремния и кремнистых ферросплавов, аэросил-175, аэросил-300 и др.)

кремния двуокись аморфная в виде аэрозоля конденсации при содержании ее в пыли от 10 до 70%

кремния двуокись аморфная в смеси с окислами марганца в виде аэрозоля конденсации с содержанием каждого из них более 10%

кремния двуокись кристаллическая (кварц, кристоба-лит, тридимит) при содержании ее в пыли св. 7 0% (кварцит, динас и др.)

кремния двуокись кристаллическая при содержании ее в пыли от 10 до 7 0% (гранит, шамот, слюда-сырец, углеродная пыль и др.)

кремния двуокись кристаллическая при содержании ее в пыли от 2 до 10% (горючие кукерситные сланцы, медно-сульфидные руды, углепородная и угольная пыль, глина и др.)

Кремнемедистый сплав

Кремния карбид (карборунд)

Магнезит

Силикаты и силикатосодержащие пыли:

асбест природный и искусственный, а также смешанные асбестопородные пыли при содержании в них асбеста более 1 0 %

асбестоцемент

асбестобакелит (волокнит), асбесторезина

тальк, слюда-флаго лит и мусковит

стеклянное и минеральное волокно

цемент, оливин, апатит, форстерит, глина

Тантал и его окислы

Титан и его двуокись

Углерода пыли:

алмазы природные и искусственные

каменный уголь с содержанием двуокиси кремния менее 2%

кокс нефтяной, пековой, сланцевый, электродный

Фосфорит

Таблица 3. ПРЕДЕЛЬНО ДОПУСТИМЫЕ КОНЦЕНТРАЦИИ НЕКОТОРЫХ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ В АТМОСФЕРНОМ ВОЗДУХЕ НАСЕЛЕННЫХ МЕСТ 1

Наименование вещества

ЛДК, мг/м3

опасности

максимальная разовая

суточная

Азота двуокись

Акролеин

н-Амил ацетат

Амилены (смесь изомеров)

Ангидрид малеиновый (пары, аэрозоль)

Ангидрид сернистый

Ангидрид уксусный

Ангидрид фосфорный

Ангидрид фталевый (пары,

аэрозоль)

Ацетальдегид

Ацетофенон

Бензин (нефтялой, малосернистый, в пересчете на С)

Бензин (сланцевый, в пересчете на С)

Бутилацетат

Бутифос (S,S,S-Tpn6yTiMTpH- тиофосфат)

Ванадия пятиокиеь

Винилацетат

Гексаметил ендиамин

Диметилдисульфид

0,0-Диметил-8-(М-метилкарба-мидометил) дитиофосфат (фос-фамид, рогор)

Диметилсульфид

Диметилформамид

Динил (смесь 25% дифенила и 7 5% дифенилоксида)

2,3-Дихлор-1,4-нафтохинон <дихлон)

Дихлорэтан

Диэтил амин

Изопропилбензол (кумол)

Капролактам (пары, аэрозоль)

Кислота азотная по молекуле H N О s

Кислота валериановая

Кислота борная

Кислота капроновая

Кислота масляная

Кислота серная (по молекуле H2S04)

Кислота уксусная

Марганец и его соединения <в пересчете на Мп02)

Метилацетат

Метилен хлористый

Метилмеркаптан

Метиловый эфир акриловой кис л оты (метил а к рил ат)

Метиловый эфир метакрило-вой кислоты (метилметакрилат)

а-Метилстирол

Монометил анилин

Мышьяк (неорганические соединения, кроме H3As, в пересчете на As)

а-Нафтохинон

Нитробензол

Пропилен

динас 85 - 90

цемент 2 0

доломит 8

Ртуть металлическая

Свинец и его соединения, кроме тетраэтилсвинца (в пересчете на РЬ)

Свинец сернистый

Сероводород

Сероуглерод

Спирт метиловый

Спирт этиловый

Тиофен (тиофуран)

Толуилендиизоцианат

Трихлорэтилен

Углерод четырех хлористый

Улерода окись

Формальдегид

Фтористые соединения (в пересчете на F):

газообразные (HF, SiF4)

хорошо растворимые неорганические фториды (NaF, Na2SiF6)

плохо растворимые неорганические фториды (A1F3, CaF2, Na3AlF6)

ФУРФУРОЛ

Хлорбензол

Хром шестивалентный (в пересчете на СгОз)

Циклогексанол

Циклогексанон

Эпихлоргидрин

Этилацетат

Этилена окись

Примечания. 1. При присутствии в атмосферном воздухе одновременно нескольких веществ (напр., окиси углерода и сернистого ангидрида; окиси углерода, двуокиси азота и сернистого ангидрида; сероводорода и сероуглерода; фталевого, малеинового ангидридов и а-нафтохинона) предельно допустимые концентрации сохраняются для каждого вещества в отдельности.

2. При одновременном присутствии в атмосферном воздухе нескольких веществ, обладающих суммацией действия, сумма их концентраций при расчете по нижеприведенной формуле не должна превышать 1.

С1/ПДК1 + С2/ПДК2 + … + Сn /ПДКn <= 1

где: C1, С2,......,Сn - фактические концентрации веществ в атмосферном воздухе; ПДК1 ПДК2,......,ПДКn - предельно допустимые концентрации тех же веществ.

