Занимательные опыты по физике (исследовательская работа). Разные физические опыты

Откуда берутся настоящие ученые? Ведь кто-то совершает необыкновенные открытия, изобретает хитроумные приборы, которыми мы пользуемся. Некоторые даже получают мировое признание в виде престижных наград. Как утверждают педагоги, детство - начало пути к будущим открытиям и свершениям.

Нужна ли физика младшим школьникам

Большинство школьных программ предполагает изучение физики с пятого класса. Однако родители хорошо знают, какое множество вопросов возникает у любознательных ребят младшего школьного возраста и даже у дошколят. Открыть дорогу к чудесному миру знаний помогут опыты по физике. Для школьников 7-10 лет они, конечно, будут несложными. Несмотря на простоту опытов, но поняв основные физические принципы и законы, дети ощущают себя всемогущими волшебниками. Это прекрасно, ведь живой интерес к науке - залог успешной учебы.

Детские способности не всегда раскрываются самостоятельно. Часто требуется предложить детворе определенную научную деятельность, лишь потом проявляются склонности к тем или иным знаниям. Домашние опыты - легкий способ выяснить, интересуется ли чадо естественными науками. Маленькие открыватели мира редко остаются равнодушными к «чудесным» действиям. Даже если желание изучать физику ярко не проявится, заложить азы физических знаний все же стоит.

Простейшие опыты, проводимые дома, хороши тем, что даже стеснительные, сомневающиеся в себе дети с удовольствием занимаются домашними экспериментами. Достижение ожидаемого результата рождает уверенность в собственных силах. Ровесники восторженно принимают демонстрацию подобных «фокусов», что улучшает отношения между ребятами.

Требования к постановке опытов дома

Чтобы изучение законов физики в домашних условиях было безопасным, необходимо соблюдать меры предосторожности:

  1. Абсолютно все эксперименты проводятся с участием взрослых. Конечно, многие исследования безопасны. Беда в том, что ребята не всегда проводят четкую границу между безобидными и опасными манипуляциями.
  2. Необходимо быть особенно внимательными, если используются острые, колюще-режущие предметы, открытый огонь. Здесь присутствие старших обязательно.
  3. Использование ядовитых веществ запрещено.
  4. Ребенку нужно подробно описать порядок действий, которые следует произвести. Необходимо ясно сформулировать цель работы.
  5. Взрослые должны объяснять суть опытов, принципы действия законов физики.

Простейшие исследования

Начать знакомство с физикой можно, демонстрируя свойства веществ. Это должны быть самые простые опыты для детей.

Важно! Желательно предусмотреть возможные детские вопросы, чтобы ответить на них максимально подробно. Неприятно, когда мама или папа предлагают провести опыт, смутно понимая, что он подтверждает. Поэтому лучше подготовиться, проштудировав нужную литературу.

Разная плотность

Каждое вещество обладает плотностью, влияющей на его вес. Разные показатели этого параметра имеют интересные проявления в виде многослойной жидкости.

Даже дошкольники могут проводить такие простейшие опыты с жидкостями и наблюдать за их свойствами.
Для эксперимента понадобятся:

  • сахарный сироп;
  • растительное масло;
  • вода;
  • стеклянная банка;
  • несколько мелких предметов (например, монета, пластиковая бусина, кусочек пенопласта, булавка).

Банку нужно заполнить примерно на 1/3 сиропом, добавить такое же количество воды и масла. Жидкости не будут смешиваться, а образуют слои. Причина - плотность, вещество с меньшей плотностью легче. Затем поочередно в банку нужно опустить предметы. Они «зависнут» на разных уровнях. Все зависит от того, как соотносятся между собой плотности жидкостей и предметов. Если плотность материала меньше, чем жидкости, вещица не утонет.

Плавающее яйцо

Понадобятся:

  • 2 стакана;
  • столовая ложка;
  • соль;
  • вода;
  • 2 яйца.

Оба стакана нужно наполнить водой. В одном из них растворить 2 полные столовые ложки соли. Затем в стаканы следует опустить яйца. В обычной воде оно утонет, в соленой станет держаться на поверхности. Соль повышает плотность воды. Именно этим объясняется тот факт, что в морской воде плавать легче, чем в пресной.

Поверхностное натяжение воды

Детям следует объяснить, что молекулы на поверхности жидкости притягиваются, образуя тончайшую упругую пленку. Такое свойство воды называется поверхностным натяжением. Этим объясняется, например, способность водомерки скользить по водной глади пруда.

Непроливающаяся вода

Необходимо:

  • стеклянный стакан;
  • вода;
  • канцелярские скрепки.

Стакан до краев наполняется водой. Кажется, одной скрепки достаточно, чтобы жидкость пролилась. Необходимо осторожно погружать скрепки в стакан одну за другой. Опустив около десятка скрепок, можно увидеть, что вода не выливается, а образует на поверхности небольшой купол.

Плавающие спички

Необходимо:

  • миска;
  • вода;
  • 4 спички;
  • жидкое мыло.

В миску следует налить воду, опустить спички. Они будут практически неподвижны на поверхности. Если капнуть в центр моющее средство, спички мгновенно расплывутся к краям миски. Мыло уменьшает поверхностное натяжение воды.

Занимательные опыты

Очень зрелищной бывает для детей работа со светом и звуком. Педагоги утверждают, что занимательные опыты интересны ребятам разных возрастов. Например, предложенные здесь физические опыты подойдут и для дошкольников.

