Допустимые значения шума на рабочем месте. Производственный шум. Воздействие фактора на организм человека

Смею предположить, что любому жителю большого города зачастую хочется столь простой (на первый взгляд) вещи, как тишина. Горожанам есть чему завидовать тем, кто проживает в провинциях, ведь им приходится лишь грезить о тихом и спокойном месте. Казалось бы, дом - вот то место, где можно отдохнуть от суеты, машин и людей, но и здесь нас окружают шумовые потоки. Если изначально в понимании людей жилье воспринималось прежде всего как уединенное, защищенное пространство, в котором нас окружают близкие люди, в котором нам приятно и комфортно находиться, то в настоящее время в силу множества факторов свой дом крепостью мы назвать уже не можем.

В современных условиях «в тесноте, да не в обиде» очень важно уметь изолироваться от общества и защитить ибо нарушение вашего пространства может привести к различным негативным последствиям. в доме, приносящий дискомфорт вам и окружающим, является одним из нарушений пространства, именно поэтому стоит знать о том, что существует предельно допустимый уровень шума и иметь представление о том, какие санитарные нормы существуют в связи с этим.

Санитарные нормы. Допустимый уровень шума в жилых помещениях:

Днем (с 7 утра до 23 часов вечера) норма звука не должна превышать 40 децибел (максимум 55 дБа);

Ночью находится на грани 30 дБа, а максимум составляет 45 дБа.

Для того чтобы вам было проще сориентироваться, разберемся в том, чему эти децибелы эквивалентны. Так, например, 40 дБа составляет обычная человеческая речь, чуть ниже - шепот, чуть выше - крик. Все, что выше 60, характеризуется как «очень шумно», т.е. при этом вы уже можете сообщить соседям о вашем возмущении. Гранью «крайне шумно» является показатель в 100 дБа, это уровень громкости оркестра или грома.

Также существуют виды источников шума. Они делятся на внутренние и внешние. Если источники внутреннего шума находятся непосредственно в здании и если всему виной человеческий фактор, то вы можете отрегулировать допустимый уровень шума. Внешние же источники (транспорт, предприятие, стройка и т.д.) контролю фактически не поддаются (за редким исключением).

В том случае, если причиной вашего дискомфорта является лифт, мусоропровод и пр., то с жалобой стоит обратиться в ТСЖ или ЖКХ. Борьба с подобными органами требует большой выдержки и знания всех законов, поэтому подготовьтесь к встрече с ними, если всерьез захотите начинать борьбу за тишину.

Если всему виной соседи, нарушающие допустимый уровень шума, то вам прежде всего следует с ними поговорить. Не поможет - обращайтесь в суд.

В любом случае, если вы знаете, что кто-либо нарушает ваши права, не сидите на месте, начинайте борьбу и будьте уверены, что правда будет на вашей стороне.

Поскольку вредное действие шума зависит и от его частотного состава, порог будет неодинаковым для разных шумов. Пороги вредного действия шума принимаются за нормативы шума, т. е. за предельно допустимые уровни шума на производстве. В качестве таковых Главной санитарной инспекцией СССР 9/11 1956 г. приняты следующие нормативы: для низкочастотного - 90-100 дБ, для среднечастотного - 85-90 дБ, для высокочастотного - 75- 85 дБ.

В виде дополнения к измерению шума, а может быть, надежного контроля правильности измерения параметров шума введен дополнительный критерий для -суждения о том, не превышает ли шум допустимых уровней. Таким критерием является разборчивость восприятия речи, произносимой с нормальной громкостью в работающем цехе на расстоянии 1,5 м от испытуемого. Хорошей разборчивостью считается правильное повторение не менее 40 из 50 многозначных чисел (22, 44, 78 и т. д.).

Утвержденные в 1956 г. допустимые уровни производственного шума представляли собой несомненно большой шаг вперед в борьбе с профессиональной тугоухостью и не потому, что до этих норм легко снизить шум в подавляющем числе уже существующих производств. Важным оказалось то, что техническая мысль и инициатива были направлены на поиски методов и способов снижения шума на проектируемых предприятиях. Еще более важным было то, что по отношению к рабочим, которые контактируют с шумом, превышающим допустимые уровни, стали применять ряд профилактических мер - удлинение очередного отпуска, ежегодный аудиометрический контроль и перевод при высокой ранимости слуха на нешумную работу и, наконец, отнесение развившейся выраженной тугоухости к профессиональному заболеванию при экспертизе.