Эффектом суммации обладают: сернистый ангидрид, окись углерода, двуокись азота и фенол; ацетон, акролеин, фталевый ангидрид; ацетон, ацетофенон, ацетон и фенол; ацетон, фурфурол, формальдегид и фенол; ацетальдегид и винилацетат; аэрозоли пятиокиси ванадия и окислов марганца; аэрозоли пятиокиси ванадия и сернистый ангидрид; аэрозоли пятиокиси ванадия и трехокиси хрома; бензол и ацетофенон; валериановая, капроновая и масляная кислоты; гексахлоран и фазолон; 2,3-дихлор-1,4-нафтохинон и

1,4-нафтохинон; изопропилбензол и гидроперекись изопропилбензола; озон, двуокись азота и формальдегид; окись углерода, двуокись азота, формальдегид, гексан; сернистый ангидрид и аэрозоль серной кислоты; сернистый ангидрид и сероводород; сернистый ангидрид и двуокись азота; сернистый ангидрид, окись углерода, фенол и пыль конверторного производства; сернистый ангидрид и фенол; сернистый ангидрид и фтористый водород; серный и сернистый ангидрид, аммиак, окислы азота; сероводород и динил; сильные минеральные кислоты (серная, соляная и азотная); окись углерода и пыль цементного производства; уксусная кислота и уксусный ангидрид; фенол и ацетофенон; фурфурол, метиловый и этиловый спирты; циклогексан и бензол; этилен, пропилен, бутилен и амилен.

3. При последовательном применении гексахлорана, фазолона и бутифоса сохраняются ПДК каждого вещества в отдельности.

4. Эффектом потенцирования обладают фтористый водород и фторсоли с коэффициентом 0,8.

Таблица 4. ПРЕДЕЛЬНО ДОПУСТИМЫЕ КОНЦЕНТРАЦИИ НЕКОТОРЫХ ВРЕДНЫХ ВЕЩЕСТВ В ВОДЕ ВОДОЕМОВ САНИТАРНО-БЫТОВОГО ВОДОПОЛЬЗОВАНИЯ 1

Наименование вещества

Лимитирующий показатель вредности

Общесанитарный

Анизол (метилфениловый эфир)

Санитарно-токсикологический

Санитарно-токсикологический

Общесанитарный

Санитарно-токсикологи

Органолептический

Санитарно-токсикологи

Бутилбензол

Органолептический

Органолептический

Санитарно-токсикологи

Гексаметилендиамин

Санитарно-токсикологи-

Гексаметилентетрамин

(уротропин)

Санитарно-токсикологи

Гексахлорбензол*

Санитарно-токсикологи

Гексахлорбутан

Органолептический

Гексахлорциклогексан

(гексахлоран)

Органолептический

Гексахлорциклопентадиен

Органолептический

Гексахлорэтан

Органолептический

Гидрохинон

Органолептический

Диизопропиламин

Санитарно-токсикологи

0,0-Диметил-8-1, 2-дикар-боэтоксиэтилдитиофосфат (карбофос)

Органолептический

4,4-Диметилдиоксан-1,3

Санитарно-токсикологи

Диметилтерефталат

Санитарно-токсикологи

Диметилфенилкарбинол

Санитарно-токсикологи

Диметилформамид

Общесанитарный

Динитробензол

Органолептический

Динитронафталин

Органолептический

Динитророданбензол

Общесанитарный

Дитиофосфат крезиловый

Органолептический

Дихлорбензол

Органолептический

1,3-Дихлорбутен-2

Органолептический

Дихлоргидрин

Органолептический

Дихлорметан

Органолептический

Дихлорциклогексан

Органолептический

Дихлорэтан

Органолептический

Диэтиловый эфир малеино-вой кислоты

Санитарно-токсикологи

Диэтилртуть

Санитарно-токсикологи

Органолептический

Изобутилен

Органолептический

Органолептический

Изопропиламин (моноизо-пропиламин)

Санитарно-токсикологи

Санитарно-токсикологи

Калий диизопропилдитио-фосфорный

Органолептический

Калий диэтилдитиофос-форный

Органолептический

Капролактам

Общесанитарный

Кислота бензойная

Общесанитарный

Кислота диметилдитиофос-форная

Органолептический

Кислота диэтилдитиофос-форная

Органолептический

Кислота хлорпеларгоновая

Органолептический

Кислота хлорундекановая

Органолептический

Кислота хлорэнантовая

Органолептический

Санитарно-токсикологи

Органолептический

Органолептический

L-Метилстирол

Органолептический

Метилэтилкетон

Органолептический

Молибден

Санитарно-токсикологи

Монометиламин

Санитарно-токсикологи

Моноэтиламин

Органолептический

Нефть многосернистая

Органолептический

Санитарно-токсикологи

Нитрат (по азоту)

Санитарно-токсикологи-

Нитроформ

Органолептический

Нитрохлорбензол (о-, м-, п-изомер)

Санитарно-токсикологи

Нитроциклогексан

Санитарно-токсикологи

Пентахлорбутан

Органолептический

Пентахлорфенол

Органолептический

Пентахлорфенолят натрия

Органолептический

Полихлорпинен

Санитарно-токсикологи-

Пропилбензол

Органолептический

Пропилен

Органолептический

Роданиды

Санитарно-токсикологи

Санитарно-токсикологи

Органолептический

Санитарно-токсикологи

Органолептический

Сероуглерод

Спирт изобутиловый

Санитарно-токсикологи

Спирт н-нониловый

Санитарно-токсикологи-

Органолептический

Санитарно-токсикологи

Тетранитрометан

Органолептический

Тетрахлорнонан

Органолептический

Тетрахлорпропан

Органолептический

Тетрахлорэтан

Органолептический

Общесанитарный

Органолептический

Трифторхлорпропан

Санитарно-токсикологи

Трихлорэтилен

Органолептический

Углерод четыреххлористый

Санитарно-токсикологи

Ферроцианиды

Санитарно-токсикологи

Формальдегид

Санитарно-токсикологи

Санитарно-токсикологи

Санитарно-токсикологи-

Хлорбензол

Санитарно-токсикологи

Циклогексан

Санитарно-токсикологи

Санитарно-токсикол оги-ческий

Этиленгликоль

Санитарно-токсикол от

1 Приводятся как пример.

Условные обозначения: *- в пределах, допустимых расчетом на содержание органических веществ, по показателям БПК и растворенного кислорода; **- опасно при поступлении через кожу.