Светящаяся «лава»

Этот опыт не создает настоящий светильник, но красиво имитирует работу лампы с движущимися частицами.
Необходимо:

  • стеклянная банка;
  • вода;
  • растительное масло;
  • соль или любая шипучая таблетка;
  • пищевой краситель;
  • фонарик.

Банку нужно примерно на 2/3 наполнить окрашенной водой, затем почти до краев долить масла. Сверху следует посыпать немного соли. Затем отправиться в затемненную комнату, подсветить банку снизу фонариком. Крупинки соли станут опускаться на дно, увлекая за собой капельки жира. Позже, когда соль растворится, масло снова поднимется к поверхности.

Домашняя радуга

Солнечный свет можно разложить на составляющие спектр разноцветные лучи.

Необходимо:

  • яркий естественный свет;
  • стакан;
  • вода;
  • высокая коробка или стул;
  • большой лист белой бумаги.

В солнечный день перед окном, впускающим яркий свет, на пол нужно положить бумагу. Рядом установить коробку (стул), сверху поставить наполненный водой стакан. На полу появится радуга. Чтобы увидеть цвета полностью, достаточно подвигать бумагу и поймать ее. Прозрачная емкость с водой является призмой, раскладывающей луч на части спектра.

Стетоскоп доктора

Звук распространяется с помощью волн. Звуковые волны в пространстве можно перенаправлять, усиливать.
Понадобятся:

  • отрезок резиновой трубки (шланга);
  • 2 воронки;
  • пластилин.

В оба конца резиновой трубки нужно вставить воронку, закрепив ее пластилином. Теперь одну достаточно приставить к своему сердцу, а к другую - к уху. Ясно слышно биение сердца. Воронка «собирает» волны, внутренняя поверхность трубки не позволяет им рассеиваться в пространстве.

По этому принципу работает стетоскоп доктора. В старину примерно такое же устройство имели слуховые аппараты для слабослышащих людей.

Важно! Нельзя использовать источники громкого звука, так как это может повредить слуху.

Эксперименты

В чем разница между экспериментом и опытом? Это методы исследования. Обычно опыт проводится с заранее известным результатом, демонстрируя уже понятную аксиому. Эксперимент же призван подтвердить или опровергнуть гипотезу.

Для детей разница между этими понятиями практически неощутима, любое действие производится впервые, без научной базы.

Однако часто проснувшийся интерес толкает ребят на новые эксперименты, вытекающие из уже известных свойств материалов. Такую самостоятельность нужно поощрять.

Замораживание жидкостей

Материя меняет свойства с переменой температуры. Детей интересует изменение свойств всяческих жидкостей при обращении в лед. Различные вещества имеют отличную друг от друга температуру замерзания. Также при низкой температуре меняется их плотность.

Обратите внимание! Замораживая жидкости, следует применять только пластиковые контейнеры. Использовать стеклянные емкости нежелательно, так как они могут лопнуть. Причина в том, что жидкости, замерзая, меняют свою структуру. Молекулы образуют кристаллы, расстояние между ними увеличивается, увеличивается объем вещества.

  • Если наполнить разные формочки водой и апельсиновым соком, оставить в морозильной камере, что получится? Вода уже замерзнет, а сок частично останется жидким. Причина - температура замерзания жидкости. Подобные эксперименты можно проводить с разными веществами.
  • Налив в прозрачный контейнер воду и масло, можно увидеть уже привычное расслоение. Масло всплывает на поверхность воды, так как обладает меньшей плотностью. Что можно наблюдать при замораживании контейнера с содержимым? Вода и масло меняются местами. Сверху будет находиться лед, масло теперь окажется внизу. Замерзая, вода стала легче.

Работа с магнитом

Большой интерес у младших школьников вызывает проявление магнитных свойств различных веществ. Занимательная физика предлагает проверить эти свойства.

Варианты экспериментов (понадобятся магниты):

Проверка способности притягиваться различных предметов

Можно вести записи, указывая свойства материалов (пластик, дерево, железо, медь). Интересный материал - железная стружка, движение которой выглядит завораживающе.

Изучение способности магнита действовать сквозь другие материалы.

Например, металлический предмет подвергается воздействию магнита через стекло, картон, деревянную поверхность.

Рассмотрение способности магнитов притягиваться и отталкиваться.

Изучение магнитных полюсов (одноименные отталкиваются, разноименные притягиваются). Зрелищный вариант - прикрепление магнитов к плавающим игрушечным корабликам.

Намагниченная иголка - аналог компаса

В воде она указывает направление «север - юг». Намагниченная иголка притягивает другие мелкие предметы.

  1. Желательно не перегружать маленького исследователя информацией. Цель опытов - показать работу законов физики. Лучше подробно рассмотреть одно явление, чем ради зрелищности бесконечно менять направления.
  2. Перед каждым опытом доступно объяснить свойства и особенности предметов, участвующих в них. Затем вместе с ребенком подвести итог.
  3. Особенного внимания заслуживают правила безопасности. Начало каждого занятия сопровождается инструкциями.

Научные опыты - увлекательное дело! Возможно, оно окажется таковым и для родителей. Вместе открывать новые стороны обычных явлений интересно вдвойне. Стоит отбросить повседневные заботы, разделив детскую радость открытий.