Установленные в СССР нормы, известные в иностранной литературе под названием «славинских» (И. И. Славин, 1955), являются наиболее низкими, в том числе они ниже и тех, которые были предложены Международным комитетом «Акустика-43». Следует подчеркнуть, что при разработке нормативов шума авторы ставили своей целью сохранение восприятия звуков речевой частоты и избавление от неприятных ощущений, связанных с действием шума.

Экспериментально-гистологические исследования Г. Н. Кривицкой (1964) показали, что в ответ на непродолжительное звуковое раздражение (шестикратное воздействие звуком интенсивности 80-130 дБ) развиваются у белых крыс изменения в структурах центральных звеньев слухового анализатора, которые предшествуют патологии в периферическом рецепторе кортиева органа. Автор подчеркивает, что некоторые изменения отражают функциональное состояние нейронов, тех звеньев слухового анализатора, которые усиленно функционируют. При длительном акустическом раздражении в процесс вовлекаются различные звенья многих анализаторов, появляются морфологические изменения - нарушения всех частей нейрона (ядро, синапсы, дендриты и т. д.). Одним из характерных изменений нейрона является истощение нисслевского вещества, которое автор рассматривает как причину утомления. Конечно, мало сходного имеется в реакции человека и экспериментальных животных на интенсивный шум. Тем не менее выявленные автором факты заслуживают внимания.

В этом отношении представляют интерес физиологические исследования Т. А. Орловой (1965) на людях. Ею установлено, что сдвиги в высшей нервной деятельности и в вегетативной реактивности могут предшествовать стабильному понижению слуха. Исходя из этого, она считает, что при нормировании шума надо учитывать не только вредное его влияние на слуховую Функцию. Между прочим, и другие авторы, как сказано будет ниже, находили вегетативные нарушения у лиц, работающих в шумной обстановке, расценивая их как наиболее раннюю реакцию на воздействие шума. Затронутый вопрос несколько выходит за пределы нашей темы, но он с ней тесно связан. К сожалению, мы не можем на нем подробнее остановиться. Мы коснемся другой стороны вопроса, которая непосредственно относится к аудиологии, - насколько методы, применяемые авторами для нормирования шума, могут считаться точными и исчерпывающими. Нам кажется, что разнообразие в нормативах само по себе уже указывает на то, что методы не могут считаться вполне соответствующими задачам, которые ставятся при нормировании шума.

В настоящее время эксплуатация подавляющего большинства технологического оборудования, энергетических установок неизбежно связана с возникновением шумов и вибрацией различной частоты и интенсивности, оказывающих неблагоприятное влияние на организм человека. Длительное воздействие шума и вибрации снижает работоспособность, может привести к развитию профессиональных заболеваний.

Шум, как гигиенический фактор, представляет собой совокупность звуков, неблагоприятно воздействующих на организм человека, мешающих его работе и отдыху. Шум представляет собой волнообразно распространяющиеся колебательные движения частиц упругой (газовой, жидкой или твердой) среды. Обычно шум является сочетанием звуков различной частоты и интенсивности.

Интенсивный шум при ежедневном воздействии приводит к возникновению профессионального заболевания - тугоухости, основным симптомом которого является постепенная потеря слуха на оба уха, первоначально лежащая в области высоких частот (4000 Гц), с последующим распространением на более низкие частоты, определяющие способность воспринимать речь. При очень большом звуковом давлении может произойти разрыв барабанной перепонки.

Кроме непосредственного воздействия на орган слуха, шум влияет на различные отделы головного мозга, изменяя нормальные процессы высшей нервной деятельности. Характерными являются жалобы на повышенную утомляемость, общую слабость, раздражительность, апатию, ослабление памяти, бессонницу и т. п. Шум понижает производительность труда, увеличивает брак в работе, может явиться косвенной причиной производственной травмы.
В зависимости от характера вредного воздействия на организм человека шум подразделяется на мешающий, раздражающий, вредный и травмирующий.

Мешающий - это шум, мешающий речевой связи (разговоры, движения людских потоков). Раздражающий шум - вызывающий нервное напряжение, снижение работоспособности (гудение неисправной лампы дневного света в помещении, хлопанье двери и т. п.). Вредный шум - вызывающий хронические заболевания сердечно-сосудистой и нервной систем (различные виды производственных шумов). Травмирующий шум - резко нарушающий физиологические функции организма человека.

Степень вредности шума характеризуется его силой, частотой, продолжительностью и регулярностью воздействия.

Нормирование шума ведется в двух направлениях: гигиеническое нормирование и нормирование шумовых характеристик машин и оборудования.

Действующие в настоящее время нормы шума на рабочих местах регламентируются СН 9-86-98 «Шум на рабочих местах. Методические указания» и ГОСТ 12.1.003-83 ССБТ. «Шум. Общие требования безопасности».

