Интеллектуальные данные. Технологии интеллектуального анализа данных. Интеллектуальный анализ данных

Интеллектуальный анализ данных (ИАД) ориентирован на поиск закономерностей в накопленной информации. При этом используются методы искусственного интеллекта, прикладной статистики, теории баз данных. Выделяются пять стандартных типов закономерностей, которые позволяют выявлять методы Data Mining: ассоциация, последовательность, классификация, кластеризация и прогнозирование.

Ассоциация имеет место в том случае, если несколько событий связаны друг с другом. Например, исследование, проведенное в супермаркете, может показать, что 65 % купивших кукурузные чипсы берут также и кока-колу, а при наличии скидки за такой комплект колу приобретают в 85 % случаев. Располагая сведениями о подобной ассоциации, менеджерам легко оценить, насколько действенна предоставляемая скидка.

Если существует цепочка связанных во времени событий, то говорят о последовательности . Так, например, после покупки дома в 45 % случаев в течение месяца приобретается и новая кухонная плита, а в пределах двух недель 60 % новоселов обзаводятся холодильником. Выявленные ассоциации и последовательности позволяют выполнять анализ покупательской корзины для улучшения рекламы, выработки стратегии создания запасов товаров и способов их раскладки в торговых залах.

Рис. 3.13. Фрагмент сформированного отчета по поставкам деталей

С помощью классификации выявляются признаки, характеризующие однотипные группы объектов – классы, для того чтобы по известным значениям этих характеристик можно было отнести новый объект к тому или иному классу. Ключевым моментом выполнения этой задачи является анализ множества классифицированных объектов. Типичный пример использования классификации – исследование характерных признаков мошенничества с кредитными карточками в банковском деле. Путем анализа прошлых транзакций, которые впоследствии оказались мошенническими, банк выявляет некоторые стереотипы такого мошенничества.

Кластеризация отличается от классификации тем, что сами группы заранее не заданы. С помощью кластеризации самостоятельно выделяются различные однородные группы данных. Так, например, можно выделить родственные группы клиентов с тем, чтобы определить характеристики неустойчивых клиентов («группы риска») – клиентов, готовых уйти к другому поставщику. При этом необходимо найти оптимальную стратегию их удержания (например, посредством предоставления скидок, льгот или даже с помощью индивидуальной работы с представителями «группы риска»).



Основой для систем прогнозирования служит историческая информация, хранящаяся в виде временных рядов. Если удается построить шаблоны, адекватно отражающие динамику поведения целевых показателей, есть вероятность, что с их помощью можно предсказать поведение системы в будущем. Например, создание прогнозирующих моделей дает возможность торговым предприятиям узнавать характер потребностей различных категорий клиентов с определенным поведением (покупающих товары известных дизайнеров или посещающих распродажи). Эти знания нужны для разработки точно направленных, экономичных мероприятий по продвижению товаров.

В общем случае процесс ИАД состоит из трёх стадий:

1) выявления закономерностей;

2) использования выявленных закономерностей для предсказания неизвестных значений;

3) анализа исключений, предназначенного для выявления и толкования аномалий в найденных закономерностях.

Data Mining является мультидисциплинарной областью, возникшей и развивающейся на базе достижений прикладной статистики, распознавания образов, методов искусственного интеллекта, теории баз данных и др. Отсюда обилие методов и алгоритмов, реализованных в различных действующих системах Data Mining.

Традиционные методы прикладной статистики

- Статистическое исследование структуры и характера взаимосвязей, существующих между анализируемыми количественными переменными . Сюда относят корреляционный, факторный, регрессионный анализ, анализ временных рядов. Необходимо отметить, что проблема статистического исследования зависимостей по своему значению заметно превосходит две другие.

- Методы классификации объектов и признаков . В данной группе выделяют, в частности, дискриминантный и кластерный анализ.

- Снижение размерности исследуемого признакового пространства в целях лаконичного объяснения природы анализируемых данных . К данному разделу относят метод главных компонент, многомерное шкалирование и латентно структурный анализ.

В качестве примеров наиболее мощных и распространенных статистических пакетов, реализующих указанные методы, можно назвать SAS, SPSS, STATGRAPHICS, STATISTICA и др.

Нейронные сети

Искусственные нейронные сети (ИНС) представляют парадигму обработки информации, базирующуюся на той или иной упрощенной математической модели биологических нейронных систем. ИНС организует свою работу путем распределения процесса обработки информации между нейроэлементами, связанными между собой посредством синаптических связей. Выявление закономерностей в данных осуществляется путем обучения ИНС, в процессе которого происходит корректировка величин синаптических связей. Круг задач, решаемых при помощи данных методов, также довольно широк: распознавание образов, адаптивное управление, прогнозирование, построение экспертных систем и др. Основными недостатками нейросетевой парадигмы являются: необходимость большого объема обучающей выборки, отсутствие универсальных топологий и настроек сети. Другой существенный недостаток заключается в том, что ИНС представляет собой «черный ящик», не поддающийся интерпретации человеком. Примеры нейросетевых систем – BrainMAker, NeuroShell, OWL, Neural Analyzer в программном комплексе Deductor (BaseGroup).

Методы обнаружения логических закономерностей в данных

Данные методы апеллируют к информации, заключенной не только в отдельных признаках, но и в сочетаниях значений признаков. Они вычисляют частоты комбинаций простых логических событий в подгруппах данных. На основании анализа вычисленных частот делается заключение о полезности той или иной комбинации для установления ассоциаций в данных, для классификации, прогнозирования. Результаты работы данных методов оформляются в виде деревьев решений или правил типа «ЕСЛИ…, ТО…». Популярность данного подхода связана с наглядностью и понятностью полученных результатов анализа. Проблемой логических методов обнаружения закономерностей является необходимость перебора вариантов за приемлемое время и поиск оптимальной композиции предложенных правил. Представителями систем, реализующих данные методы, являются системы See5/C5.0, WizWhy, Tree Analyzer (BaseGroup).

Методы рассуждения на основе аналогичных случаев

Идея методов CBR (case based reasoning) довольно проста. Для того чтобы сделать прогноз на будущее или выбрать правильное решение, эти системы находят в прошлом близкие аналоги наличной ситуации и

выбирают тот же ответ, который был для них правильным. Главным минусом такого подхода считают то, что данные системы вообще не создают каких-либо моделей или правил, обобщающих предыдущий опыт. В выборе решения они основываются на всем массиве доступных исторических данных. Поэтому существует проблема выбора объема множества прецедентов, которые необходимо хранить для достижения удовлетворительной классификации или прогноза. Примеры систем, использующих CBR – KATE tools, Pattern Recognition Workbench.

Эволюционные и генетические алгоритмы

Данные методы предназначены в основном для оптимизации в задачах поиска зависимости целевой переменной от других переменных. Примером может служить обучение нейронной сети, то есть подбор таких оптимальных значений весов, при которых достигается минимальная ошибка. В основе указанных методов лежит метод случайного поиска, модифицированный за счет использования ряда биологических принципов, открытых при изучении эволюции и происхождения видов, для отбора наилучшего решения. В частности, используются процедуры репродукции (скрещивания), изменчивости (мутаций), генетической композиции, конкурирования в рамках естественного отбора наилучшего решения. В силу своей специфики данные методы часто используются в качестве дополнительного инструментария к какому-либо другому методу. Пример реализации эволюционного алгоритма – отечественная система PolyAnalist. GeneHanter – пример системы, использующей генетические алгоритмы.

Методы визуализации многомерных данных

Эти методы позволяют ассоциировать с анализируемыми данными различные параметры диаграмм рассеивания: цвет, форму, ориентацию относительно собственной оси, размеры и другие свойства графических элементов. При этом они не выполняют автоматического поиска закономерностей, но реализуемые на их основе выводы чрезвычайно удобны для интерпретации и объяснения. В той или иной мере средства для графического отображения данных поддерживаются абсолютным большинством систем Data Mining, однако внушительную долю рынка занимают системы, специализирующиеся исключительно на этой функции. Примером может служить программа DataMiner 3D.

Следует отметить, что использование автономных инструментов Data mining менее предпочтительно по сравнению с их внедрением в среду OLAP или СУБД.

3.2.3. Геоинформационные системы

Геоинформационная система (ГИС) – это программно-аппаратный комплекс, осуществляющий сбор, отображение, обработку, анализ и распространение информации о пространственно распределенных объектах и явлениях на основе электронных карт и связанных с ними баз данных. ГИС – это особый случай автоматизированной информационной системы, где база данных состоит из наблюдений за пространственно распределенными явлениями, процессами и событиями, которые могут быть определены как точки, линии или контуры.

Функции ГИС:

Создание высококачественной картографической продукции; процесс преобразования данных с бумажных карт в компьютерные файлы называется оцифровкой ;

- геокодирование – процесс установления пространственной привязки объектов с атрибутивной информацией;

Манипулирование и визуализация информации;

Пространственный анализ и моделирование;

Интеграция информации различных источников.

Существует два подхода к представлению пространственных объектов:

Растровый (ячейки или клетки на карте);

Векторный (точки, линии, полигоны).

Вся карта представлена набором слоев. Каждый слой соответствует определенному информационному объекту базы данных. Слои могут быть точечными, площадными и полигонными. Кроме этого, выделяются надписи. Объекты разных слоев могут иметь пространственную связь между собой. Связь такого рода называется топологией. Несколько связанных слоев могут образовывать покрытие.

Пространственный анализ включает в себя следующие методы: навигацию, поиск информации, моделирование.

Навигация включает в себя:

Изменение масштаба;

Перемещение по карте;

Выдачу необходимого набора слоев;

Задание атрибутов слоя;

Порядок прорисовки слоев.

Поиск информации включает:

Поиск конкретного объекта по карте по атрибутивным данным (например, поиск улицы по названию);

Поиск атрибутивной информации об объекте на карте;

Построение буферных зон, анализ близости;

Поиск по геометрическим признакам (например, нахождение одного объект или его части внутри другого, нахождение смежных объектов).

Моделирование используется при построении, например, моделей инженерных сетей (тепловых, электрических).

Приведем примеры пространственных запросов. Сколько домов находится в 100 метрах от заданного водоема? (пример анализа близости); Сколько покупателей живет не далее 1 км от данного магазина?; Какие почвы встречаются в заданной охраняемой территории? (выполняется наложение почвенной карты на карту охраняемых объектов).

Наиболее распространенными представителями ГИС являются продукты MapInfo, ArcInfo.