Налейте воду в стакан, обязательно до самого края. Накройте листом плотной бумаги и аккуратно придерживая его, очень быстро переверните стакан кверху дном. На всякий случай, проделывайте все это над тазом или в ванной. Теперь уберите ладонь… Фокус! по-прежнему остается в стакане!

Дело в давлении атмосферного воздуха. Давление воздуха на бумагу снаружи больше давления на нее изнутри стакана и, соответственно, не позволяет бумаге выпустить воду из емкости.

Опыт Рене Декарта или пипетка-водолаз

Этому занимательному опыту около трехсот лет. Его приписывают французскому ученому Рене Декарту.

Вам понадобится пластиковая бутылка с пробкой, пипетка и вода. Наполните бутылку , оставив два-три миллиметра до края горлышка. Возьмите пипетку, наберите в нее немного воды и опустите в горлышко бутылки. Она должна своим верхним резиновым концом быть на уровне или чуть выше уровня в бутылке. При этом нужно добиться, чтобы от легкого толчка пальцем пипетка погружалась, а потом сама медленно всплывала. Теперь закройте пробку и сдавите бока бутылки. Пипетка пойдет на дно бутылки. Ослабьте давление на бутылку, и она снова всплывет.

Дело в том, что мы немного сжали воздух в горлышке бутылки и это давление передалось воде. проникла в пипетку — она стала тяжелее (так как вода тяжелее воздуха) и утонула. При прекращении давления сжатый воздух внутри пипетки удалил лишнюю , наш «водолаз» стал легче и всплыл. Если в начале опыта «водолаз» вас не слушается, значит, надо отрегулировать количество воды в пипетке. Когда пипетка находится на дне бутылки, легко проследить, как от усиления нажима на стенки бутылки входит в пипетку, а при ослаблении нажима выходит из нее.

Десятки и сотни тысяч физических экспериментов было поставлено за тысячелетнюю историю науки. Непросто отобрать несколько "самых-самых", чтобы рассказать о них. Каков должен быть критерий отбора?

Четыре года назад в газете "The New York Times" была опубликована статья Роберта Криза и Стони Бука. В ней рассказывалось о результатах опроса, проведенного среди физиков. Каждый опрошенный должен был назвать десять самых красивых за всю историю физических экспериментов. На наш взгляд, критерий красоты ничем не уступает другим критериям. Поэтому мы расскажем об экспериментах, вошедших в первую десятку по результатам опроса Криза и Бука.

1. Эксперимент Эратосфена Киренского

Один из самых древних известных физических экспериментов, в результате которого был измерен радиус Земли, был проведен в III веке до нашей эры библиотекарем знаменитой Александрийской библиотеки Эрастофеном Киренским.

Схема эксперимента проста. В полдень, в день летнего солнцестояния, в городе Сиене (ныне Асуан) Солнце находилось в зените и предметы не отбрасывали тени. В тот же день и в то же время в городе Александрии, находившемся в 800 километрах от Сиена, Солнце отклонялось от зенита примерно на 7°. Это составляет примерно 1/50 полного круга (360°), откуда получается, что окружность Земли равна 40 000 километров, а радиус 6300 километров.

Почти невероятным представляется то, что измеренный столь простым методом радиус Земли оказался всего на 5% меньше значения, полученного самыми точными современными методами.

2. Эксперимент Галилео Галилея

В XVII веке господствовала точка зрения Аристотеля, который учил, что скорость падения тела зависит от его массы. Чем тяжелее тело, тем быстрее оно падает. Наблюдения, которые каждый из нас может проделать в повседневной жизни, казалось бы, подтверждают это.

Попробуйте одновременно выпустить из рук легкую зубочистку и тяжелый камень. Камень быстрее коснется земли. Подобные наблюдения привели Аристотеля к выводу о фундаментальном свойстве силы, с которой Земля притягивает другие тела. В действительности на скорость падения влияет не только сила притяжения, но и сила сопротивления воздуха. Соотношение этих сил для легких предметов и для тяжелых различно, что и приводит к наблюдаемому эффекту. Итальянец Галилео Галилей усомнился в правильности выводов Аристотеля и нашел способ их проверить. Для этого он сбрасывал с Пизанской башни в один и тот же момент пушечное ядро и значительно более легкую мушкетную пулю. Оба тела имели примерно одинаковую обтекаемую форму, поэтому и для ядра, и для пули силы сопротивления воздуха были пренебрежимо малы по сравнению с силами притяжения.

Галилей выяснил, что оба предмета достигают земли в один и тот же момент, то есть скорость их падения одинакова. Результаты, полученные Галилеем. - следствие закона всемирного тяготения и закона, в соответствии с которым ускорение, испытываемое телом, прямо пропорционально силе, действующей на него, и обратно пропорционально массе.

3. Другой эксперимент Галилео Галилея

Галилей замерял расстояние, которое шары, катящиеся по наклонной доске, преодолевали за равные промежутки времени, измеренный автором опыта по водяным часам. Ученый выяснил, что если время увеличить в два раза, то шары прокатятся в четыре раза дальше. Эта квадратичная зависимость означала, что шары под действием силы тяжести движутся ускоренно, что противоречило принимаемому на веру в течение 2000 лет утверждению Аристотеля о том, что тела, на которые действует сила, движутся с постоянной скоростью, тогда как если сила не приложена к телу, то оно покоится.