Согласно указанным документам производственные шумы подразделяют по:
- спектру шума: широкополосные и тональные;
- временным характеристикам: постоянные и непостоянные.

В свою очередь, непостоянные шумы бывают: колеблющиеся во времени (воющие), прерывистые, импульсные (следующие друг за другом с интервалом более 1 сек).

Для ориентировочной оценки шума принимают уровень звука, определяемый по так называемой шкале А шумомера в децибелах - дБА.

Нормами устанавливаются допустимые уровни шума в рабочих помещениях различного назначения. При этом зоны с уровнем звука выше 85 дБА необходимо обозначать специальными знаками, работающих в этих зонах снабжать средствами индивидуальной защиты. Основой мероприятий по снижению производственного шума является техническое нормирование.

В соответствии с ГОСТ 12.1.003-83 при нормировании шума используются два метода:
- по предельному спектру шума;
- нормирование уровня звука в дБ по шкале А шумомера, имеющего различную чувствительность к различным частотам звука (копирует чувствительность человеческого уха).

Первый метод является основным для постоянных шумов. Второй метод используется для ориентировочной оценки постоянного и непостоянного шума.

Стандарт запрещает даже кратковременное пребывание людей в зонах с уровнем звукового давления свыше 135 дБ.

Для измерения используются шумометры различных модификаций.

Допустимые уровни шума на рабочих местах определяются санитарными нормами.

В помещениях для умственной работы без источников шума (кабинеты, конструкторские бюро, здравпункты) - 50 дБ.

В помещениях конторского труда с источниками шума (клавиатура ПК, телетайпы и т.п.) - 60 дБ.

На рабочих местах производственных помещений и на территории производственных предприятий - 85 дБ.

На территориях жилой застройки в городском районе в 2 м от жилых зданий и границ площадок отдыха - 40 дБ.

Для предварительного определения шума (без прибора) можно пользоваться ориентировочными данными. Например, установлен уровень шума турбокомпрессоров - 118 дБ, центробежных вентиляторов - 114 дБ, мотоцикла без глушителя - 105 дБ, при клепке крупных резервуаров - 125- 135 дБ и т.п.

Понятие шума

Шум - это беспорядочные колебания различной физической природы, отличающиеся сложностью временной и спектральной структуры. С физиологической точки зрения шум - это всякий неблагоприятный воспринимаемый звук.

Звук - это упругие волны, продольно распространяющиеся в среде и создающие в ней механические колебания; в узком смысле - субъективное восприятие этих колебаний специальными органами чувств человека.

Воздействие фактора на организм человека

Длительное воздействие шума может привести к ухудшению слуха, а в отдельных случаях – к глухоте. Шумовое воздействие на рабочем месте неблагоприятно отражается на работающих и приводит к:

    снижению внимания;

    увеличению расхода энергии при одинаковой физической нагрузке;

  • замедлению скорости психических реакций и т.п.

Понятие звук, как правило, ассоциируется со слуховыми ощущениями человека, обладающего нормальным слухом. Слуховые ощущения вызываются колебаниями упругой среды, которые представляют собой механические колебания, распространяющиеся в газообразной, жидкой или твердой среде и воздействующие на органы слуха человека. При этом колебания среды воспринимаются как звук только в определенной области частот (20 Гц - 20 кГц) и при звуковых давлениях, превышающих порог слышимости человека.

В результате снижается производительность труда и качество выполняемой работы.

На рисунке 1 изображено строение органа слуха.

Рисунок 1 - Строение органа слуха

В улитке происходит первичный анализ звука. Каждый простой звук имеет свой участок на базилярной мембране. Низкие звуки вызывают колебания участков базилярной мембраны у верхушки улитки, а высокие - у основания ее.

Волна движется от стремени к верхушке улитки. Когда амплитуда достигает своего максимума, волна быстро затухает. В этом участке возникают вихреобразные токи перилимфы, и происходит максимальный прогиб базилярной мембраны. Низкочастотные звуки пройдут через всю улитку и вызовут максимальный прогиб у верхушки. Высокочастотные звуки будут колебать базилярную мембрану только у основания улитки. Возникшее в слуховом рецепторе нервное возбуждение по слуховому нерву передается в слуховую зону коры головного мозга, где формируется звуковой образ. На рисунке 2 изображен механизм образования слышимых звуков.