3.3. МетодЫ анализа и проектирования
информационных систем

Характерными чертами корпоративных информационных систем являются длительность жизненного цикла, масштабность и сложность решаемых задач, пересечение множества предметных областей, ориентация на аналитическую обработку данных, территориальная распределенность, наличие нескольких уровней иерархического подчинения и др. Перечисленные свойства послужили стимулом к развитию и использованию инструментальных средств для анализа и проектирования автоматизированных систем – CASE-средств (Computer Aided Software Engineering). Обычно к CASE-средствам относят любое программное средство, автоматизирующее ту или иную совокупность процессов жизненного цикла автоматизированной системы и обладающее следующими основными характерными особенностями, такими как:

Мощные графические средства для описания и документирования системы, обеспечивающие удобный интерфейс с разработчиком и развивающие его творческие возможности;

Интеграция отдельных компонентов CASE-средств, обеспечивающая управляемость процессом разработки системы;

Использование специальным образом организованного хранилища проектных метаданных (репозитория).

Интегрированное CASE-средство (или комплекс средств, поддерживающих полный жизненный цикл программного обеспечения) содержит следующие компоненты:

Репозиторий, являющийся основой CASE-средства; он должен обеспечивать хранение версий проекта и его отдельных компонентов, синхронизацию поступления информации от различных разработчиков при групповой разработке, контроль метаданных на полноту и непротиворечивость;

Графические средства анализа и проектирования, обеспечивающие создание и редактирование иерархически связанных диаграмм, образующих модели автоматизированных систем;

Средства разработки приложений;

Средства конфигурационного управления;

Средства документирования;

Средства тестирования;

Средства управления проектом;

Средства реинжиниринга.

В основе CASE-средства лежит определенная методология анализа и проектирования автоматизированной системы. При этом имеют место два основных подхода – структурный и объектный.

Структурный подход основан на декомпозиции функций, реализуемых системой. В его основе лежит функциональная модель (Data Flow Diagrams – DFD), информационная модель (Entity Relationship Diagrams – ERD) и событийная модель состояний (State Translation Diagrams – STD). Процессу проектирования системы предшествует анализ бизнес-процессов, имеющих место в предметной области. При этом используется методология структурного анализа систем (Structured Analysis and Design – SADT), на основе которой принят стандарт моделирования бизнес-процессов IDEF0.

Сочетание DFD- и ERD- диаграмм дает относительно полные модели анализа, которые фиксируют все функции и данные на требуемом уровне абстракции независимо от особенностей аппаратного и программного обеспечения. Построенные модели анализа преобразуются в проектные модели, которые обычно выражаются в понятиях реляционных баз данных.

Следует заметить, что структурный подход направлен на разработку негибких решений, которые способны удовлетворить набор определенных бизнес-функций, но которые в будущем может быть трудно масштабировать и расширять. Вместе с тем до сих пор структурный подход широко используется при проектировании информационных систем.

Наиболее распространенными CASE-средствами, основанными на структурном подходе, являются BPwin (поддерживает нотации IDEF0, DFD, IDEF3) для функционального моделирования и ERwin для информационного моделирования систем. Фирма ORACLE, в частности, поддерживает свой продукт Designer/2000. Представляет интерес продукт PowerDesigner (поддерживает нотации IDEF1X, DFD,UML).

Объектно-ориентированный подход основан на глубинном изучении предметной области с позиции объектов и их поведения. Ассоциация производителей программного обеспечения Object Managament Group утвердила в качестве стандартного средства моделирования для этого подхода язык UML (Unified Modeling Language – унифицированный язык моделирования). По сравнению со структурным подходом объектно-ориентированный подход в большей степени ориентирован на данные. Он соответствует итеративному процессу разработки с наращиванием возможностей. Единая модель конкретизируется на этапах анализа, проектирования и реализации.

Для объектного анализа и проектирования систем возможно использование продуктов Rational Rose (Rational Software), Paradigm Plus (Computer Associates) и др.

Рассмотрим наиболее распространенные методы анализа и проектирования информационных систем.

3.3.1. Моделирование бизнес-процессов (IFEF0)

С точки зрения менеджеров, наиболее подходящим языком моделирования бизнес-процессов на стадии создания моделей предметной области является IDEF0. Этот язык моделирования появился в результате применения методологии структурного анализа и проектирования систем (Structured Analysis and Design Technique - SADT). На основе этой методологии создан стандарт моделирования бизнес-процессов IDEF0. Его успеху в немалой степени способствовала фирма Logic Works (США), создав на основе IDEF0 свой популярный среди менеджеров программный продукт BPwin. В 2000 году в нашей стране введен в действие руководящий документ РД IDEF0-2000 «Методология функционального моделирования IDEF0».

Стандарт IDEF0 используется при проектировании корпоративных информационных систем, при документировании созданных систем, а также используется в процессе совершенствования (реинжиниринга) деятельности организации при построении новой модели бизнес-процессов.

В нотации IDEF0 описание системы (модель) организовано в виде иерархически упорядоченных и взаимосвязанных диаграмм. Вершина этой древовидной структуры представляет собой самое общее описание системы и ее взаимодействия с внешней средой, а в ее основании находятся наиболее детализированные описания выполняемых системой функций. Диаграммы содержат функциональные блоки, соединенные дугами. Дуги отображают взаимодействия и взаимосвязи между блоками. Функциональный блок на диаграммах изображается прямоугольником и представляет собой функцию или активную часть системы, поэтому названиями блоков служат глаголы или глагольные обороты. Каждая сторона блока имеет особое, вполне определенное назначение. К левой стороне блока подходят дуги входов, к верхней – дуги управления, к нижней – механизмов реализации выполняемой функции, а из правой – выходят дуги выходов. Такое соглашение предполагает, что, используя управляющую информацию об условиях и ограничениях и реализующий ее механизм, функция блока преобразует свои входы в соответствующие выходы.

На диаграмме блоки упорядочены по степени важности, начиная с левого верхнего угла диаграммы и кончая нижним правым углом. Для обеспечения наглядности и лучшего понимания моделируемых процессов рекомендуется использовать от 3 до 6 блоков на одной диаграмме. Такое представление модели устраняет неоднозначность, присущую естественному языку. Благодаря этому достигается необходимая для понимания и анализа лаконичность и точность описания без потери деталей и качества.

Рассмотрим основные компоненты IDEF0 синтаксиса.


3.15. Изображение дуги

3.16. Варианты объединения дуг

Дуги изображают данные или объекты, связанные функциями. Дуга состоит из одного или нескольких сегментов линии со стрелкой, направленной в один конец. Как показано на рис. 3.15, сегмент дуги может быть прямым или изогнутым (на угол, кратный 90°). Дуги передают данные или объекты, связанные функциями, которые нужно выполнить (рис. 3.16).

Правила определяют, как используются вышеуказанные компоненты:

1) блок должен быть достаточного размера, чтобы в него убралось имя блока;

2) блок должен иметь прямоугольную форму и квадратные углы;

3) блок должен изображаться сплошными линиями;

4) угол изгиба дуг должен быть кратным 90°;

5) дуги должны изображаться сплошными линиями;

6) дуги должны изображаться вертикально или горизонтально, но не по диагонали.

7) концы дуги должны касаться внешнего периметра функционального блока;

8) дуги должны присоединяться к сторонам блока, а не к углам.

Диаграммы представляют собой объединения блоков и дуг, изображенных в соответствии с правилами. Место соединения дуги с блоком определяет тип интерфейса. Управляющая информация входит в блок сверху, в то время как информация, которая подвергается обработке, показана с левой стороны блока, а результаты выхода показаны с правой стороны (рис. 3.17). Механизм (человек или автоматизированная система), который осуществляет операцию, представляется дугой, входящей в блок снизу.


Одной из наиболее важных особенностей методологии SADT является постепенное введение все больших уровней детализации по мере создания диаграмм, отображающих модель.

Рис. 3.17. Функциональный блок и интерфейсные дуги

Построение модели бизнес-процессов начинается с представления всей системы в виде простейшего компонента − одного блока и дуг, изображающих интерфейсы с функциями вне системы. Поскольку единственный блок представляет всю систему как единое целое, имя, указанное в блоке, является общим. Это верно и для интерфейсных дуг − они также представляют полный набор внешних интерфейсов системы в целом. Затем блок, который представляет систему в качестве единого модуля, детализируется на другой диаграмме с помощью нескольких блоков, соединенных интерфейсными дугами. Эти блоки представляют
основные подфункции системы. Данная декомпозиция выявляет полный набор подфункций, каждая из которых представляется блоком, границы которого определены интерфейсными дугами. Каждая из этих подфункций может также быть декомпозирована подобным образом для более детального представления. Модель представляет собой серию диаграмм с сопроводительной документацией, разбивающих сложный объект на составные части, которые представлены в виде блоков (рис.


3.18).

Во всех случаях каждая подфункция может содержать только те элементы, которые входят в исходную функцию. Кроме того, модель не может опустить какие-либо элементы, т.е., как уже отмечалось, родительский блок и его интерфейсы обеспечивают контекст. К нему нельзя ничего добавить, и из него не может быть ничего удалено.

Дуги, входящие в блок и выходящие из него на диаграмме верхнего уровня, являются точно теми же самыми, что и дуги, входящие в диаграмму нижнего уровня и выходящие из нее, потому что блок и диаграмма представляют одну и ту же часть системы.


3.19. Одновременное выполнение функций

Рис. 3.20. Полное и непротиворечивое соответствие между диаграммами


Для того чтобы указать положение любой диаграммы или блока в иерархии, используются номера диаграмм (рис. 3.22). Например, А21 является диаграммой, которая детализирует блок 1 на диаграмме А2. Аналогично А2 детализирует блок 2 на диаграмме А0, которая является самой верхней диаграммой модели. Приведен пример анализа бизнес-процессов (рис. 3.23).

Рис. 3.22. Иерархия диаграмм

Рис.

3.23. Пример анализа бизнес-процессов

3.3.2. функциональное моделирование (DFD)

Построение диаграмм потоков данных (DFD), являясь методом функционального моделирования, позволяет показать набор задач (функций/процессов), которые необходимо решать для поддержания деятельности автоматизированной системы, и информационные потоки между ними. DFD-диаграммы используются для описания процессов обработки информации в АИС.

Рассмотрим основные компоненты DFD-синтаксиса.