Результаты этого эксперимента Галилея, как и результаты его эксперимента с Пизанской башней, в дальнейшем послужили основой для формулирования законов классической механики.

4. Эксперимент Генри Кавендиша

После того как Исаак Ньютон сформулировал закон всемирного тяготения: сила притяжения между двумя телами с массами Мит, удаленных друг от друга на расстояние r, равна F=G(mM/r2), оставалось определить значение гравитационной постоянной G. Для этого нужно было измерить силу притяжения между двумя телами с известными массами. Сделать это не так просто, потому что сила притяжения очень мала.

Мы ощущаем силу притяжения Земли. Но почувствовать притяжение даже очень большой оказавшейся поблизости горы невозможно, поскольку оно очень слабо. Нужен был очень тонкий и чувствительный метод. Его придумал и применил в 1798 году соотечественник Ньютона Генри Кавендиш. Он использовал крутильные весы - коромысло с двумя шариками, подвешенное на очень тонком шнурке. Кавендиш измерял смещение коромысла (поворот) при приближении к шарикам весов других шаров большей массы.

Для увеличения чувствительности смещение определялось по световым зайчикам, отраженным от зеркал, закрепленных на шарах коромысла. В результате этого эксперимента Кавендишу удалось довольно точно определить значение гравитационной константы и впервые вычислить массу Земли.

5. Эксперимент Жана Бернара Фуко

Французский физик Жан Бернар Леон Фуко в 1851 году экспериментально доказал вращение Земли вокруг своей оси с помощью 67-метрового маятника, подвешенного к вершине купола парижского Пантеона. Плоскость качания маятника сохраняет неизменное положение по отношению к звездам. Наблюдатель же, находящийся на Земле и вращающийся вместе с ней, видит, что плоскость вращения медленно поворачивается в сторону, противоположную направлению вращения Земли.

6. Эксперимент Исаака Ньютона

В 1672 году Исаак Ньютон проделал простой эксперимент, который описан во всех школьных учебниках. Затворив ставни, он проделал в них небольшое отверстие, сквозь которое проходил солнечный луч. На пути луча была поставлена призма, а за призмой - экран.

На экране Ньютон наблюдал "радугу": белый солнечный луч, пройдя через призму, превратился в несколько цветных лучей - от фиолетового до красного. Это явление называется дисперсией света. Сэр Исаак был не первым, наблюдавшим это явление. Уже в начале нашей эры было известно, что большие монокристаллы природного происхождения обладают свойством разлагать свет на цвета. Первые исследования дисперсии света в опытах со стеклянной треугольной призмой еще до Ньютона выполнили англичанин Хариот и чешский естествоиспытатель Марци.

Однако до Ньютона подобные наблюдения не подвергались серьезному анализу, а делавшиеся на их основе выводы не перепроверялись дополнительными экспериментами. И Хариот, и Марци оставались последователями Аристотеля, который утверждал, что различие в цвете определяется различием в количестве темноты, "примешиваемой" к белому свету. Фиолетовый цвет, по Аристотелю, возникает при наибольшем добавлении темноты к свету, а красный - при наименьшем. Ньютон же проделал допол¬нительные опыты со скрещенными призмами, когда свет, пропущенный через одну призму, проходит затем через другую. На основании совокупности проделанных опытов он сделал вывод о том, что "никакого цвета не возникает из белизны и черноты, смешанных вместе, кроме промежуточных темных; количество света не меняет вида цвета". Он показал, что белый свет нужно рассматривать как составной. Основными же являются цвета от фиолетового до красного. Этот эксперимент Ньютона служит замечательным примером того, как разные люди, наблюдая одно и то же явление, интерпретируют его по-разному и только те, кто подвергает сомнению свою интерпретацию и ставит дополнительные опыты, приходят к правильным выводам.

7. Эксперимент Томаса Юнга

До начала XIX века преобладали представления о корпускулярной природе света. Свет считали состоящим из отдельных частиц - корпускул. Хотя явления дифракции и интерференции света наблюдал еще Ньютон ("кольца Ньютона"), общепринятая точка зрения оставалась корпускулярной. Рассматривая волны на поверхности воды от двух брошенных камней, можно заметить, как, накладываясь друг на друга, волны могут интерферировать, то есть взаимогасить либо взаимоусиливать друг друга. Основываясь на этом, английский физик и врач Томас Юнг проделал в 1801 году опыты с лучом света, который проходил через два отверстия в непрозрачном экране, образуя, таким образом, два независимых источника света, аналогичных двум брошенным в воду камням. В результате он наблюдал интерференционную картину, состоящую из чередующихся темных и белых полос, которая не могла бы образоваться, если бы свет состоял из корпускул. Темные полосы соответствовали зонам, где световые волны от двух щелей гасят друг друга. Светлые полосы возникали там, где световые волны взаимоусиливались. Таким образом была доказана волновая природа света.

8. Эксперимент Клауса Йонссона

Немецкий физик Клаус Йонссон провел в 1961 году эксперимент, подобный эксперименту Томаса Юнга по интерференции света. Разница состояла в том, что вместо лучей света Йонссон использовал пучки электронов. Он получил интерференционную картину, аналогичную той, что Юнг наблюдал для световых волн. Это подтвердило правильность положений квантовой механики о смешанной корпускулярно-волновой природе элементарных частиц.