Библиография: Методы изучения биологического действия загрязнителей (обзор методов, используемых в СССР), Копенгаген, ВОЗ, 1975, библиогр.; Москалев Ю. И. Некоторые итоги Международной комиссии по радиологической защите (МКРЗ) за 45 лет (с 1928 по 1973), в кн.: От радиобиол. эксперимента к человеку, под ред. Ю. И. Москалева, с. 253, М., 1976; Нормы радиационной безопасности (НРБ-76), М., 1978; Проблема по-роговостм в токсикологии, под ред. Г. Н. Красовского, М., 1979; Радиационная защита, Рекомендации МКРЗ, Публикация-26, пер. с англ., М., 1978; С а-н о ц к и й И. В. Предупреждение вредных химических воздействий на человека- комплексная задача медицины, экологии, химии и техники, Журн. Всесоюз, хим. об-ва им. Д. И. Менделеева, т. 19, № 2, с. 125, 1974, библиогр.; Ш и ц к о- в а А. П. и др. Гигиеническое нормирование в условиях научно-технического прогресса, в кн.: Всесторонний анализ окружающей природной среды, под ред. Ю. А. Израэля, с. 105, Л., 1975, библиогр.

И. В. Саноцкий, К. К. Сидоров, Ю. И. Москалев.

Основные понятия и методика установления ПДК

Общие положения . К основным нормированным показателям количества вредных веществ, допустимых с точки зрения безопасности человека, относятся ПДК (предельно допустимая концентрация), ОБУВ (ориентировочный безопасный уровень воздействия), ОДК (ориентировочное допустимое количество) и ОДУ (ориентировочно допустимый уровень). Последние три – временные характеристики, подменяющие предельно допустимую концентрацию загрязняющего вещества до ее установления.

Существует несколько видов ПДК загрязняющих веществ в разных компонентах среды: в атмосферном воздухе, в воде природных и искусственных водоемов, в почве. Гигиенические ПДК устанавливаются на вредные вещества в пищевых продуктах. Кроме того, существуют ПДК вредных веществ в организме человека. Последние представляют собой уровень вредного вещества (или продуктов его превращения) в организме (в крови, моче и др.) или уровень биологического ответа наиболее поражаемой системы организма (например, содержание гемоглобина), при котором непосредственно в процессе воздействия или в отдельные периоды жизни настоящего и последующего поколений не возникает заболеваний или отклонений в состоянии здоровья, устанавливаемых современными методами исследований. Данное определение не распространяется на радионуклиды и биологические вещества, представленные сложными биологическими комплексами, а также на бактерии и микроорганизмы.

Временные нормативы на содержания загрязняющих веществ имеют следующие обозначения: ОБУВ – для атмосферного воздуха и водоемов рыбохозяйственного назначения, ОДК – в почве, ОДУ в воде хозяйственно-питьевого и культурно-бытового назначения.

Несмотря на разнородность (различное физическое и химическое состояние) перечисленных сред при разработке ПДК используются единые принципы, которые можно сформулировать следующим образом:

1) в основу разработки закладывается только биологический принцип (в данном случае - воздействие на человека или гидробионтов);

2) используются экспериментальные и натурные исследования, результаты которых гармонизируются;

3) в основу положена трехкоординатная система «доза-время-эффект» с нахождением вероятностных количественных порогов вредного действия;

4) из всего комплекса первичных, вторичных и опосредованных эффектов выделяется лимитирующий;

5) нормирование осуществляется с учетом предполагаемой физиологической адаптации человека.

По характеру воздействия на организм человека вредные химические вещества могут вызывать следующие эффекты:

1) токсические - ядовитость, т. е. способность вещества оказывать вредное действие на организм;

2) раздражающие - проявляющиеся в раздражающем воздействии на те или иные органы человека;

3) сенсибилизирующие (аллергические) - вредная для организма чрезмерная иммунная реакция на вещества (аллергены), которые, как правило, нетоксичны;

4) канцерогенные - вызывающие злокачественные новообразования;

5) мутагенные - оказывающие влияние на наследственность через скачкообразное, спонтанное и ненаправленное изменение наследственности;

6) различные эффекты, влияющие на репродуктивную функцию человека;

7) тератогенные - ведущие к возникновению пороков развития и уродств у потомства человека, животных, растений.

Проникновение химических веществ в организм человека осуществляется через:

1) органы дыхания;

2) желудочно-кишечный тракт;

3) кожные покровы и слизистые оболочки.

В современном нормировании при установлении допустимых концентраций вредных веществ используют принцип пороговости действия или принцип приемлемого риска. Принцип пороговости действия - выявление минимальной концентрации вредного вещества, вызывающей интоксикацию организма, - является основой гигиенического нормирования. На нем построена система оценки результатов экспериментально-биологических исследований. Принцип приемлемого риска используется в беспороговой модели для оценки мутагенного и канцерогенного действия с отдаленными последствиями, когда невозможно установить количественную связь между силой действия и эффектом в связи с отсутствием экспериментальных данных. В этом случае определение риска основано на вероятностном подходе. Данный принцип используется также при нормировании экологических рисков.

В целом же экологические нормативы должны лежать за пределами действующих доз, т.е. основой, по мере возможности, должен служить принцип пороговости. Исследованием механизмов и, главное, последствий химического, физического и биологического воздействия на живые организмы, прежде всего на человека, занимается экотоксикология.

Экологическая токсикология - наука о потенциальной опасности вредного воздействия веществ на живые организмы и экосистемы, о реакциях живых существ на контакт с химическими агентами. Она относится к разделу медицины о физических, химических свойствах ядов и их действии на живые организмы, а также о средствах предупреждения и лечения отравлений.