Процессы показывают, что делает система (рис. 3.24). Каждый процесс имеет одну или несколько точек ввода данных и одну или несколько точек вывода данных. Процессы в DFD обычно изображаются в виде кругов. Каждый процесс имеет уникальное имя и номер.


Внешние сущности либо передают данные в систему (в этом случае они называются источниками), либо получают данные из системы (в этом случае они называются приемниками). Внешние сущности изображаются в виде прямоугольника и имеют уникальное имя (рис. 3.26).

Рис. 3.26. Изображение внешней сущности

Потоки данных определяют передачу данных в системе и изображаются стрелками, соединяющими компоненты системы. Направление стрелки указывает на направление потока. Каждый поток имеет имя, отображающее его содержание (рис. 3.27).


Существует ряд нотаций представления DFD-диаграмм (рис. 3.28 – 3.30).

3.28. Диаграммы потоков данных в нотации Yourdon / De Marco

Рис. 3.29. Диаграммы потоков данных в нотации SSADM


3.30. Диаграммы потоков данных в нотации Gane/Sarson

Процесс построения модели потоков данных выполняется сверху вниз, начиная с контекстной диаграммы (рис. 3.31), на которой система представлена в виде одного процесса. Кроме того, в контекстной диаграмме показаны все внешние сущности, взаимодействующие с системой, и все потоки данных между ними и системой. Цель контекстной диаграммы – определить, как система связана и взаимодействует с другими сущностями, составляющими ее окружение (среду данных).

Рис. 3.31. Контекстная DFD- диаграмма

DFD верхнего уровня (рис. 3.32) обеспечивает более детальное описание системы. Она определяет главные процессы системы (максимум 6 или 7), потоки данных между ними, внешние сущности и накопители данных. Каждый процесс имеет уникальное имя и номер, причем порядок обработки данных соответствует номерам процессов.

Рис. 3.32. DFD-диаграмма верхнего уровня

Для нумерации процессов используется десятичная система: в диаграмме второго уровня, детализирующей процесс 3 диаграммы верхнего уровня, процессы имеют номера 3.1, 3.2, 3.3 и т. д.; процессы DFD третьего уровня, описывающие процесс 3.3, имеют номера 3.3.1, 3.3.2 и т. д. Поток данных DFD нижнего уровня получает в точности тот же «входной» поток данных и передает такой же «выходной» поток, как и процесс верхнего уровня, который он описывает.

Во избежание ошибок, возникающих при разработке диаграмм потоков данных, необходимо учитывать следующее:


между процессами не может быть циклов и повторений (рис. 3.34);

Рис. 3.34. Ошибка, связанная с использованием циклов


процессы не могут активизироваться входными сигналами (рис. 3.35).

Рис. 3.35. Ошибка, связанная активацией процессов входными сигналами

Чтобы сделать DFD читаемой, необходимо придерживаться следующих правил.

Процессы должны описываться коротким словосочетанием с глаголом, например «вычислить недельный оклад».

Копители данных должны содержать только один конкретный набор структур и обозначаться сложным существительным, например «заказ пользователя».

Потоки данных должны обозначаться одним существительным, описывающим поток, например «счет» или «заказ»; в больших системах можно использовать словосочетания для поддержки уникальности имен потоков, например «подробности заказа» или «подробности отгрузки».

3.3.3. Унифицированный язык моделирования (UML)

В январе 1997 года три теоретика в области объектного моделирования Гради Буч, Джим Рамбо и Айвар Якобсон, объединившиеся под эгидой компании Rational Software, подготовили и выпустили версию 1.0 спецификации нового языка объектно–ориентированного моделирования UML, отразившего сильные стороны методологий Booch, OMT и OOSE.

UML изначально задумывался авторами не как язык моделирования данных, а как язык объектного проектирования . Создатели UML позиционировали его как язык для определения, представления, проектирования и документирования программных систем, бизнес-систем и прочих систем непрограммного обеспечения. UML представляет собрание лучших технических методов, которые успешно доказали свою применимость при моделировании больших и сложных систем.

В основе языка лежит совокупность диаграмм, посредством которых моделируется статика и динамика процессов, происходящих в системе. Сначала выполняется анализ требований к системе на основе выявления прецедентов − вариантов использования системы (use case ) с точки зрения внешнего окружения. Разрабатываемая модель видов деятельности (activity model ) отражает внутрисистемную точку зрения. Диаграмма видов деятельности показывает алгоритм вычисления в рамках каждого прецедента.

Внутреннее состояние системы задается в модели классов (class model ). Выделяются классы-сущности (entity class ), которые представляют постоянно хранимые объекты базы данных. Также выделяются пограничные классы (boundary class ) для определения интерфейсов системы и управляющие классы (control class ) для определения программной логики. На этапе анализа прецедентов, как правило, формируются классы-сущности. Моделирование классов других типов выполняется на этапе проектирования системы.

Далее проводится анализ поведения классов в определенных вариантах использования. При моделировании взаимодействий (interaction modeling ) между классами определяются наборы сообщений, свойственных поведению системы. Каждое сообщение обращается к операции в вызываемом объекте. Таким образом, исследование взаимодействий между классами приводит к выявлению операций. Если модель взаимодействий (interaction model) является источником детализированной спецификации прецедента, то разрабатываемая модель состояний (statechart model ) служит детализированным описанием класса (динамических изменений состояний класса). Диаграмма состояний, присоединенная к классу, определяет способ реагирования объектов класса на события.

Построенная на этапе анализа модель классов детализируется на этапе проектирования системы. В процессе архитектурного проектирования системы решаются проблемы, связанные с построением клиентской и серверной частей системы. Выделяются следующие части системы: пользовательский интерфейс, презентационная логика (логика представления), прикладные функции приложения (логика программы), функции доступа к данным. Выполняется преобразование (отображение) классов UML-модели в логическую модель базы данных (реляционной, объектно-ориентированной или объектно-реляционной). Решается вопрос о реализации логики программы (исполняемые модули, динамически компонуемые библиотеки, хранимые процедуры, триггеры, ограничения целостности базы данных).

Рассмотрим несколько подробнее структурный уровень моделирования в UML.

Структурные сущности представляют собой статические части модели, соответствующие концептуальным или физическим частям системы. Существует несколько разновидностей структурных сущностей: класс, объект, интерфейс, прецедент, узел, компонент.

Класс (Class ) – это описание совокупности объектов с общими атрибутами, операциями, отношениями и семантикой. Класс реализует один или несколько интерфейсов. Класс графически изображается в виде прямоугольника с прямыми углами, разделенного на три части. Верхняя часть содержит имя класса. Средняя секция содержит список атрибутов. Нижняя (если есть) содержит описание поведения (список методов).

Объект (Object ) – это экземпляр сущности, представленной классом.

Интерфейс (Interface ) – это совокупность методов, которые определяют сервис (набор услуг), предоставляемый классом или компонентом. Графически интерфейс изображается в виде круга, под которым написано его имя.

Компонент (Component ) – это физическая заменяемая часть системы, которая соответствует некоторому набору интерфейсов и обеспечивает его реализацию. Графически компонент изображается в виде прямоугольника с вкладками, содержащего обычно только имя.

Узел (Node ) – это физический элемент, существующий во время выполнения приложения и представляющий собой тип вычислительного устройства. Графически узел изображается в виде куба.

Атрибуты в UML могут характеризоваться одним или несколькими параметрами:

1. Видимость. В терминах объектно-ориентированного кода видимость имеет три уровня:

Public (+) – открытый для всех;

Protected (#) – защищенный, виден только для потомков данного класса;

Private (-) – закрытый для других классов.

2. Имя – обязательное свойство (не допускаются пробелы).

3. Множественность. Объектная ориентация UML снимает ограничение реляционной модели, допускающей только одно значение атрибута для одного объекта.

4. Тип данных атрибута (число, символ и т. д.).

5. Значение по умолчанию.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Подобные документы

    Перспективные направления анализа данных: анализ текстовой информации, интеллектуальный анализ данных. Анализ структурированной информации, хранящейся в базах данных. Процесс анализа текстовых документов. Особенности предварительной обработки данных.

    реферат , добавлен 13.02.2014

    Рождение искусственного интеллекта. История развития нейронных сетей, эволюционного программирования, нечеткой логики. Генетические алгоритмы, их применение. Искусственный интеллект, нейронные сети, эволюционное программирование и нечеткая логика сейчас.

    реферат , добавлен 22.01.2015

    Совершенствование технологий записи и хранения данных. Специфика современных требований к переработке информационных данных. Концепция шаблонов, отражающих фрагменты многоаспектных взаимоотношений в данных в основе современной технологии Data Mining.

    контрольная работа , добавлен 02.09.2010

    Описание функциональных возможностей технологии Data Mining как процессов обнаружения неизвестных данных. Изучение систем вывода ассоциативных правил и механизмов нейросетевых алгоритмов. Описание алгоритмов кластеризации и сфер применения Data Mining.

    контрольная работа , добавлен 14.06.2013

    Основы для проведения кластеризации. Использование Data Mining как способа "обнаружения знаний в базах данных". Выбор алгоритмов кластеризации. Получение данных из хранилища базы данных дистанционного практикума. Кластеризация студентов и задач.

    курсовая работа , добавлен 10.07.2017

    Классификация задач Data Mining. Задача кластеризации и поиска ассоциативных правил. Определению класса объекта по его свойствам и характеристикам. Нахождение частых зависимостей между объектами или событиями. Оперативно-аналитическая обработка данных.

    контрольная работа , добавлен 13.01.2013

    Создание структуры интеллектуального анализа данных. Дерево решений. Характеристики кластера, определение групп объектов или событий. Линейная и логистическая регрессии. Правила ассоциативных решений. Алгоритм Байеса. Анализ с помощью нейронной сети.

    контрольная работа , добавлен 13.06.2014

По сути, интеллектуальный анализ данных - это обработка информации и выявление в ней моделей и тенденций, которые помогают принимать решения. Принципы интеллектуального анализа данных известны в течение многих лет, но с появлением больших данных они получили еще более широкое распространение.

Большие данные привели к взрывному росту популярности более широких методов интеллектуального анализа данных, отчасти потому, что информации стало гораздо больше, и она по самой своей природе и содержанию становится более разнообразной и обширной. При работе с большими наборами данных уже недостаточно относительно простой и прямолинейной статистики. Имея 30 или 40 миллионов подробных записей о покупках, недостаточно знать, что два миллиона из них сделаны в одном и том же месте. Чтобы лучше удовлетворить потребности покупателей, необходимо понять, принадлежат ли эти два миллиона к определенной возрастной группе, и знать их средний заработок.