9. Эксперимент Роберта Милликена

Представление о том, что электрический заряд любого тела дискретен (то есть состоит из большего или меньшего набора элементарных зарядов, которые уже не подвержены дроблению), возникло еще в начале XIX века и поддерживалось такими известными физиками, как М.Фарадей и Г.Гельмгольц. В теорию был введен термин "электрон", обозначавший некую частицу - носитель элементарного электрического заряда. Этот термин, однако, был в то время чисто формальным, поскольку ни сама частица, ни связанный с ней элементарный электрический заряд не были обнаружены экспериментально.

В 1895 году К.Рентген во время экспериментов с разрядной трубкой обнаружил, что ее анод под действием летящих из катода лучей способен излучать свои, Х-лучи, или лучи Рентгена. В том же году французский физик Ж.Перрен экспериментально доказал, что катодные лучи - это поток отрицательно заряженных частиц. Но, несмотря на колоссальный экспериментальный материал, электрон оставался гипотетической частицей, поскольку не было ни одного опыта, в котором участвовали бы отдельные электроны. Американский физик Роберт Милликен разработал метод, ставший классическим примером изящного физического эксперимента.

Милликену удалось изолировать в пространстве несколько заряженных капелек воды между пластинами конденсатора. Освещая рентгеновскими лучами, можно было слегка ионизировать воздух между пластинами и изменять заряд капель. При включенном поле между пластинами капелька медленно двигалась вверх под действием электрического притяжения. При выключенном поле она опускалась под действием гравитации. Включая и выключая поле, можно было изучать каждую из взвешенных между пластинами капелек в течение 45 секунд, после чего они испарялись. К 1909 году удалось определить, что заряд любой капельки всегда был целым кратным фундаментальной величине е (заряд электрона). Это было убедительным доказательством того, что электроны представляли собой частицы с одинаковыми зарядом и массой. Заменив капельки воды капельками масла, Милликен получил возможность увеличить продолжительность наблюдений до 4,5 часа и в 1913 году, исключив один за другим возможные источники погрешностей, опубликовал первое измеренное значение заряда электрона: е = (4,774 ± 0,009)х10-10 электростатических единиц.

10. Эксперимент Эрнста Резерфорда

К началу XX века стало понятно, что атомы состоят из отрицательно заряженных электронов и какого-то положительного заряда, благодаря которому атом остается в целом нейтральным. Однако предположений о том, как выглядит эта "положительно-отрицательная" система, было слишком много, в то время как экспериментальных данных, которые позволили бы сделать выбор в пользу той или иной модели, явно недоставало.

Большинство физиков приняли модель Дж.Дж.Томсона: атом как равномерно заряженный положительный шар диаметром примерно 10-8см с плавающими внутри отрицательными электронами. В 1909 году Эрнст Резерфорд (ему помогали Ганс Гейгер и Эрнст Марсден) поставил эксперимент, чтобы понять действительную структуру атома. В этом эксперименте тяжелые положительно заряженные а-частицы, движущиеся со скоростью 20 км/с, проходили через тонкую золотую фольгу и рассеивались на атомах золота, отклоняясь от первоначального направления движения. Чтобы определить степень отклонения, Гейгер и Марсден должны были с помощью микроскопа наблюдать вспышки на пластине сцинтиллятора, возникавшие там, где в пластину попадала а-частица. За два года было сосчитано около миллиона вспышек и доказано, что примерно одна частица на 8000 в результате рассеяния изменяет направление движения более чем на 90° (то есть поворачивает назад). Такого никак не могло происходить в "рыхлом" атоме Томсона. Результаты однозначно свидетельствовали в пользу так называемой планетарной модели атома - массивное крохотное ядро размерами примерно 10-13 см и электроны, вращающиеся вокруг этого ядра на расстоянии около 10-8 см.

Для многих школьников физика является довольно сложным и непонятным предметом. Чтобы заинтересовать ребенка этой наукой родители используют всевозможные ухищрения: рассказывают фантастические истории, показывают занимательные опыты, приводят в пример биографии великих ученых.

Как проводить опыты по физике с детьми?

  • Педагоги предостерегают, не стоит знакомство с физическими явлениями ограничивать лишь демонстрацией занимательных опытов и экспериментов.
  • Опыты должны в обязательном порядке сопровождаться подробными объяснениями.
  • Для начала ребенку необходимо объяснить, что физика является наукой, изучающей общие законы природы. Физика изучает строение материи, ее формы, ее движения и изменения. В свое время известный британский ученый лорд Кельвин довольно смело заявил, что в нашем мире существует лишь одна наука – физика, все остальное — обычное собирание марок. И в этом высказывании есть доля истины, ведь вся Вселенная, все планеты и все миры (предполагаемые и существующие) подчиняются законам физики. Конечно, высказывания самых именитых ученых о физике и ее законах вряд ли заставят младшего школьника отбросить в сторону мобильник и с упоением углубиться в изучение учебника физики.

Сегодня мы попытаемся предложить вниманию родителей несколько занимательных опытов, которые помогут заинтересовать ваших детей и ответить на многие их вопросы. И как знать, может, благодаря этим домашним экспериментам, физика станет любимым предметом у вашего ребенка. И в самом скором времени в нашей стране появится свой Исаак Ньютон.

Интересные опыты с водой для детей - 3 инструкции

Для 1 эксперимента вам понадобится два яйца, обычная пищевая соль и 2 стакана с водой.