Исследуя проблемы вредного воздействия химических веществ на организм человека, необходимо помнить, что еще в эпоху Возрождения врач и естествоиспытатель Парацельс (1493-1541) писал: «Все есть яд и ничего не лишено ядовитости». Иными словами, одно и то же вещество может быть ядом, лекарством и необходимым для жизни средством. Все зависит от концентраций, вмещающих сред и условий взаимодействия с живыми организмами. Применительно к экологии, в частности к экологическому нормированию, необходимо четко представлять, при каких условиях обычное химическое вещество в окружающей среде переходит в категорию загрязняющего (вредного).

Способы проникновения вредных веществ в организм. Прямое вредное воздействие загрязняющего химического вещества возможно лишь в случае его попадания в организм. Известно несколько путей проникновения вредных веществ в организм человека и животных.

1) Пероральный путь подразумевает поступление химических веществ через желудочно-кишечный тракт с пищей и водой. Они всасываются в кровь из ротовой полости (особенно это характерно для фенолов и цианидов) или из желудочно-пищевого тракта. В желудке резорбции (т. е. всасыванию) вещества активно способствует желудочный сок.

2) Ингаляционный путь - поступление через дыхательные органы. Динамика поступления в организм этим путем определяется агрегатным состоянием вредного вещества, которое может находиться в пыли, тумане, дыме или в составе газовой фазы. Это наиболее быстрый путь проникновения в организм, что обусловлено огромной площадью поверхности легочных альвеол (до 100–120 м 2) и непрерывным током крови по легочным капиллярам. Активность проникновения вещества в кровь зависит от его растворимости. Место осаждения аэрозолей в дыхательных путях человека обусловлено величиной частиц: крупные частицы (диаметром более 10 мкм) чаще осаждаются в носоглотке; дисперсные (2-10 мкм) остаются в верхних дыхательных путях; тонкодисперсные (менее 2 мкм) попадают в альвеолярную область. Для носоглотки и верхних дыхательных путей существует достаточно эффективный способ очищения от твердых частиц - движение со слизью вверх, однако и в этом случае происходит частичное растворение химических веществ, их проникновение в кровь.

3) Накожный путь - поступление вредных веществ через кожу (площадь поверхности кожи человека 2 м 2), в основном через сальные железы, устья протоков потовых желез, через волосяные флолликулы. Особенно активно проникают под кожу вещества с высокой степенью растворимости в жирах.

Преобладающий путь поступления вредного вещества в организм зависит от его химических свойств и агрегатного состояния. Для газообразных веществ основной путь - ингаляционный; для твердых - пероральный и ингаляционный; для жидких - пероральный и накожный. Поэтому можно рекомендовать соответствующие способы защиты человека от вредных химических веществ в зависимости от их свойств и состояния, что входит в задачи активно развивающейся в последнее время экологической токсикологии.

Основные токсикометрические характеристики . При рассмотрении методологии разработки ПДК вредных веществ нам необходимо познакомиться с некоторыми токсикометрическими характеристиками и параметрами, используемыми для количественной оценки токсичности веществ.

Степень токсичности - это абсолютное количество или доза поллютанта, вызывающие определенный биологический эффект, те или иные патологические изменения. Уровень дозы - доза за единицу времени. Неблагоприятный эффект воздействия вредного вещества может проявляться в форме гибели или функциональных изменений организма. В первом случае для оценки используют понятие «летальная доза» . Функциональные изменения обозначают через понятие «действующие дозы и концентрации» , которые вызывают признаки интоксикации организма, а также через пороговые и недействующие величины. В связи с этим ниже даются определения некоторых из них.

Пороговая доза (порог однократного действия) - это наименьшее количество вещества, вызывающее при однократном воздействии такие изменения в организме, которые обнаруживаются с помощью специальных биохимических или физиологических тестов при отсутствии внешних признаков отравления. Недействующая доза - это максимальное количество вещества, не приводящее к каким-либо изменениям в организме.

Токсическая несмертельная доза (ЕД) вызывает видимые проявления отравления без летального исхода. Токсическая смертельная (летальная) доза (ЛД) или концентрация (ЛК) вызывает отравления, заканчивающиеся гибелью организма.

В практике экотоксикологии используют три количественные оценки:

1) ЛД min (ЛК min) - гибель отдельных особей;

2) ЛД 100 (ЛК 100) - гибель всех особей;

3) ЛД 50 (ЛК 50) - гибель 50% особей.

В экспериментально-биологических исследованиях применяют два основных подхода. Первый – кратковременное воздействие, которое приводит к острым отравлениям. В длительном эксперименте используют понятие хронического отравления, т. е. заболевания, развивающегося в результате систематического воздействия таких доз вредного вещества, которые при однократном поступлении в организм не вызывают отравления. Отсюда вытекает два значения пороговых концентраций: для однократного (C мин. остр.) и хронического (C мин. хрон.) воздействий. Таким образом, все перечисленные выше параметры характеризуют токсичность вещества.

В дополнение к этому мы рассмотрим ряд токсикометрических величин, определяющих вероятность угрозы отравления. Они используются при установлении класса опасности вредных веществ.

Зона однократного острого действия - диапазон концентраций вредного вещества между средней летальной дозой и пороговой концентрацией для однократного воздействия:

Z остр. = .

При этом чем меньше диапазон между смертельной и пороговой концентрациями, т. е. чем меньше значение Z AC , тем токсичнее вещество.

Зона хронического действия – диапазон между пороговыми концентрациями для однократного и хронического воздействия:

Z CH = .

Чем шире эта зона (чем больше значение Z CH ), тем выше опасность, поскольку возрастает угроза накопления вещества в организме.

Коэффициент возможности ингаляционного отравления (КВИО) представляет собой отношение максимально достижимой концентрации вредного вещества в воздухе при 20°С к средней смертельной концентрации для мышей:

КВИО = .

Высокое значение коэффициента указывает на способность вещества создавать токсичные концентрации.