Эти бизнес-требования привели от простого поиска и статистического анализа данных к более сложному интеллектуальному анализу данных. Для решения бизнес-задач требуется такой анализ данных, который позволяет построить модель для описания информации и в конечном итоге приводит к созданию результирующего отчета. Этот процесс иллюстрирует .

Рисунок 1. Схема процесса

Процесс анализа данных, поиска и построения модели часто является итеративным, так как нужно разыскать и выявить различные сведения, которые можно извлечь. Необходимо также понимать, как связать, преобразовать и объединить их с другими данными для получения результата. После обнаружения новых элементов и аспектов данных подход к выявлению источников и форматов данных с последующим сопоставлением этой информации с заданным результатом может измениться.

Инструменты интеллектуального анализа данных

Интеллектуальный анализ данных ― это не только используемые инструменты или программное обеспечение баз данных. Интеллектуальный анализ данных можно выполнить с относительно скромными системами баз данных и простыми инструментами, включая создание своих собственных, или с использованием готовых пакетов программного обеспечения. Сложный интеллектуальный анализ данных опирается на прошлый опыт и алгоритмы, определенные с помощью существующего программного обеспечения и пакетов, причем с различными методами ассоциируются разные специализированные инструменты.

Например, IBM SPSS®, который уходит корнями в статистический анализ и опросы, позволяет строить эффективные прогностические модели по прошлым тенденциям и давать точные прогнозы. IBM InfoSphere® Warehouse обеспечивает в одном пакете поиск источников данных, предварительную обработку и интеллектуальный анализ, позволяя извлекать информацию из исходной базы прямо в итоговый отчет.

В последнее время стала возможна работа с очень большими наборами данных и кластерная/крупномасштабная обработка данных, что позволяет делать еще более сложные обобщения результатов интеллектуального анализа данных по группам и сопоставлениям данных. Сегодня доступен совершенно новый спектр инструментов и систем, включая комбинированные системы хранения и обработки данных.

Можно анализировать самые разные наборы данных, включая традиционные базы данных SQL, необработанные текстовые данные, наборы "ключ/значение" и документальные базы. Кластерные базы данных, такие как Hadoop, Cassandra, CouchDB и Couchbase Server, хранят и предоставляют доступ к данным такими способами, которые не соответствуют традиционной табличной структуре.

В частности, более гибкий формат хранения базы документов придает обработке информации новую направленность и усложняет ее. Базы данных SQL строго регламентируют структуру и жестко придерживаются схемы, что упрощает запросы к ним и анализ данных с известными форматом и структурой.

Документальные базы данных, которые соответствуют стандартной структуре типа JSON, или файлы с некоторой машиночитаемой структурой тоже легко обрабатывать, хотя дело может осложняться разнообразной и переменчивой структурой. Например, в Hadoop, который обрабатывает совершенно "сырые" данные, может быть трудно выявить и извлечь информацию до начала ее обработки и сопоставления.

Основные методы

Несколько основных методов, которые используются для интеллектуального анализа данных, описывают тип анализа и операцию по восстановлению данных. К сожалению, разные компании и решения не всегда используют одни и те же термины, что может усугубить путаницу и кажущуюся сложность.

Рассмотрим некоторые ключевые методы и примеры того, как использовать те или иные инструменты для интеллектуального анализа данных.

Ассоциация

Ассоциация (или отношение), вероятно, наиболее известный, знакомый и простой метод интеллектуального анализа данных. Для выявления моделей делается простое сопоставление двух или более элементов, часто одного и того же типа. Например, отслеживая привычки покупки, можно заметить, что вместе с клубникой обычно покупают сливки.

Создать инструменты интеллектуального анализа данных на базе ассоциаций или отношений нетрудно. Например, в InfoSphere Warehouse есть мастер, который выдает конфигурации информационных потоков для создания ассоциаций, исследуя источник входной информации, базис принятия решений и выходную информацию. приведен соответствующий пример для образца базы данных.

Рисунок 2. Информационный поток, используемый при подходе ассоциации

Классификация

Классификацию можно использовать для получения представления о типе покупателей, товаров или объектов, описывая несколько атрибутов для идентификации определенного класса. Например, автомобили легко классифицировать по типу (седан, внедорожник, кабриолет), определив различные атрибуты (количество мест, форма кузова, ведущие колеса). Изучая новый автомобиль, можно отнести его к определенному классу, сравнивая атрибуты с известным определением. Те же принципы можно применить и к покупателям, например, классифицируя их по возрасту и социальной группе.

Кроме того, классификацию можно использовать в качестве входных данных для других методов. Например, для определения классификации можно применять деревья принятия решений. Кластеризация позволяет использовать общие атрибуты различных классификаций в целях выявления кластеров.

Исследуя один или более атрибутов или классов, можно сгруппировать отдельные элементы данных вместе, получая структурированное заключение. На простом уровне при кластеризации используется один или несколько атрибутов в качестве основы для определения кластера сходных результатов. Кластеризация полезна при определении различной информации, потому что она коррелируется с другими примерами, так что можно увидеть, где подобия и диапазоны согласуются между собой.

Метод кластеризации работает в обе стороны. Можно предположить, что в определенной точке имеется кластер, а затем использовать свои критерии идентификации, чтобы проверить это. График, изображенный на , демонстрирует наглядный пример. Здесь возраст покупателя сравнивается со стоимостью покупки. Разумно ожидать, что люди в возрасте от двадцати до тридцати лет (до вступления в брак и появления детей), а также в 50-60 лет (когда дети покинули дом) имеют более высокий располагаемый доход.

Рисунок 3. Кластеризация

В этом примере видны два кластера, один в районе $2000/20-30 лет и другой в районе $7000-8000/50-65 лет. В данном случае мы выдвинули гипотезу и проверили ее на простом графике, который можно построить с помощью любого подходящего ПО для построения графиков. Для более сложных комбинаций требуется полный аналитический пакет, особенно если нужно автоматически основывать решения на информации о ближайшем соседе .

Такое построение кластеров являет собой упрощенный пример так называемого образа ближайшего соседа . Отдельных покупателей можно различать по их буквальной близости друг к другу на графике. Весьма вероятно, что покупатели из одного и того же кластера разделяют и другие общие атрибуты, и это предположение можно использовать для поиска, классификации и других видов анализа членов набора данных.

Метод кластеризации можно применить и в обратную сторону: учитывая определенные входные атрибуты, выявлять различные артефакты. Например, недавнее исследование четырехзначных PIN-кодов выявили кластеры чисел в диапазонах 1-12 и 1-31 для первой и второй пар. Изобразив эти пары на графике, можно увидеть кластеры, связанные с датами (дни рождения, юбилеи).

Прогнозирование

Прогнозирование ― это широкая тема, которая простирается от предсказания отказов компонентов оборудования до выявления мошенничества и даже прогнозирования прибыли компании. В сочетании с другими методами интеллектуального анализа данных прогнозирование предполагает анализ тенденций, классификацию, сопоставление с моделью и отношения. Анализируя прошлые события или экземпляры, можно предсказывать будущее.

Например, используя данные по авторизации кредитных карт, можно объединить анализ дерева решений прошлых транзакций человека с классификацией и сопоставлением с историческими моделями в целях выявления мошеннических транзакций. Если покупка авиабилетов в США совпадает с транзакциями в США, то вполне вероятно, что эти транзакции подлинны.

Последовательные модели

Последовательные модели, которые часто используются для анализа долгосрочных данных, ― полезный метод выявления тенденций, или регулярных повторений подобных событий. Например, по данным о покупателях можно определить, что в разное время года они покупают определенные наборы продуктов. По этой информации приложение прогнозирования покупательской корзины, основываясь на частоте и истории покупок, может автоматически предположить, что в корзину будут добавлены те или иные продукты.

Деревья решений

Дерево решений, связанное с большинством других методов (главным образом, классификации и прогнозирования), можно использовать либо в рамках критериев отбора, либо для поддержки выбора определенных данных в рамках общей структуры. Дерево решений начинают с простого вопроса, который имеет два ответа (иногда больше). Каждый ответ приводит к следующему вопросу, помогая классифицировать и идентифицировать данные или делать прогнозы.

Рисунок 5. Подготовка данных

Источник данных, местоположение и база данных влияют на то, как будет обрабатываться и объединяться информация.

Опора на SQL

Наиболее простым из всех подходов часто служит опора на базы данных SQL. SQL (и соответствующая структура таблицы) хорошо понятен, но структуру и формат информации нельзя игнорировать полностью. Например, при изучении поведения пользователей по данным о продажах в модели данных SQL (и интеллектуального анализа данных в целом) существуют два основных формата, которые можно использовать: транзакционный и поведенческо-демографический.

При работе с InfoSphere Warehouse создание поведенческо-демографической модели в целях анализа данных о покупателях для понимания моделей их поведения предусматривает использование исходных данных SQL, основанных на информации о транзакциях, и известных параметров покупателей с организацией этой информации в заранее определенную табличную структуру. Затем InfoSphere Warehouse может использовать эту информацию для интеллектуального анализа данных методом кластеризации и классификации с целью получения нужного результата. Демографические данные о покупателях и данные о транзакциях можно скомбинировать, а затем преобразовать в формат, который допускает анализ определенных данных, как показано на .

Рисунок 6. Специальный формат анализа данных

Например, по данным о продажах можно выявить тенденции продаж конкретных товаров. Исходные данные о продажах отдельных товаров можно преобразовать в информацию о транзакциях, в которой идентификаторы покупателей сопоставляются с данными транзакций и кодами товаров. Используя эту информацию, легко выявить последовательности и отношения для отдельных товаров и отдельных покупателей с течением времени. Это позволяет InfoSphere Warehouse вычислять последовательную информацию, определяя, например, когда покупатель, скорее всего, снова приобретет тот же товар.

Из исходных данных можно создавать новые точки анализа данных. Например, можно развернуть (или доработать) информацию о товаре путем сопоставления или классификации отдельных товаров в более широких группах, а затем проанализировать данные для этих групп, вместо отдельных покупателей.

Рисунок 7. Структура MapReduce

В предыдущем примере мы выполнили обработку (в данном случае посредством MapReduce) исходных данных в документальной базе данных и преобразовали ее в табличный формат в базе данных SQL для целей интеллектуального анализа данных.