Одно яйцо необходимо осторожно опустить в стакан, наполненный на половину холодной водой. Оно сразу же окажется на дне. Второй стакан наполните теплой водой и размешайте в нем 4-5 ст. л. соли. Подождите, пока вода в стакане станет холодной, и аккуратно опустите в него второе яйцо. Оно останется на поверхности. Почему?

Объяснение результатов опыта

Плотность простой воды ниже плотности яйца. Именно поэтому яйцо опускается на дно. Средняя плотность соленой воды существенно выше плотности яйца, поэтому оно остается на поверхности. Продемонстрировав ребенку этот опыт, можно заметить, что морская вода является идеальной средой для обучения плаванию. Ведь законы физики и в море никто не отменял. Чем вода в море более соленая, тем меньше требуется усилий, чтобы держаться на плаву. Самым соленым считается Красное море. Из-за большой плотности тело человека буквально выталкивается на поверхность воды. Учиться плавать в Красном море – сплошное удовольствие.

Для 2 эксперимента вам понадобится: стеклянная бутылка, миска с подкрашенной водой и горячая вода.

При помощи горячей воды прогреваем бутыль. Выливаем из нее горячую воду и опрокидываем горлышком вниз. Устанавливаем в миску с подкрашенной холодной водой. Жидкость из миски начнет самостоятельно затекать в бутылку. Кстати уровень подкрашенной жидкости в ней будет (по сравнению с миской) существенно выше.

Как объяснить результат опыта ребенку?

Предварительно нагретая бутылка наполнена теплым воздухом. Постепенно бутыль охлаждается, и газ сжимается. В бутылке давление понижается. На воду оказывает влияние давление атмосферы, и она поступает в бутылку. Ее приток остановится лишь тогда, когда давление не выровняется.

Для 3 опыта понадобится линейка из оргстекла или обычная пластмассовая расческа, шерстяная или шелковая ткань.

В кухне или в ванной отрегулируйте кран так, чтобы из него текла тонкая струйка воды. Попросите ребенка сильно потереть линейку (расческу) сухой шерстяной тряпочкой. Затем ребенок должен быстро приблизить линейку к струе воды. Эффект его поразит. Струя воды будет изгибаться, и тянуться к линейке. Забавный эффект можно получить, используя одновременно две линейки. Почему?

Наэлектризованная сухая расческа или линейка из оргстекла становятся источником электрического поля, именно поэтому струя вынуждена изгибаться в ее сторону.

Более подробно обо всех этих явлениях можно узнать на уроках физики. Любому ребенку захочется почувствовать себя «повелителем» воды, а это значит — урок уже никогда не будет для него скучным и неинтересным.

%20%D0%9A%D0%B0%D0%BA%20%D1%81%D0%B4%D0%B5%D0%BB%D0%B0%D1%82%D1%8C%203%20%D0%BE%D0%BF%D1%8B%D1%82%D0%B0%20%D1%81%D0%BE%20%D1%81%D0%B2%D0%B5%D1%82%D0%BE%D0%BC%20%D0%B2%20%D0%B4%D0%BE%D0%BC%D0%B0%D1%88%D0%BD%D0%B8%D1%85%20%D1%83%D1%81%D0%BB%D0%BE%D0%B2%D0%B8%D1%8F%D1%85

%0A

Как доказать, что свет движется по прямой?

Для проведения опыта потребуются 2 листа плотного картона, обычный фонарик, 2 подставки.

Ход эксперимента: В центре каждой картонки аккуратно вырезаем одинаковые по диаметру круглые отверстия. Устанавливаем их на подставки. Отверстия должны находиться на одной высоте. Включенный фонарь располагаем на заранее подготовленной подставке из книг. Можно использовать подходящую по размеру любую коробку. Луч фонаря направляем в отверстие одной из картонок. Ребенок встает с противоположной стороны и видит свет. Просим ребенка отойти, и смещаем в сторону любую из картонок. Их отверстия больше не находятся на одном уровне. Ребенка возвращаем на то же место, но света он уже не видит. Почему?

Объяснение: Свет может распространяться только по прямой линии. Если на пути света возникает препятствие, он останавливается.

Опыт – танцующие тени

Для проведения этого опыта потребуется: белый экран, вырезанные картонные фигурки, которые необходимо привесить на нитках перед экраном и обычные свечи. Свечи нужно поставить за фигурками. Нет экрана – можно использовать обычную стену

Ход эксперимента: Зажгите свечи. Если свечу отодвинуть подальше, то тень от фигурки станет меньше, если свечу сдвинуть вправо, фигурка передвинется влево. Чем больше свечей вы зажжете, тем танец фигурок будет интересней. Свечи можно зажигать по очереди, поднимать выше, ниже, создавая очень интересные танцевальные композиции.

Интересный опыт с тенью

Для следующего опыта вам понадобится экран, довольно мощная электролампа и свеча. Если направить свет мощной электролампы на горящую свечу, то на белом полотне проявится тень не только от свечи, но и от ее пламени. Почему? Все просто, оказывается и в самом пламени имеются раскаленные светонепроницаемые частицы.

Простые опыты со звуком для младших школьников

Эксперимент со льдом

Если вам повезет, и вы у себя дома найдете кусочек сухого льда, то сможете услышать необычный звук. Он довольно неприятный – очень тонкий и воющий. Для этого нужно сухой лед положить в обычную чайную ложку. Правда, звучать ложка сразу же перестанет, как только охладиться. Почему появляется этот звук?