Коэффициент кумуляции характеризует степень накопления данного вещества в организме человека. Он представляет отношение суммарной дозы, полученной организмом при многократном введении среднесмертельной дозы вещества, к той же величине, но при однократном введении:

К К = .

Естественно, что с увеличением коэффициента возрастает опасность вещества.

Классы опасности вредных веществ. Необходимо отметить, что все вредные вещества в зависимости от степени их негативного влияния относятся к тому или иному классу опасности. Однако одно и то же вещество может иметь разный класс в зависимости от вмещающей его среды (почва, вода, атмосферный воздух, сырье, продукты питания и т.д.), что обусловлено его физико-химическими свойствами, определяющими проявление вредных эффектов. Приведем классификацию и изложим общие принципы установления класса опасности веществ, находящихся в сырье, продуктах, полупродуктах и отходах производства, т. е. в материальных результатах хозяйственной деятельности человека.

Такой подход регламентирован ГОСТ 12.1.007-76 «Вредные вещества. Классификация и общие требования безопасности». В соответствии с ним по степени воздействия на организм выделяют четыре класса опасности вредных веществ:

1) 1-й класс - вещества чрезвычайно опасные;

2) 2-й класс - вещества высоко опасные;

3) 3-й класс - вещества умеренно опасные;

4) 4-й класс - вещества малоопасные.

Класс опасности устанавливается в зависимости от норм и показателей, рассмотренных нами выше и указанных в табл. 3. Отнесение вредного вещества к тому или иному классу проводится по показателю, значение которого соответствует наиболее неблагоприятному классу опасности.

Комбинированное и комплексное воздействие химических веществ на организм. Многообразие химических веществ, встречающихся в окружающей среде, предопределяет возможность комбинированного действия поллютантов на организм человека или животного. Например, в присутствии метана с помощью микроорганизмов происходит метилирование ртути, что резко увеличивает ее токсичность. Соли тяжелых металлов, а также активный хлор образуют комплексные соединения с гумусовыми веществами. В первом случае образуются металлфульваты, более токсичные, чем исходные вещества. Но особенно опасен синтез хлорфульватов, характеризующихся канцерогенным действием. Напротив, в водной среде в присутствии органических соединений тяжелые металлы образуют комплексные органические соединения, что снижает их токсичность.

Таблица 3 . Классы опасности вредных веществ

Показатели Нормы для классов опасности
ПДК вредных веществ в воздухе рабочей зоны, мг/м 3 <0,1 0,1–1,0 1,1–10,.0 >10,0
Средняя смертельная доза, мг/кг:
при введении в желудок <15 15–150 151–5000 >5000
при нанесении на кожу <100 100–500 501–2500 >2500
Средняя смертельная концент-рация в воздухе, мг/ м 3 <500 500–5000 5001–50000 >50000
Коэффициент возможного ингаляционного отравления (КВИО) >300 300–30 29–3 <3
Зона острого действия <6,0 6,0–18,0 18,1–54,0 >54,0
Зона хронического действия >10 10–5,0 4,9–2,5 <2,5

Принимая во внимание перечисленные выше эффекты, для оценки уровня загрязнения объектов окружающей среды перспективно использование комплексных гигиенических нормативов – интегральных величин с учетом всех вредных веществ в среде. Однако в силу несовершенства методики при разработке подобных нормативов возникают серьезные трудности. Одна из них заключается в необходимости создания современной экспериментальной базы с возможностью проведения большого количества дорогостоящих опытов на животных и дальнейшей экстраполяцией результатов на человека. В настоящее время у нас есть возможность надежной количественной оценки совместного воздействия лишь отдельных (как правило, не более двух) загрязняющих веществ.

Таким образом, можно выделить комбинированное и комплексное действие вредных веществ на организм. К основным видам комбинированного действия относят:

1) суммирование (аддитивность), когда суммарный эффект смеси равен сумме эффектов действующих компонентов (А и В ) и его можно оценить по зависимости

А + В = 1;

2) сверхсуммирование или потенцирование (синергизм), когда наблюдается непропорциональное усиление эффектов:

А + В > 1;

3) антагонизм или ингибирование, т. е. снижение воздействия одного или обоих веществ в результате их взаимовлияния:

А + В < 1;

4) независимое действие веществ - комбинированное действие не отличается от изолированного действия каждого яда и преобладает эффект наиболее токсичного вещества:

А =1; В =1.

Последний вариант действия веществ - наиболее общий и часто встречающийся на практике. Все остальные относятся к частным случаям независимого действия. В качестве примера аддитивности можно привести воздействие раздражающих газов на организм человека (хотя для некоторых газов существует вероятность потенцирования) или наркотическое действие смеси углеводородов. Потенцирование отмечено при совместном действии бутилакрилата и метилакрилата. Пример независимого действия - смесь бензолов и раздражающих газов. При воздействии тяжелых металлов может проявляться эффект как суммирования, так и антагонизма.

На практике эффект суммации учитывается посредством оценки концентрации через нормирование по веществу, относящемуся к наиболее неблагоприятному классу опасности:

С ПР = С 1 +С 2
,

где С ПР - приведенная концентрация вещества, характеризующая всю группу загрязняющих веществ, действующих по принципу суммации.

Эффект полной суммации воздействия вредных веществ учитывается также посредством расчета коэффициента действия:

К Д =
,

тогда при К Д > n

С i = ,

т. е. величина ПДК при изолированном действии уменьшается пропорционально отношению коэффициента К Д к числу веществ n .

Комплексное действие проявляется в том случае, когда проникновение одного и того же вещества в организм человека происходит разными способами. Например, поступление вредного вещества может осуществляться одновременно пероральным и ингаляционным путями. В практике нормирования это указывает на необходимость оценки удельного значения каждого фактора внешней среды в общей максимально допустимой дозе. Для оценки комплексного действия химических веществ рекомендуется использовать формулу суммационного эффекта

£ 1,

где С – концентрация вредного вещества в атмосферном воздухе, воде, продуктах питания соответственно;

ПДК атм, ПДК в, ПДК пищ – предельно допустимая концентрация вредного вещества в атмосферном воздухе, воде, продуктах питания соответственно.