Для работы с этой сложной и даже неструктурированной информацией может потребоваться более тщательная подготовка и обработка. Существуют сложные типы и структуры данных, которые нельзя обработать и подготовить в нужном вам виде за один шаг. В этом случае можно направить выход MapReduce либо для последовательного преобразования и получения необходимой структуры данных, как показано на , либо для индивидуального изготовления нескольких таблиц выходных данных.

Рисунок 8. Последовательная цепочка вывода результатов обработки MapReduce

Например, за один проход можно взять исходную информацию из документальной базы данных и выполнить операцию MapReduce для получения краткого обзора этой информации по датам. Хорошим примером последовательного процесса является регенеририрование информации и комбинирование результатов с матрицей решений (создается на втором этапе обработки MapReduce) с последующим дополнительным упрощением в последовательную структуру. На этапе обработки MapReduce требуется, чтобы весь набор данных поддерживал отдельные шаги обработки данных.

Независимо от исходных данных, многие инструменты могут использовать неструктурированные файлы, CSV или другие источники данных. Например, InfoSphere Warehouse в дополнение к прямой связи с хранилищем данных DB2 может анализировать неструктурированные файлы.

Заключение

Интеллектуальный анализ данных - это не только выполнение некоторых сложных запросов к данным, хранящимся в базе данных. Независимо от того, используете ли вы SQL, базы данных на основе документов, такие как Hadoop, или простые неструктурированные файлы, необходимо работать с данными, форматировать или реструктурировать их. Требуется определить формат информации, на котором будет основываться ваш метод и анализ. Затем, когда информация находится в нужном формате, можно применять различные методы (по отдельности или в совокупности), не зависящие от требуемой базовой структуры данных или набора данных.

Введение

Сегодня мы являемся свидетелями активного развития технологии интеллектуального анализа данных (ИАД или data mining), появление которой связано, в первую очередь, с необходимостью аналитической обработки сверхбольших объемов информации, накапливаемой в современных хранилищах данных. Возможность использования хорошо известных методов математической статистики и машинного обучения для решения задач подобного рода открыло новые возможности перед аналитиками, исследователями, а также теми, кто принимает решения - менеджерами и руководителями компаний.

Сложность и разнообразие методов ИАД требуют создания специализированных средств конечного пользователя для решения типовых задач анализа информации в конкретных областях. Поскольку эти средства используются в составе сложных многофункциональных систем поддержки принятия решений, они должны легко интегрироваться в подобные системы. Одним из наиболее важных и перспективных направлений применения ИАД являются бизнес-приложения, поэтому опыт канадско-американской фирмы Cognos по реализации методов ИАД в составе интегрированных интеллектуальных систем поддержки принятия решений представляет интерес как для разработчиков, так и для пользователей.

Системы ИАД применяются в научных исследованиях и образовании, в работе правоохранительных органов, производстве, здравоохранении и многих других областях. Особенно широко технология ИАД используется в деловых приложениях.

В данной работе мы исследуем интеллектуальный анализ данных.

1. Интеллектуальный анализ данных

Интеллектуальный анализ данных (ИАД) обычно определяют как метод поддержки принятия решений, основанный на анализе зависимостей между данными. В рамках такой общей формулировки обычный анализ отчетов, построенных по базе данных, также может рассматриваться как разновидность ИАД. Чтобы перейти к рассмотрению более продвинутых технологий ИАД, посмотрим, как можно автоматизировать поиск зависимостей между данными.

Целью интеллектуального анализа данных (англ. Datamining, другие варианты перевода - "добыча данных", "раскопка данных") является обнаружение неявных закономерностей в наборах данных. Как научное направление он стал активно развиваться в 90-х годах XXвека, что было вызвано широким распространением технологий автоматизированной обработки информации и накоплением в компьютерных системах больших объемов данных . И хотя существующие технологии позволяли, например, быстро найти в базе данных нужную информацию, этого во многих случаях было уже недостаточно. Возникла потребность поиска взаимосвязей между отдельными событиями среди больших объемов данных, для чего понадобились методы математической статистики, теории баз данных, теории искусственного интеллекта и ряда других областей.

Классическим считается определение, данное одним из основателей направления Григорием Пятецким-Шапиро : DataMining - исследование и обнаружение "машиной" (алгоритмами, средствами искусственного интеллекта) в сырых данных скрытых знаний, которые ранее не были известны, нетривиальны, практически полезны, доступны для интерпретации.

Учитывая разнообразие форм представления данных, используемых алгоритмов и сфер применения, интеллектуальный анализ данных может проводиться с помощью программных продуктов следующих классов:

· специализированных "коробочных" программных продуктов для интеллектуального анализа;

· математических пакетов;

· электронных таблиц(и различного рода надстроек над ними);

· средств интегрированных в системы управления базами данных (СУБД);

· других программных продуктов.

В качестве примера можно привести СУБД MicrosoftSQLServer и входящие в ее состав службы AnalysisServices, обеспечивающие пользователей средствами аналитической обработки данных в режиме on-line (OLAP)и интеллектуального анализа данных, которые впервые появились в MSSQLServer 2000.

Не только Microsoft, но и другие ведущие разработчики СУБД имеют в своем арсенале средства интеллектуального анализа данных.

В ходе проведения интеллектуального анализа данных проводится исследование множества объектов (или вариантов). В большинстве случаев его можно представить в виде таблицы, каждая строка которой соответствует одному из вариантов, а в столбцах содержатся значения параметров, его характеризующих. Зависимая переменная - параметр, значение которого рассматриваем как зависящее от других параметров (независимых переменных). Собственно эту зависимость и необходимо определить, используя методы интеллектуального анализа данных.

Рассмотрим основные задачи интеллектуального анализа данных.

Задача классификации заключается в том, что для каждого варианта определяется категория или класс, которому он принадлежит. В качестве примера можно привести оценку кредитоспособности потенциального заемщика: назначаемые классы здесь могут быть "кредитоспособен" и "некредитоспособен". Необходимо отметить, что для решения задачи необходимо, чтобы множество классов было известно заранее и было бы конечным и счетным.

Задача регрессии во многом схожа с задачей классификации, но в ходе ее решения производится поиск шаблонов для определения числового значения. Иными словами, предсказываемый параметр здесь, как правило, число из непрерывного диапазона.

Отдельно выделяется задача прогнозирования новых значений на основании имеющихся значений числовой последовательности (или нескольких последовательностей, между значениями в которых наблюдается корреляция). При этом могут учитываться имеющиеся тенденции (тренды), сезонность, другие факторы. Классическим примером является прогнозирование цен акций на бирже.

Тут требуется сделать небольшое отступление. По способу решения задачи интеллектуального анализа можно разделить на два класса: обучение с учителем (от англ. supervisedlearning) и обучение без учителя (от англ. unsupervisedlearning). В первом случае требуется обучающий набор данных, на котором создается и обучается модель интеллектуального анализа данных. Готовая модель тестируется и впоследствии используется для предсказания значений в новых наборах данных. Иногда в этом же случае говорят об управляемых алгоритмах интеллектуального анализа. Задачи классификации и регрессии относятся как раз к этому типу.

Во втором случае целью является выявление закономерностей имеющихся в существующем наборе данных. При этом обучающая выборка не требуется. В качестве примера можно привести задачу анализа потребительской корзины, когда в ходе исследования выявляются товары, чаще всего покупаемые вместе. К этому же классу относится задача кластеризации.

Также можно говорить о классификации задач интеллектуального анализа данных по назначению, в соответствии с которой, они делятся на описательные (descriptive) и предсказательные (predictive). Цель решения описательных задач - лучше понять исследуемые данные, выявить имеющиеся в них закономерности, даже если в других наборах данных они встречаться не будут. Для предсказательных задач характерно то, что в ходе их решения на основании набора данных с известными результатами строится модель для предсказания новых значений.

Но вернемся к перечислению задач интеллектуального анализа данных.

Задача кластеризации - заключается в делении множества объектов на группы (кластеры) схожих по параметрам. При этом, в отличие от классификации, число кластеров и их характеристики могут быть заранее неизвестны и определяться в ходе построения кластеров исходя из степени близости объединяемых объектов по совокупности параметров.

Другое название этой задачи - сегментация. Например, интернет-магазин может быть заинтересован в проведении подобного анализа базы своих клиентов, для того, чтобы потом сформировать специальные предложения для выделенных групп, учитывая их особенности.

Кластеризация относится к задачам обучения без учителя (или "неуправляемым" задачам).

Задача определения взаимосвязей , также называемая задачей поиска ассоциативных правил , заключается в определении часто встречающихся наборов объектов среди множества подобных наборов. Классическим примером является анализ потребительской корзины, который позволяет определить наборы товаров, чаще всего встречающиеся в одном заказе (или в одном чеке). Эта информация может потом использоваться при размещении товаров в торговом зале или при формировании специальных предложений для группы связанных товаров.

Данная задача также относится к классу "обучение без учителя".

Анализ последовательностей или сиквенциальный анализ одними авторами рассматривается как вариант предыдущей задачи, другими - выделяется отдельно. Целью, в данном случае, является обнаружение закономерностей в последовательностях событий. Подобная информация позволяет, например, предупредить сбой в работе информационной системы, получив сигнал о наступлении события, часто предшествующего сбою подобного типа. Другой пример применения - анализ последовательности переходов по страницам пользователей web-сайтов.

Анализ отклонений позволяет отыскать среди множества событий те, которые существенно отличаются от нормы. Отклонение может сигнализировать о каком-то необычном событии (неожиданный результат эксперимента, мошенническая операция по банковской карте …) или, например, об ошибке ввода данных оператором.

В таблице 1.1 приведены примеры задач интеллектуального анализа данных из различных областей.

Таблица 1.1. Примеры применения интеллектуального анализа данных

Информационные технологии

Торговля

Финансовая сфера

Классификация

Оценка кредитоспособности

Регрессия

Оценка допустимого кредитного лимита

Прогнозирование

Прогнозирование продаж

Прогнозирование цен акции

Кластеризации

Сегментация клиентов

Сегментация клиентов

Определения взаимосвязей

Анализ потребительской корзины

Анализ последовательностей

Анализ переходов по страницам web-сайта

Анализ отклонений

Обнаружение вторжений в информационные системы

Выявление мошенничества с банковскими картами

Сегодня количество фирм, предлагающих продукты ИАД, исчисляется десятками, однако, не рассматривая их подробно, приведем лишь классификацию процессов ИАД, применяющихся на практике.