При соприкосновении льда с ложкой (в соответствии с законами физики) выделяется углекислый газ, именно он заставляет вибрировать ложку и издавать необычный звук.

Забавный телефон

Возьмите две одинаковые коробочки. В середине дна и крышки каждой из коробочек проткните дырку при помощи толстой иглы. В коробочках разместите обычные спички. В сделанные отверстия протяните шнурок (длиной 10-15 см). Каждый конец шнурка нужно завязать за середину спички. Желательно использовать рыболовную леску из капрона или шелковую нитку. Каждый из двух участников эксперимента берет свою «трубку» и отходит на максимальное расстояние. Леска должна быть туго натянута. Один подносит трубку к уху, а другой ко рту. Вот и все! Телефон готов – можно вести светскую беседу!

Эхо

Из картона сделайте трубу. Ее высота должна быть около трехсот мм, а диаметр около шестидесяти мм. На обычную подушку разместите часы и накройте их сверху изготовленной заранее трубой. Звук часов в данном случае вы сможете услышать, если ваше ухо будет находиться прямо над трубой. Во всех остальных положениях звука часов не слышно. Однако если вы возьмете отрез картона и поместите его под углом в сорок пять градусов к оси трубы, то звук часов будет прекрасно слышен.

Как провести с ребенком дома опыты с магнитами - 3 идеи

Играть с магнитом дети просто обожают, поэтому они готовы включиться в любой эксперимент с этим предметом.

Как вытащить предметы из воды при помощи магнита?

Для первого эксперимента потребуется масса болтиков, скрепок, пружинок, пластиковая бутылка с водой и магнит.

Детям дается задание: вытащить из бутылки предметы, не замочив при этом руки, ну и стол естественно. Как правило, дети быстро находят решение этой задачи. Во время опыта родители могут рассказать детям о физических свойствах магнита и объяснить, что сила магнита действует не только сквозь пластик, но и сквозь воду, бумагу, стекло и т.д.

Как сделать компас?

В блюдце надо набрать холодной воды и на ее поверхность положить небольшой кусочек салфетки. На салфетку аккуратно кладем иголку, которую предварительно натираем об магнит. Салфетка намокает и опускается на дно блюдца, а иголка остается на поверхности. Постепенно она плавно поворачивается одним концом на север, другим на юг. Правильность самодельного компаса можно сверить по-настоящему.

Магнитное поле

Для начала нарисуйте на листе бумаги прямую линию и положите на нее обычную железную скрепку. Медленно подвигайте к линии магнит. Отметьте то расстояние, на котором скрепка притянется к магниту. Возьмите другой магнит, и проведите тот же эксперимент. Скрепка притянется к магниту с более далекого расстояния или с более близкого. Все будет зависеть исключительно от «силы» магнита. На этом примере, ребенку можно рассказать о свойствах магнитных полей. Прежде чем рассказывать ребенку о физических свойствах магнита, нужно обязательно объяснить, что магнит притягивает далеко не все «блестящие штучки». Магнит может притягивать только железо. Такие железки как никель и алюминий ему «не по зубам».

Интересно, Вы любили в школе уроки физики? Нет? Тогда у Вас есть прекрасная возможность вместе с ребенком освоить этот очень интересный предмет. Узнайте, Как провести дома интересные и простые , читайте в другой статье на нашем сайте.

Удачных Вам экспериментов!

Физика окружает нас абсолютно везде и повсюду: в быту, на улице, в дороге… Иногда родителям стоит обращать внимание их детей на некоторые интересные, ими еще непознанные моменты. Раннее знакомство с этим школьным предметом позволит какому-то ребенку преодолеть страх, а какому-то всерьез заинтересоваться этой наукой и, возможно, для кого-то это станет судьбой.

С некоторыми простыми экспериментами, которые можно сделать дома, мы и предлагаем сегодня познакомиться.

ЦЕЛЬ ЭКСПЕРИМЕНТА: Посмотреть, влияет ли форма предмета на его прочность.
МАТЕРИАЛЫ: три листа бумаги, скотч, книги (весом до полукилограмма), помощник.

ПРОЦЕСС:

    Сложите листки бумаги а три разные формы: Форма А — сложите листок втрое и склейте концы, Форма Б — сложите листок вчетверо и склейте концы, Форма В — скатайте бумагу в форме цилиндра и склейте концы.

    Поставьте все сделанные вами фигуры на стол.

    Вместе с помощником одновременно и по одной кладите на них книги и посмотрите, когда сооружения обвалятся.

    Запомните, какое количество книг может выдержать каждая фигура.

ИТОГИ: Цилиндр выдерживает самое большое число книг.
ПОЧЕМУ? Гравитация (притяжение к центру Земли) тянет книги вниз, а бумажные опоры не пускают. Если земное притяжение будет больше силы сопротивления опоры, вес книги раздавит ее. Открытый бумажный цилиндр оказался самой прочной из всех фигур, потому что вес книг, которые на нем лежали, равномерно распределился по его стенкам.

_________________________

ЦЕЛЬ ЭКСПЕРИМЕНТА: Зарядить предмет статическим электричеством.
МАТЕРИАЛЫ: ножницы, салфетка, линейка, расческа.