Практика разработки ПДК – критерии необходимости и методы. Химические вещества, внедряемые в хозяйственную деятельность, подлежат обязательной токсикологической оценке и гигиеническому регламентированию. Объем сведений, необходимых для этого, зависит от физико-химических свойств вещества, степени его токсичности и опасности, масштабов производства, числа контактирующих с ним людей, актуальности для экономики страны, распространенности в объектах окружающей среды, а также ряда других показателей, имеющих значение для оценки возможности влияния вещества на здоровье человека. В практике санитарно-гигиенического нормирования используется дифференцированный подход к выявлению необходимости установления нормативов и достаточности объема получаемой для этого информации. Обоснование выбора вещества для выполнения гигиенического нормирования состоит из четырех этапов.

На первом этапе осуществляется сбор информации, необходимой и достаточной для решения вопроса о целесообразности проведения исследований по установлению гигиенических нормативов. Информация включает данные об объемах производства и применении веществ, характеристику физико-химических свойств, токсикологические показатели.

На втором этапе на основе анализа имеющихся данных определяются вещества, не нуждающиеся в разработке гигиенических нормативов в соответствии с обозначенными критериями: объемами производства и направлениями использования, физико-химическими свойствами и др. Например, нет необходимости устанавливать ПДК для веществ, попадание которых в атмосферный воздух невозможно в силу их физико-химических характеристик. Не имеет смысла разработка ПДК нестабильных в воде соединений, при трансформации которых образуются ингредиенты с установленными гигиеническими нормативами.

На третьем этапе намечаются очередность и объем работ, необходимых для ускоренной оценки нормативов без проведения принятых токсиколого-гигиенических исследований. Это целесообразно для малоопасных неустойчивых соединений, гомогенных веществ с уже установленными нормативами или при наличии экспериментально обоснованных ПДК этих веществ в других средах. Особо оговариваются критерии ускоренного нормирования химических соединений, которые могут быть опасны по канцерогенному и мутагенному действию.

На четвертом этапе принимается решение о разработке гигиенических нормативов для наименее изученных веществ, представляющих экологическую опасность, на основе проведения полного комплекса принятых токсиколого-гигиенических исследований.

На практике методы установления ПДК развиваются по двум основным направлениям:

1) экспериментально-биологическое направление, базирующееся на изучении развития стадий интоксикации организма;

2) расчетно-экспериментальное направление, в котором обоснование установления норматива основывается на принципах корреляционных зависимостей между биологическим действием веществ и их физико-химическими свойствами.

Основным прямым методом разработки предельно допустимых концентраций вредных веществ является лабораторно-токсикологический эксперимент . При экспериментальной оценке ПДК решающее значение имеют результаты токсикологических исследований на подопытных животных: крысах, мышах, морских свинках, кроликах, собаках и др.

Экспериментальные исследования по своим целям делятся на три вида: острые - время воздействия не превышает нескольких дней, подострые - время достигает одного месяца, и хронические - время затравки составляет 5–6 месяцев.

Пути введения веществ в организм выбираются исходя из реальных свойств тестируемого вредного вещества. Опыты ориентированы на выявление зависимости время–доза–эффект. Для экспериментального обоснования ПДК решающее значение имеют результаты хронических опытов не менее чем на двух животных. Исключение составляет лишь установление максимальных разовых концентраций в воздухе, что проделывается на основе острых экспериментов. По результатам хронических экспериментов устанавливают пороговые концентрации. Переход от них к ПДК осуществляется через коэффициент запаса, на который делится пороговое значение. Реально коэффициент запаса может меняться от 3 до 20 в зависимости от характера вредного вещества, путей поступления его в организм и результатов экспериментов. Величина коэффициента увеличивается с ростом абсолютной токсичности, значения КВИО, кумулятивных свойств, а также с уменьшением зоны острого действия, при значительных различиях в видовой чувствительности и выраженном кожно-резорбтивном действии.

Определение значений параметров острой, подострой и хронической токсичности осуществляется в соответствии с методическими инструкциями, в которых регламентируются порядок и условия проведения экспериментов.

Методы расчетно-экспериментального направления сейчас активно внедряются в практику экотоксикологии. Это обусловлено прежде всего высокой стоимостью установления и обоснования ПДК, что связано, в частности, с длительностью экспериментов. Ежегодно в мире синтезируются от 10 до 25 тысяч новых соединений. Очевидно, что нереально обосновать ПДК для каждого из веществ. Эти доводы подчеркивают актуальность развития расчетно-экспериментального направления.

Как указывалось выше, данный метод базируется на сопоставлении физико-химических свойств веществ, молекулярной структуры, их кумулятивных характеристик в разных компонентах окружающей среды. Широко используются методы интерполяции и экстраполяции. Применение расчетно-экспериментального подхода направлено на обоснование ОДК, ОДУ и ОБУВ. В практике ЭН ориентировочные величины устанавливаются на этапе разработки ПДК на определенный срок: в атмосферном воздухе - на два, в воде - на три года.