В системах ИАД применяется чрезвычайно широкий спектр математических, логических и статистических методов: от анализа деревьев решений (Business Objects) до нейронных сетей (NeoVista). Пока трудно говорить о перспективности или предпочтительности тех или иных методов. Технология ИАД сейчас находится в начале пути, и практического материала для каких-либо рекомендаций или обобщений явно недостаточно.

Необходимо также упомянуть об интеграции ИАД в информационные системы. Многие методы ИАД возникли из задач экспертного анализа, поэтому входными данными для них традиционно служат "плоские" файлы данных. При использовании ИАД в СППР часто приходится сначала извлекать данные из Хранилища, преобразовывать их в файлы нужных форматов и только потом переходить собственно к интеллектуальному анализу. Затем результаты анализа требуется сформулировать в терминах бизнес-понятий. Важный шаг вперед сделала компания Information Discovery, разработавшая системы OLAP Discovery System и OLAP Affinity System, предназначенные специально для интеллектуального анализа многомерных агрегированных данных .

интеллектуальный анализ данные прогнозирование

Заключение

Интеллектуальный анализ данных (ИАД, data mining, KDD - knowledge discovery in databases) представляет собой новейшее направление в области информационных систем (ИС), ориентированное на решение задач поддержки принятия решений на основе количественных и качественных исследований сверхбольших массивов разнородных ретроспективных данных.

Интеллектуальный анализ данных является одним из наиболее актуальных и востребованных направлений прикладной математики. Современные процессы бизнеса и производства порождают огромные массивы данных, и людям становится все труднее интерпретировать и реагировать на большое количество данных, которые динамически изменяются во времени выполнения, не говоря уже о предупреждении критических ситуаций. «Интеллектуальный анализ данных» извлечь максимум полезных знаний из многомерных, разнородных, неполных, неточных, противоречивых, косвенных данных. Помогает сделать это эффективно, если объем данных измеряется гигабайтами или даже терабайтами. Помогает строить алгоритмы, способные обучаться принятию решений в различных профессиональных областях.

Средства «Интеллектуального анализа данных» предохраняют людей от информационной перегрузки, перерабатывая оперативные данные в полезную информацию так, чтобы нужные действия могли быть приняты в нужные времена.

Прикладные разработки ведутся по следующим направлениям: прогнозирование в экономических системах; автоматизация маркетинговых исследований и анализ клиентских сред для производственных, торговых, телекоммуникационных и Интернет-компаний; автоматизация принятия кредитных решений и оценка кредитных рисков; мониторинг финансовых рынков; автоматические торговые системы.

Список литературы

1. Тельнов Ю.Ф. Интеллектуальные информационные системы в экономике. М. СИНТЕГ 2002. 306 с.

2. Дюк В., Самойленко А. Data Mining. Издательский дом "Питер". СПб, 2001.

3. Васильев В.П. Информационно-аналитические системы. Практикум на ПК.МФ МЭСИ -2007.

Информационная составляющая играет важнейшую роль в эффективном управлении бизнесом, поэтому способность предприятий обеспечивать своих сотрудников всем необходимым для принятия взвешенных решений имеет огромное значение. С середины 90-х годов прошлого века стремительно растет интерес компаний к программным продуктам, которые позволяют аналитикам работать с большими объемами данных, накопленными в ERP, CRM системах и хранилищах данных, и извлекать из них полезную информацию. Следствием этого стало рождение новых информационных технологий и инструментов, обеспечивающих безопасный доступ к источникам корпоративных данных и обладающих развитыми возможностями консолидации, анализа, представления данных и распространения готовых аналитических документов внутри организации и за ее пределами: витрин данных, обработки произвольных запросов (Ad-hoc query), выпуска отчетов (Reporting), инструментов OLAP (On-Line Analytical Processing), интеллектуального анализа данных (Data Mining), поиска знаний в БД (KDD – Knowledge Discovery in Databases) и т.д.

Под «анализом данных» понимают действия, направленные на извлечение из них информации об исследуемом объекте и на получение по имеющимся данным новых данных.

Интеллектуальный анализ данных (ИАД) – общий термин для обозначения анализа данных с активным использованием математических методов и алгоритмов (методы оптимизации, генетические алгоритмы, распознавание образов, статистические методы, Data Mining и т.д.), использующих результаты применения методов визуального представления данных.

В общем случае процесс ИАД состоит из трех стадий:

1) выявление закономерностей (свободный поиск);

2) использование выявленных закономерностей для предсказания неизвестных значений (прогнозирование);

3) анализ исключений для выявления и толкования аномалий в найденных закономерностях.

Иногда выделяют промежуточную стадию проверки достоверности найденных закономерностей (стадия валидации) между их нахождением и использованием.

Все методы ИАД по принципу работы с исходными данными подразделяются на две группы:

Методы рассуждений на основе анализа прецедентов – исходные данные могут храниться в явном детализированном виде и непосредственно использоваться для прогнозирования и/или анализа исключений. Недостатком этой группы методов является сложность их использования на больших объемах данных.

Методы выявления и использования формализованных закономерностей, требующие извлечения информации из первичных данных и преобразования ее в некоторые формальные конструкции, вид которых зависит от конкретного метода.

В таблице 6.1 приведены примеры использования методов интеллектуального анализа данных в финансовых приложениях и маркетинговом анализе.

Таблица 6.1 – Примеры применение методов ИАД в финансах и маркетинге

Приложение (организация) Описание
FALCON (HNC Software, Inc.) Инструментальное средство для оперативного выявления злоупотреблений с кредитными карточками; более 100 организаций-пользователей отмечают сокращение числа нарушений на 20-30%.
Классификатор дебиторских счетов (Internal Revenue Service) Выявление счетов потенциально платежеспособных дебиторов на основе анализа больших объемов архивных данных по уплате налогов.
Повышение качества архивной финансовой информации (Lockheed) Выявление закономерностей (в виде правил вывода) в архивных финансовых данных для использования в моделях прогнозирования, системах поддержки принятия решений по инвестированию и т.д.
Верификация данных по курсам валют (Reuters) Система выявления ошибок в оперативно поступающих данных по курсам валют. С помощью нейронных сетей и индуктивного вывода правил строятся приблизительные прогнозы, которые сравниваются с поступающими данными. Большие отклонения рассматриваются как возможные ошибки.
Прогнозирование невыплат в сделках с недвижимостью (Leeds) Анализ архивных данных по сделкам с недвижимостью и выявление паттернов, соответствующих проблемным сделкам, заканчивающимся невыплатами. Выявленные закономерности используются для оценки риска при заключении новых сделок.
Маркетинговые исследования (Dickinson Direct) Определение характеристик типичных покупателей продукции компании для выявления новых потенциальных клиентов (профилирование клиентов).
Маркетинговые исследования (Reader"s Digest Canada) Выявление основных сегментов рынка и наиболее благоприятных подмножеств, а также исследование зависимостей между основными показателями и характеристиками сегментов.
Установка лотерейных автоматов (Automated Wagering, Inc.) Объединение методов ИАД с географическим анализом для определения наилучших мест для установки лотерейных автоматов в штате Флорида.
Выявление потенциальных покупателей автомобильных стерео систем (Washington Auto Audio, Inc.) Анализ демографической базы данных, содержащей информацию о 14000 реальных и потенциальных клиентов, позволил за 90 секунд получить 3 довольно надежных индикатора для прогноза спроса на продукцию и услуги компании. Аналогичные результаты были получены в результате традиционного исследования, выполненного одной из консалтинговых компаний, причем это исследование обошлось фирме на порядок дороже, чем автоматизированная система интеллектуального анализа данных.

Data Mining (DM)– это технология обнаружения в «сырых» данных ранее неизвестных нетривиальных, практически полезных и доступных интерпретации знаний, необходимых для принятия решений в различных сферах человеческой деятельности. Алгоритмы, используемые в Data Mining, требуют большого количества вычислений, что ранее являлось сдерживающим фактором широкого практического применения этих методов, однако рост производительности современных процессоров снял остроту этой проблемы.

Задачи, решаемые методами DM:

1. Классификация – отнесение объектов (наблюдений, событий) к одному из заранее известных классов.

2. Прогнозирование .

3. Кластеризация – группировка объектов на основе данных, описывающих сущность этих объектов. Объекты внутри кластера должны обладать общими чертами и отличаться от объектов, вошедших в другие кластеры. Чем больше похожи объекты внутри кластера и чем больше отличий между кластерами, тем точнее кластеризация.

4. Ассоциация – выявление закономерностей между связанными событиями.

5. Последовательные шаблоны – установление закономерностей между связанными во времени событиями.

6. Анализ отклонений – выявление наиболее нехарактерных шаблонов.

Решение большинства задач бизнес-анализа сводится к той или иной задаче Data Mining. Например, оценка рисков – решение задачи классификации, сегментация рынка – кластеризации, стимулирование спроса – ассоциации.

Технология Data Mining развивалась и развивается на стыке статистики, теории информации, машинного обучения, теории баз данных. Наибольшее распространение получили следующие методы Data Mining: нейронные сети, деревья решений, алгоритмы кластеризации, алгоритмы обнаружения ассоциативных связей между событиями и т.д.

Деревья решений представляют собой иерархическую древовидную структуру классифицирующих правил типа «если-то». Для отнесения некоторого объекта или ситуации к какому-либо классу следует ответить на вопросы, имеющие форму «значение параметра А больше Х», и расположенные в узлах дерева. При положительном ответе осуществляется переход к правому узлу следующего уровня дерева, отрицательном – к левому узлу

Если построенное дерево состоит из неоправданно большого числа ветвей, то оно не будет обеспечивать получение статистически обоснованного ответа. Кроме того, деревья решений выдают полезные результаты только в случае независимости признаков.

В настоящее время деревья решений применяются при решении следующих задач:

описание данных, т.к. они позволяют хранить информацию о данных в компактной форме;

классификация, т.е. отнесение объектов к одному из заранее известных классов;

регрессия, т.е. определение зависимости целевой переменной, принимающей непрерывные значения, от независимых (входных) переменных.

Несмотря на обилие методов Data Mining, приоритет постепенно все более смещается в сторону логических алгоритмов поиска в данных «если-то» правил. С их помощью решаются задачи прогнозирования, классификации, распознавания образов, сегментации БД, извлечения из данных скрытых знаний, интерпретации данных, установления ассоциаций в БД и др. Результаты таких алгоритмов эффективны и легко интерпретируются.