ПРОЦЕСС:

    Отмерьте и отрежьте от салфетки полоску бумаги (7см х 25 см).

    Нарежьте на бумаге длинные тонкие полоски, ОСТАВЛЯЯ край нетронутым (по рисунку).

    Быстро расчешитесь. Ваши волосы должны быть чистыми и сухими. Приблизьте расческу к бумажным полоскам, но не касайтесь их.

ИТОГИ: Бумажные полоски тянутся к расческе.
ПОЧЕМУ? "Статическое» — значит неподвижное. Статическое электричество — это собравшиеся вместе отрицательные частицы под названием электроны. Вещество состоит из атомов, где вокруг положительного центра — ядра — вращают электроны. Когда мы причесываемся, электроны как бы стираются с волос и попа¬дают на расческу. Та половина расчески, которая коснулась ваших волос, получил! отрицательный заряд. Бумажная полоска состоит из атомов. Мы подносим к ним расческу, в результате чего положительная часть атомов притягивается к расческе. Этого притяжения между положительными и отрицательными частицами достаток но, чтобы поднять бумажные полоски вверх.

_________________________

ЦЕЛЬ ЭКСПЕРИМЕНТА: Найти положение центра тяжести.
МАТЕРИАЛЫ: пластилин, две металлические вилки, зубочистка, высокий стакан или банка с широким горлом.

ПРОЦЕСС:

    Скатайте из пластилина шарик диаметром около 4 см.

    Воткните в шарик вилку.

    Вторую вилку воткните в шарик под углом в 45 градусов по отношению к первой вилке.

    Воткните зубочистку в шарик между вилками.

    Зубочистку поместите концом на край стакана и двигайте к центру стакана, пока не наступит равновесие.

ПРИМЕЧАНИЕ: Если равновесия достичь не удается, уменьшите угол между ними.
ИТОГИ: При определенном положении зубочистки вилки уравновешиваются.
ПОЧЕМУ? Поскольку вилки расположены под углом друг к другу, то их вес как бы сосредоточен в определенной точке палочки, находящейся между ними. Эта точка называется центром тяжести.

_________________________

ЦЕЛЬ ЭКСПЕРИМЕНТА: Сравнить скорость звука в твердых телах и в воздухе.
МАТЕРИАЛЫ: пластмассовый стакан, резинка в форме колечка.

ПРОЦЕСС:

    Наденьте резиновое колечко на стакан, как показано на рисунке.

    Приложите стакан дном к уху.

    Побренчите натянутой резинкой как струной.

ИТОГИ: Слышен громкий звук.
ПОЧЕМУ? Предмет звучит, когда он колеблется. Совершая колебания, он ударяет по воздуху или по другому предмету, если тот находится рядом. Колебания начинают распространяться по заполняющему все вокруг воздуху, их энергия воздействует на уши, и мы слышим звук. Колебания гораздо медленнее распространяются через воздух — газ, — чем через твердые или жидкие тела. Колебания резинки передаются и воздуху и корпусу стакана, но звук слышен громче, когда он приходит в ухо непосредственно от стенок стакана.

_________________________

ЦЕЛЬ ЭКСПЕРИМЕНТА: Узнать, сказывается ли температура на прыгучести резинового шарика.
МАТЕРИАЛЫ: теннисный мяч, метровая рейка, морозильник.

ПРОЦЕСС:

    Поставьте рейку вертикально и, удерживая ее одной рукой, положите другой рукой мячик на ее верхний конец.

    Отпустите мячик и посмотрите, как высоко он подпрыгнет, ударившись об пол. Повторите это три раза и прикиньте среднюю высоту прыжка.

    На полчаса поместите мячик в морозильник.

    Снова измерьте высоту прыжка, отпуская мячик с верхнего конца рейки.

ИТОГИ: После морозилки мяч подпрыгивает не так высоко.
ПОЧЕМУ? Резина состоит из мириада молекул в форме цепочек. В тепле эти цепочки легко сдвигаются и отодвигаются одна от другой, и благодаря этому резина становится эластичной. При охлаждении эти цепочки становятся жесткими. Когда цепочки эластичны, мячик хорошо скачет. Играя в теннис в холодную погоду, нужно учитывать, что мячик не будет таким прыгучим.

_________________________

ЦЕЛЬ ЭКСПЕРИМЕНТА: Посмотреть, каким предстает изображение в зеркале.
МАТЕРИАЛЫ: зеркальце, 4 книги, карандаш, бумага.

ПРОЦЕСС:

    Сложите книги стопкой и прислоните к ней зеркальце.

    Положите лист бумаги под край зеркальца.

    Положите левую руку перед листом бумаги, а на руку — подбородок, чтобы смотреть в зеркало, но не видеть лист, на котором вам предстоит писать.

    Смотря только в зеркальце, но не на бумагу, напишите на ней свое имя.

    Посмотрите, что вы написали.

ИТОГИ: Большинство, а может быть даже все буквы оказались перевернутыми.
ПОЧЕМУ? Потому что вы писали, глядя в зеркало, где они выглядели обычным образом, но на бумаге они перевернуты. Перевернутыми окажутся большинство букв, а правильно написанными будут лишь симметричные буквы (Н, О, Е, В). Они выглядят одинаково и в зеркале, и на бумаге, хотя изображение в зеркале перевернуто.



Просмотров