Разработка ПДК вредных веществ сопряжена с проблемами методического характера, которые в известной степени снижают достоверность результатов и иногда приводят к занижению или завышению (что значительно реже) нормативных значений. В первом случае это ведет к экономическим потерям, обусловленным необходимостью соблюдения заниженных норм или принципиальной невозможностью их обеспечения в реальных условиях в силу более высоких фоновых значений, во втором - к риску негативного воздействия на человека. Выделим и другую не менее существенную проблему: отдаленные последствия вредных воздействий, прогноз которых далеко не всегда может быть достаточно достоверным, даже по результатам хронических экспериментов. В связи с этим в качестве основных задач в области разработки и обоснования ПДК выделяются:

1) совершенствование расчетных методов с целью использования результатов острых опытов для прогноза хронической токсичности;

2) разработка надежных методов исследования отдаленных последствий воздействия вредных веществ на человека;

3) совершенствование способов экстраполяции данных с животных на человека;

4) предложение более совершенных методик определения коэффициента запаса – величины шага от минимально действующей концентрации до ПДК;

5) обоснование методологии краткосрочных экспериментов;

6) развитие методов моделирования интоксикации, приближающих экспериментальные условия к натурным.

В целом же требования к гигиеническому нормированию отвечают основным принципам экологического нормирования - соответствие полученных данных современному научно-методическому уровню, наличие доступного химико-аналитического метода определения вещества с необходимым порогом обнаружения, подготовка технических регламентов и их принятие.

Под воздействием применяемого оборудования и технологических процессов в рабочей зоне создается определенная внешняя среда. Ее характеризуют: микроклимат; содержание вредных веществ; уровни шума, вибраций, излучений; освещенность рабочего места.

ПДК - это государственный гигиенический норматив для использования при проектировании производственных зданий, технологических процессов, оборудования, вентиляции, для контроля за качеством производственной среды и профилактики неблагоприятного воздействия на здоровье работающих.

ПДК - это концентрации, которые, воздействуя на людей при их ежедневной, кроме выходных дней, работе продолжительностью 8 ч (или другой продолжительностью, но не более 41 ч в неделю) в течение всего рабочего стажа, не могут вызвать обнаруживаемые современными методами исследований заболевания или отклонения в состоянии здоровья как у самих работников в процессе трудовой деятельности и в дальнейший период жизни, так и у последующих поколений.

ПДК для большинства веществ являются максимально разовыми, т. е. содержание вещества в зоне дыхания работающих усреднено периодом кратковременного отбора проб воздуха: 15 мин для токсичных веществ и 30 мин для веществ преимущественно фиброгенного действия (вызывающих фибрилляцию сердца). Для высококумулятивных веществ наряду с максимально разовой установлена среднесменная ПДК, т.е. средняя концентрация, полученная при непрерывном или прерывистом отборе проб воздуха при суммарном времени не менее 75 % продолжительности рабочей смены, или концентрация средневзвешенная во времени длительности всей смены в зоне дыхания работающих на местах постоянного или временного их пребывания.

В соответствии с СН 245-71 и ГОСТ 12.1.007-76 все вредные вещества по степени воздействия на организм человека подразделяют на четыре класса опасности:

первый - чрезвычайно опасные - ПДК менее 0,1 мг/м 3 (свинец, ртуть - 0,001 мг/м 3);

второй - высокоопасные - ПДК от 0,1 до 1 мг/м 3 (хлор - 0,1 мг/м 3 ; серная кислота - 1 мг/м 3);

третий - умеренно опасные - ПДК от 1,1 до 10 мг/м 3 (спирт метиловый - 5 мг/м 3 ; дихлорэтан - 10 мг/м 3);

четвертый - малоопасные - ПДК более 10 мг/м 3 (аммиак - 20 мг/м 3 ; ацетон - 200 мг/м 3 ; бензин, керосин - 300 мг/м 3 ; спирт этиловый - 1000 мг/м 3).

По характеру воздействия на организм человека вредные вещества можно разделить: на раздражающие (хлор, аммиак, хлористый водород и др.); удушающие (оксид углерода, сероводород и др.); наркотические (азот под давлением, ацетилен, ацетон, четыреххлористый углерод и др.); соматические, вызывающие нарушения деятельности организма (свинец, бензол, метиловый спирт, мышьяк).

Согласно требованиям санитарных норм и стандартов ССБТ на предприятиях должен осуществляться контроль за содержанием вредных веществ в воздухе рабочей зоны. Там, где применяются высокоопасные вредные вещества первого класса, - непрерывный контроль с помощью автоматических самопишущих приборов, выдающих сигнал при превышении ПДК, а там, где применяются вредные вещества второго, третьего и четвертого классов, - периодический контроль путем отбора и анализа проб воздуха. Отбор проб производят в зоне дыхания в радиусе до 0,5 м от лица работающего; берутся не менее пяти проб в течение смены.

К вредным веществам однонаправленного действия относят вредные вещества, близкие по химическому строению и характеру биологического воздействия на организм человека. Примерами сочетаний веществ однонаправленного действия являются: фтористый водород и соли фтористоводородной кислоты; сернистый и серный ангидриды; формальдегид и соляная кислота; различные хлорированные углеводороды (предельные и непредельные); различные бромированные углеводороды (предельные и непредельные); различные спирты; различные кислоты; различные щелочи; различные ароматические углеводороды (толуол и ксилол, бензол и толуол); различные аминосоединения; различные нитросоединения; амино- и нитросоединения; тиофос и карбофос; сероводород и сероуглерод; окись углерода и аминосоединения; окись углерода и нитросоединения; бромистый метил и сероуглерод.

При одновременном содержании в воздухе рабочей зоны нескольких вредных веществ однонаправленного действия сумма отношений фактических концентраций каждого из них в воздухе (К 1 , К 2 , ..., К n) к их ПДК (ПДК 1 , ПДК 2 , ..., ПДК n) не должна превышать единицы:

В списке ПДК используют следующие обозначения: п - пары и (или) газы; а - аэрозоль, п + а - смесь паров и аэрозоля; + - требуется специальная защита кожи и глаз; О - вещества с остронаправленным механизмом действия, требующие автоматического контроля за их содержанием в воздухе; А - вещества, способные вызвать аллергические заболевания в производственных условиях; К - канцерогены; Ф - аэрозоли преимущественно фиброгенного действия.