Главной проблемой логических методов обнаружения закономерностей является проблема перебора вариантов за приемлемое время. Известные методы либо искусственно ограничивают такой перебор (алгоритмы КОРА, WizWhy), либо строят деревья решений (алгоритмы CART, CHAID, ID3, See5, Sipina и др.), имеющие принципиальные ограничения эффективности поиска правил «если-то».

Программное обеспечение для реализации технологий Data Mining: Poly Analyst, Scenario, 4 Thought, MineSet.

Knowledge Discovery in Databases (KDD) следующих этапов:

Подготовка исходного набора данных – создание набора данных из различных источников, для чего должен обеспечиваться доступ к источникам данных, в том числе, к хранилищам данных.

Предобработка данных – удаление пропусков, искажений, аномальных значений и т.д., дополнение данных некоторой априорной информацией. Данные должны быть качественны и корректны с точки зрения используемого метода DM.

Трансформация, нормализация данных – приведение информации к пригодному для последующего анализа виду.

Data Mining – применение различных алгоритмов нахождения знаний.

Постобработка данных – интерпретация результатов и применение полученных знаний в бизнес-приложениях.

Knowledge Discovery in Databases определяет последовательность действий, необходимую для получения знаний, а не набор методов обработки или алгоритмов анализа.

Для того чтобы существующие хранилища данных способствовали принятию управленческих решений, информация должна быть представлена аналитику в нужной форме, то есть он должен иметь развитые инструменты доступа к данным хранилища и их обработки.

Статические информационно-аналитические системы, создаваемые для непосредственного использования лицами, принимающими решения, называются в литературе информационными системами руководителя (ИСР), или Executive Information Systems (EIS). Они содержат в себе предопределенные множества запросов, достаточны повседневного обзора. Однако, они неспособны обеспечить ответы на все вопросы, которые могут возникнуть при принятии решений. Результатом работы такой системы, как правило, являются многостраничные отчеты, после тщательного изучения которых у аналитика появляется новая серия вопросов.

Динамические системы поддержки принятия решений (СППР) ориентированы на обработку нерегламентированных (ad hoc) запросов аналитиков к данным. Работа аналитиков с этими системами заключается в интерактивном формировании запросов и изучения их результатов.

Поддержка принятия управленческих решений на основе накопленных данных может выполняться в следующих областях:

Детализированные данные – поиск данных;

Агрегированные показатели – формирование комплексного взгляда на собранную в хранилище данных информацию, ее обобщение и агрегация, гиперкубическое представление и многомерный анализ;

Закономерности – интеллектуальная обработка методами интеллектуального анализа данных, главными задачами которых являются поиск функциональных и логических закономерностей в накопленной информации, построение моделей и правил, которые объясняют найденные аномалии и/или прогнозируют развитие процессов.

Эволюцию BI-систем можно условно разделить на 3 этапа: системы сбора информации и подготовки регламентированной отчетности (до 90-х годов прошлого столетия), инструменты многомерного анализа на базе технологии оперативной аналитической обработки (OLAP) и создания нерегламентированной отчетности (до 2005 г.), BI-системы с акцентом на развитие прикладных способов аналитики и поиск скрытой информации.

Архитектура BI-системы представлена на рис. 6.12. BI-инструменты включают корпоративные BI-наборы (Enterprise BI Suites, EBIS), предназначенные для генерации запросов и отчетов, и BI-платформы, представляющие собой набор инструментов для создания, внедрения, поддержки и сопровождения BI-приложений. BI-приложения содержат встроенные BI-инструменты (OLAP, генераторы запросов и отчетов, средства моделирования, статистического анализа, визуализации и Data Mining).

Рисунок– Архитектура Business Intelligence

По оценкам агентства IDC рынок Business Intelligenceсостоит из 5 секторов:

1. OLAP-продукты;

2. Инструменты добычи данных;

3. Средства построения Хранилищ и Витрин данных (Data Warehousing);

4. Управленческие информационные системы и приложения;

5. Инструменты конечного пользователя для выполнения запросов и построения отчетов.

Классификация BI-систем базируется на методе функциональных задач, где программные продукты каждого класса выполняют определенный набор функций или операций с использованием специальных технологий (приложение А). Как правило, функции BI включают поддержку принятия решений, запросы и отчетность, аналитическую обработку online, статистический анализ, прогнозирование и количественный анализ.

В настоящее время среди лидеров корпоративных BI-платформ можно выделить MicroStrategy, Business Objects, Cognos, Hyperion Solutions, Microsoft, Oracle, SAP, SAS Institute и другие (в приложении Б приведен сравнительный анализ некоторых функциональных возможностей BI-систем).

В настоящее время намечается интеграция BI-поставщиков и лидеров ERP (Oracle-Hyperion, SAP-Business Objects-Cryslal), что говорит о растущем потенциале и адекватности BI-систем. Использование BI-систем позволит значительно снизить стоимость сопровождения и настройки на интеграцию с приложениями, подбор сценариев и обучение пользователей. BI-возможности и преимущества SAP обеспечивают использование качественных и количественных данных при выборе варианта решения, комбинацию внешних данных и совместных сценариев, что представляет собой новое поколение средств управления предприятием и бизнес-средой; бизнес-аналитика дает возможность оптимизировать оперативную производительность, прогнозирование и бизнес-планирование.

Желание заказчиков отслеживать и финансовые, и операционные показатели требует, чтобы BI-системы могли одновременно обращаться к базам данных автоматизированных систем, отдельных бэк-офисных модулей, CRM-приложений и т.д. Обработка гетерогенных источников данных не возможна без применения сложных технологий интеграции на основе сервисно-ориентированной архитектуры.

Сектор BI-систем на белорусском рынке представлен слабо. В частности, EPAM представляет Hyperion® System™ 9, которая объединяет платформу Business Intelligence с финансовыми приложениями в одну модульную систему, которая легко адаптируется под конкретные требования бизнеса. Комплекс Hyperion® System1 M 9 внедряется на БМЗ и в концерне «Белнефтехим».

Фирма ТопСофт представляет модуль Галактика Business Intelligence – комплекс приложений для поддержки принятия решений в сбытовой деятельности. На данный момент Галактика ВI-Сбыт внедрена в РБ в компаниях «British-American Tobacco» и «МАВ» (производство красок).

Однако потребности белорусского рынка в BI-системах растут, основными потенциальными потребителями BI-систем являются телекоммуникационные компании, которые испытывают потребность в глубоком анализе базы клиентов, для них предлагаются пакеты Oracle Marketing analyst из Oracle BI Suite; банки, нуждающиеся в средствах аналитики услуг по кредитованию предприятий и частных лиц, могут использовать BI-системы собственной разработки или готовые специализированные приложения; промышленные предприятия и сфера торговли – аналитические программные продукты необходимы для построения управленческой отчетности на системах хранения и консолидации данных, например Cognos BI, Business Object; государственные управленческие структуры, крупные компании и холдинги, требующие полнофункциональных решений ВI, для них подходят Cognos, Oracle, Business Objects, Microsoft, интегрированные с системами планирования и бюджетирования; отрасли энергетики, нефтехимии – требуются BI-системы для повышения эффективности системы управления, такие решения реализованы в системах сбалансированных показателей (BSC) и поддерживаются базовыми модулями SAP ERP.

Потребность в системах искусственного интеллекта возникает по мере достижения предприятием достаточно высокой культуры управления.

Экспертные системы

Однозначного определения понятие экспертной системы не имеет.

Экспертная система (ЭС, Expert system) – система искусственного интеллекта, включающая знания об определенной слабо структурированной и трудно формализуемой узкой предметной области и способная предлагать и объяснять пользователю разумные решения.

Согласно толковому словарю по информатике, под экспертной системой понимают систему искусственного интеллекта, которая включает в себя базу знаний с набором правил и механизмом вывода, позволяющую на основании этих правил и предоставляемых пользователем фактов распознавать ситуацию, ставить диагноз, формулировать решение или давать рекомендации для выбора действия.

Иногда вместо определения понятия дают перечень свойств экспертных систем: экспертная система ограничена определенной сферой экспертизы; способна рассуждать при сомнительных данных; способна объяснять цепочку рассуждений понятным способом; факты и механизм вывода четко отделены друг от друга; она строится так, чтобы имелась возможность постепенного развития и наращивания системы; чаще всего она основана на использовании правил; на выходе выдает четкий совет; экономически выгодна.

Технология ЭС существенно расширяет круг практически значимых задач, решение которых с использованием современных средств вычислительной техники, приносит значительный экономический эффект. ЭС предназначены для решения неформализованных задач, к которым относят задачи, обладающие одной или несколькими из следующих характеристик:

Не могут быть заданы в числовой форме;

Цели не могут быть выражены в терминах точно определенной целевой функции;

Не существует алгоритмического решения задач;

Алгоритмическое решение существует, но его нельзя использовать из-за ограниченности ресурсов (время, память).

Неформализованные задачи характеризуются: ошибочностью, неоднозначностью, неполнотой и противоречивостью исходных данных, знаний о проблемной области и решаемой задаче; большой размерностью пространства решения, т.е. перебор при поиске решения весьма велик; динамически изменяющимися данными и знаниями.

Классификация ЭК приведена в табл. 6.5.

Таблица 6.5 – Классификация экспертных систем

Признак классификация Виды ЭС
назначение Ø -общего назначения. -специализированные (проблемно-ориентированные для задач диагностики, проектирования, прогнозирования, предметно-ориентированные для специфических задач, например, контроля ситуаций на атомных электростанциях)
степень зависимости от внешней среды -статические (не зависящие от внешней среды), -динамические (учитывающие динамику внешней среды и предназначенные для решения задач в реальном времени)
тип использования -изолированные, -ЭС на входе/выходе других систем, -гибридные (интегрированные с базами данных и другими программными продуктами)
стадии создания -исследовательские образцы (разработанные за 1-2 месяца с минимальной БЗ), -демонстрационные (разработанные за 2-4 месяца на языке типа LISP, PROLOG, CLIPS и др.), -промышленные (разработанные за 4-8 месяцев на языке типа CLIPS с полной БЗ), -коммерческие (разработанные за 1,5-2 года на языке типа С++, Java с полной БЗ)

Полностью оформленная статическая экспертная система имеет шесть существенных компонент: машину логического вывода (решатель, интерпретатор); базу данных (рабочую память); базу знаний; компоненты приобретения знаний; объяснительный компонент; диалоговый компонент. Все шесть компонент являются важными, и, хотя система, основанная на знаниях, может обойтись без одной-двух из них, в общем, она может быть представлена в следующем виде.