При одновременном выделении в воздух рабочей зоны помещений нескольких вредных веществ, не обладающих однонаправленным характером действия, количество воздуха при расчете общеобменной вентиляции следует принимать по тому вредному веществу, для которого требуется подача наибольшего объема чистого воздуха.

В нашей стране ПДК устанавливают санитарные органы Минздрава России. Периодически, в соответствии с уровнем развития медицинских знаний, предельно допустимые концентрации пересматривают, как правило, в сторону ужесточения. Например, до 1968 г. действовали нормы, предусматривающие ПДК бензола 20 мг/м 3 . Клинико-гигиенические исследования выявили случаи неблагоприятного воздействия таких его концентраций на организм человека. Это послужило основанием к снижению ПДК бензола до 5 мг/м 3 .

Все предельно допустимые концентрации стремятся к некоторым пределам, называемым обычно предельно допустимыми экологическими концентрациями (ПДЭК), под которыми имеются в виду концентрации вредных веществ, не оказывающие вредного влияния (ближайшего или отдаленного) на экологические системы, т. е. на совокупность живых организмов, среду обитания и их взаимосвязь.

В настоящее время установлены предельно допустимые концентрации в воздухе рабочей зоны более чем для 850 веществ. ПДК некоторых вредных веществ в воздухе рабочей зоны и атмосферном воздухе населенных мест приведены в табл. 1.

Таблица 1. Предельно допустимые концентрации некоторых вредных веществ в воздухе производственных помещений и атмосферном воздухе населенных мест
Загрязняющее вещество
Загрязняющее вещество
Предельно допустимая концентрация, мг/м 3
рабочей зоны
максимальная разовая
среднесуточная
рабочей зоны
максимальная разовая
среднесуточная

Азота диоксид

Дихлорэтан

Серы диоксид

Сероводород

Фтористые соединения (в пересчете на фтор)

Формальдегид

Пыль нетоксичная (известняк)

Другим важнейшим показателем, характеризующим уровень загрязнения атмосферного воздуха, является предельно допустимый выброс (ПДВ). В отличие от ПДК, ПДВ является научно-техническим нормативом. Его измеряют во времени и устанавливают для каждого источника организованного выброса исходя из условия, что выброс вредных веществ данным источником и совокупностью источников района (с учетом перспективы развития промышленных предприятий и рассеивания вредных веществ в атмосфере) не создает приземной концентрации, превышающей ПДК для атмосферного воздуха. Предельно допустимые концентрации можно получать за счет разбавления отходящих газов путем увеличения мощности вентиляционных систем или строительства более высоких труб.

На предприятиях, где применяют вредные вещества, должны разрабатываться и внедряться мероприятия по улучшению санитарно-технического состояния, новые прогрессивные технологии, исключающие контакт человека с вредными веществами.

Санитарно-гигиенические нормативы по предельно допустимым концентрациям опасных и загрязняющих веществ в разных средах: в воде, атмосферном воздухе, почве, продуктах, показатели ПДК для основных химических элементов и соединений Вы найдете в системе «Техэксперт: Экология. Проф» .

Консультации наших экспертов помогут разобраться в таких вопросах, как:

  • В каких нормативно-правовых актах расписаны ПДК нефтяных продуктов для различных почв, встречающихся на территории РФ?
  • В какую службу следует обратиться, если по итогам проверки водоканала в воде обнаружено превышение предельно допустимых концентраций загрязняющих веществ?
  • Какие именно компоненты сварочного аэрозоля должны быть пронумерованы в воздухе рабочей зоны сотрудника, выполняющего лазерную сварку металла?
  • Каким способом возможно сравнить уровень загрязнения водного объекта с нормами ПДК, если на данный водоем не распространяется действие приказа о рыбохозяйственных объектах?

Предельно допустимые концентрации вредных веществ определяются ГОСТ 22.0.05-97/ГОСТ Р 22.0.05-94 и постановлением Минпромнауки России от 05.06.2003. ПДК опасного вещества — такая концентрация химического соединения в воде, воздухе, почве, продуктах питания, которая не влияет на самочувствие и здоровье людей при длительном воздействии на человека.

ПДК вредных веществ в воде — это степень концентрации, превышение которой делает воду непригодной для использования. ПДК сс — максимальная среднесуточная концентрация вещества в атмосфере населенного места, не оказывающая негативного воздействия на человека при длительном контакте.

Какими показателями определяется предельно допустимая концентрация вещества

Нормы ПДК повсеместно стали внедряться в середине прошлого века после популяризации концепции о том, что есть некое значение для опасного и загрязняющего фактора, которое не представляет опасности для экологии и жизнедеятельности человека.

Величины ПДК разрабатываются с учетом экспериментов по установлению токсичности веществ, с помощью расчетных методов и анализа воздействия вредных веществ на здоровье людей, контактировавших с ними, поэтому нормы эти в разных странах имеют разное значение.

Области применения ПДК веществ в РФ

Предельно допустимые концентрации ПДК загрязняющих веществ прописаны в национальных стандартах, санитарных нормах и иных НПА. Например, эти данные учитывают при проектировании очистных сооружений. Стоит отметить, что далеко не для всех элементов таблицы Менделеева прописаны ПДК, поэтому ПДК веществ в экологии — это набор так называемых кларков химических элементов. То есть средний показатель содержания элементов в земной коре относительно массы системы, в данном случае планеты Земля.

Исследуя состояние почв в черте города, экологи пользуются кларками селитебных ландшафтов. В РФ величины ПДК разрабатываются для следующих областей:

  • атмосферный воздух: закрытых помещений и открытых пространств (регламентируется нормами СанПиН 2.1.6.1032-01);
  • воздух рабочей зоны;
  • почвы;
  • продукты питания;
  • водная среда: объекты 1 и 2 типов водопользования, водоемы, используемые в рыбном хозяйстве.


Просмотров