База знаний - содержит факты (или утверждения) и правила. Факты представляют собой краткосрочную информацию в том отношении, что они могут изменяться, например, в ходе консультации. Правила представляют более долговременную информацию о том, как порождать новые факты или гипотезы из того, что сейчас известно. В настоящее время часто понятие базы знаний пытаются заменить базой данных. Основное различие последнего состоит в том, что база знаний обладает большими творческими возможностями, а база данных обычно пассивна: данные либо там есть, либо их нет. База знаний, с другой стороны, активно пополняется новой и недостающей информацией.

Подсистема логического вывода (логическая машина вывода) , используя исходные данные из рабочей памяти (БД) и базы знаний (БЗ), формирует такую последовательность правил, которая приводит к решению задачи. Различают прямую и обратную цепочки рассуждений. Прямая цепочка – это цепочка, которая ведет от данных к гипотезам, при этом в процессе диалога до получения ответа может быть задано неограниченное количество вопросов. Обратная цепочка рассужденийявляется попыткой найти данные для доказательства или опровержения некоторой гипотезы. На практике в чистом виде не встречаются ни одна из рассмотренных цепочек рассуждений. Объясняется не однозначностью данных, используемых при рассуждениях.

Редактор знаний (компонент приобретения знаний автоматизирует процесс наполнения ЭС знаниями, источником которых является эксперт либо группа экспертов.

Объяснительный компонент разъясняет пользователю, как система получила решение задачи (или почему она не получила решение) и какие знания при этом использовала, что повышает доверие пользователя к полученному результату.

Интерфейс пользователя (диалоговый компонент ) ориентирован на организацию дружественного общения с пользователем как в ходе решения задач, так и в процессе приобретения знаний и объяснения результатов работы.

База данных (БД) предназначена для хранения исходных и промежуточных данных решаемой в текущий момент задачи.

Статические ЭС используются в приложениях, где можно не учитывать изменения, происходящие за время решения задачи.

В случаях, когда необходимо учитывать динамику, т.е. изменения, происходящие в окружающем мире, в архитектуру ЭС вводится два компонента: подсистема моделирования внешнего мира и подсистема связи с внешним окружением, которая осуществляет связи с внешним миром через систему датчиков и контроллеров, либо используя СУБД. Кроме того, существенным изменениям подвергаются и остальные подсистемы.

Архитектура динамической ЭС приведена на рис. 6.13.

Экспертная система может работать в двух режимах: приобретения знаний и решения задачи (режим консультации или режим использования). В режиме приобретения знаний общение с ЭС осуществляет эксперт, который, используя компонент приобретения знаний, наполняет систему информацией, позволяющей ЭС в режиме консультации самостоятельно (без эксперта) решать задачи из проблемной области. Эксперт описывает проблемную область в виде совокупности правил и данных. Данные определяют объекты, их характеристики и значения, существующие в области экспертизы, правила – способы манипулирования данными, характерные для рассматриваемой области.

Рисунок 6.13 – Архитектура динамической экспертной системы

В режиме консультации общение с ЭС осуществляет конечный пользователь, которого интересует результат и (или) способ его получения. В качестве конечного пользователя, может и эксперт, и программист, и лицо, принимающее решение – ЛПР.

В режиме консультации данные о задаче пользователя после обработки их диалоговым компонентом поступают в рабочую память. Машина логического вывода на основе входных данных, общих данных о проблемной области и правил из БЗ формирует решение задачи.

Экспертная система отличается от прочих прикладных программ наличием следующих признаков:

Моделирует не столько физическую (или иную) природу определенной проблемной области, сколько механизм мышления человека применительно к решению задач в этой проблемной области, основное внимание уделяя воспроизведению компьютерными средствами методики решения проблем, которая применяется экспертом;

Помимо выполнения вычислительных операций, формирует определенные соображения и выводы, основываясь на тех знаниях, которыми она располагает. Знания в системе представлены, как правило, на некотором специальном языке и хранятся отдельно от собственно программного кода, который и формирует выводы и соображения;

При решении задач основными являются эвристические и приближенные методы, которые, в отличие от алгоритмических, не всегда гарантируют успех, т.к. не требуют исчерпывающей исходной информации и обеспечивают определенную степень уверенности (или неуверенности), что предлагаемое решение является верным.

Экспертные системы отличаются и от других видов программ из области искусственного интеллекта:

Имеют дело с предметами реального мира, операции с которыми обычно требуют наличия значительного опыта, накопленного человеком. Множество программ из области искусственного интеллекта являются сугубо исследовательскими, и основное внимание в них уделяется абстрактным математическим проблемам или упрощенным вариантам реальных проблем, целью выполнения такой программы – «повышение уровня интуиции» или отработка методики. Экспертные системы имеют ярко выраженную практическую направленность в научной или коммерческой области;

Должна за приемлемое время найти решение, которое было бы не хуже, чем то, которое может предложить специалист в этой предметной области;

Должна обладать способностью объяснить, почему предложено именно такое решение, и доказать его обоснованность.

В разработке ЭС принимают участие:

Эксперт в проблемной области, задачи которой будет решать ЭС;

Инженер по знаниям - специалист по разработке ЭС (используемые им технологии, методы называют технологией (методами) инженерии знаний);

Программист по разработке инструментальных средств, предназначенных для ускорения разработки ЭС.

В основе разработки ЭС лежит процесс передачи потенциального опыта решения проблемы от некоторого источника знаний и преобразование его в вид, который позволяет использовать эти знания в программе. Передача знаний выполняется в процессе достаточно длительных и пространных собеседований между специалистом по проектированию экспертной системы (инженером по знаниям) и экспертом в определенной предметной области, способным достаточно четко сформулировать имеющийся у него опыт.

Исследователи рассматривают функцию приобретения знаний в качестве одного из главных «узких мест» технологии экспертных систем. Это объясняется следующими причинами:

Во многих проблемных областях специалисты пользуются собственным жаргоном, который трудно перевести на обычный «человеческий» язык, потому требуется много дополнительных вопросов для уточнения его логического или математического значения;

Факты и принципы, лежащие в основе многих специфических областей знания эксперта, не могут быть четко сформулированы в терминах математической теории или детерминированной модели, свойства которой хорошо понятны;

Для решения проблемы в определенной области эксперту недостаточно обладать суммой знаний о фактах и принципах в этой области: насколько надежны различные источники информации и как можно расчленить сложную проблему на более простые, которые можно решать более или менее независимо и т.д.

Экспертный анализ включает многие вещи, кажущиеся эксперту само собой разумеющимися, но для постороннего отнюдь таковыми не являющиеся.

Основными методологическими принципами построения ЭС (как любых СОЗ):

- информационный – объектом является все то, что является источником информации;

- системности – объект, представляющий собой совокупность взаимосвязанных объектов, называется системой. Всякий объект может являться элементом одновременно многих систем;

- отражения – любой объект обладает различными свойствами, проявляющимися в рамках соответствующих систем, элементом которых является объект;

- структурности – структура системы отражает структуру предметной области; знания организуются в БЗ, имеющую определенную структуру, механизм доступа и алгоритмы использования.

В настоящее время сложилась определенная технология разработки ЭС, которая включает следующие этапы: идентификация, концептуализация, формализация, выполнение, тестирование и опытная эксплуатация (рис.6.13).

Рисунок 6.13 – Этапы разработки ЭС

На этапе идентификации осмысливаются задачи, которые предстоит решить будущей ЭС, и формируются требования к ней, определяется, что надо сделать и какие ресурсы необходимо задействовать.

Идентификациязадачи заключается в составлении неформального описания общих характеристик задачи; подзадач, выделяемых внутри задачи; ключевые объекты, их входные (выходные) данные; предположительный вид решения, знания, относящиеся к решаемой задаче. Начальное неформальное описание задачи экспертом используется инженером по знаниям для уточнения терминов и ключевых понятий. Эксперт корректирует описание задачи, объясняет, как решать ее и какие рассуждения лежат в основе того или иного решения.

При проектировании ЭС типичными ресурсами являются источники знаний, время разработки, вычислительные средства и объем финансирования. Для эксперта источниками знаний служат его предшествующий опыт по решению задачи, книги, известные примеры решения задач, а для инженера по знаниям - опыт в решении аналогичных задач, методы представления знаний и манипулирования ими, программные инструментальные средства.

На этапе концептуализации проводится содержательный анализ проблемной области, выявляются используемые понятия и их взаимосвязи, определяются методы решения задач, определяются особенности задачи: типы доступных данных; исходные и выводимые данные; подзадачи общей задачи; применяемые стратегии и гипотезы; виды взаимосвязей между объектами ПО, типы используемых отношений (иерархия, причина-следствие, часть-целое и т.п.); процессы, применяемые в ходе решения; состав знаний, используемых при решении задачи; типы ограничений, накладываемых на процессы, которые применены в ходе решения; состав знаний, используемых для обоснования решений. На этом этапе строится концептуальная модель предметной области. Для ее построения можно использовать:

Признаковый (атрибутивный) подход, который предполагает наличие полученной от экспертов информации в виде троек объект-атрибут-значение атрибута и наличие обучающей информации. Этот подход развивается в рамках направления, получившего название «машинное обучение»;

Структурный (когнитивный), реализуемый путем выделения элементов предметной области, их взаимосвязей и семантических отношений.

На этапе формализации все ключевые понятия и отношения выражаются на некотором формальном языке, который либо выбирается из числа уже существующих, либо создается заново, определяется состав средств и способы представления декларативных и процедурных знаний, формируется описание решения задачи ЭС на предложенном (инженером по знаниям) формальном языке.

Результатом этапа формализации является указание способов представления знаний (фреймы, сценарии, семантические сети и т.д.) и определение способов манипулирования этими знаниями (логический вывод, аналитическая модель, статистическая модель и др.) и интерпретации знаний.

На этапе выполнения создаются один или несколько прототипов ЭС, решающих требуемые задачи, по результатам тестирования и опытной эксплуатации создается конечный продукт, пригодный для промышленного использования.

В ходе этапа тестирования производится оценка выбранного способа представления знаний в ЭС в целом.

На этапе опытной эксплуатации проверяется пригодность ЭС для конечного пользователя.



Просмотров