Рисунок 2 - Механизм образования слышимых звуков

Области восприятия уровней интенсивности звука

    I область – включает диапазон уровней от порога слуха до 40 дБ и охватывает ограниченное количество сигналов, вследствие чего у человека отсутствует повседневная тренировка к восприятию подобных звуков; при этом способность дифференциации звуков ограничена.

    II область – включает уровни от 40 до 80 – 90 дБ и охватывает основную массу полезных сигналов, в эту область укладываются уровни интенсивности речи от шепота до самой громкой радиопередачи, музыкальные звуки и т.д. Здесь отмечается способность к тонкой дифференциации и анализу качества звука (и по частоте и интенсивности). Человек наиболее приспособлен к восприятию звуков этой области.

  • III область – охватывает уровни от 80 – 90 дБ до порога неприятного ощущения – 120 – 130 дБ. В этой области функции слухового анализатора имеют значительные отличия в зависимости от частоты, интенсивности и времени воздействия звука.

Классификация фактора

Классификация фактора «Шум» приведена в таблице 1.

Таблица 1

Способ классификации Вид шума Характеристика шума
По характеру спектра шума Тональные В спектре шума имеются явно выраженные дискретные тона
Широкополосные Непрерывный спектр шириной более одной октавы
По временным характеристикам Постоянные Уровень звука за 8 часовой рабочий день изменяется не более чем на 5 дБ(А)
Непостоянные:
Колеблющиеся во времени Уровень звука за 8 часовой рабочий день изменяется более чем на 5 дБ(А). Уровень звука непрерывно изменяется во времени
Прерывистые Уровень звука изменяется ступенчато не более чем на 5 дБ(А), длительность интервала 1 с и более
Импульсные Состоят из одного или нескольких звуковых сигналов, длительность интервала меньше 1 с

Нормируемые показатели факторов

Нормируемые показатели для постоянного и непостоянного шумов приведены в таблице 2.

Таблица 2

Нормативы

Предельно допустимые уровни шума на рабочих местах установлены с учетом тяжести и напряженности трудовой деятельности. Для определения ПДУ шума, соответствующего конкретному рабочему месту, необходимо провести количественную оценку тяжести и напряженности труда, выполняемого работником. Предельно допустимые уровни звука и эквивалентные уровни звука на рабочих местах для трудовой деятельности разных категорий тяжести и напряженности в дБА представлены в таблице 3.

Таблица 3. Предельно допустимые уровни звука и эквивалентные уровни звука на рабочих местах для трудовой деятельности разных категорий тяжести и напряженности в дБА

Предельно допустимые уровни звукового давления, уровни звука и эквивалентные уровни звука для основных наиболее типичных видов трудовой деятельности и рабочих мест представлены в таблице 4.

Вид трудовой деятельности, рабочее место Уровни звука и эквивалентные уровни звука в дБА
Творческая деятельность, руководящая работа с повышенными требованиями, научная деятельность, конструирование и проектирование, программирование, преподавание и обучение, врачебная деятельность. Рабочие места в помещениях дирекции, проектно-конструкторских бюро, расчетчиков, программистов вычислительных машин, в лабораториях для теоретических работ и обработки данных, приема больных в здравпунктах 50
Высококвалифицированная работа, требующая сосредоточенности, административно-управленческая деятельность, измерительные и аналитические работы в лаборатории; рабочие места в помещениях цехового управленческого аппарата, в рабочих комнатах конторских помещений, в лабораториях 60
Работа, выполняемая с часто получаемыми указаниями и акустическими сигналами; работа, требующая постоянного слухового контроля; операторская работа по точному графику с инструкцией; диспетчерская работа. Рабочие места в помещениях диспетчерской службы, кабинетах и помещениях наблюдения и дистанционного управления с речевой связью по телефону; машинописных бюро, на участках точной сборки, на телефонных и телеграфных станциях, в помещениях мастеров, в залах обработки информации на вычислительных машинах 65
Работа, требующая сосредоточенности; работа с повышенными требованиями к процессам наблюдения и дистанционного управления производственными циклами. Рабочие места за пультами в кабинах наблюдения и дистанционного управления без речевой связи по телефону, в помещениях для размещения шумных агрегатов вычислительных машин 75
Выполнение всех видов работ (за исключением перечисленных в п.п.1–4 и аналогичных им) на постоянных рабочих местах в производственных помещениях и на территории предприятий 80
Рабочие места в кабинах машинистов тепловозов, электровозов, поездов метрополитена, дизель-поездов и автомотрис 80
Рабочие места в кабинах машинистов скоростных и пригородных электропоездов 75
Помещения для персонала вагонов поездов дальнего следования, служебных помещений, рефрижераторных секций,вагонов электростанций, помещений для отдыха багажных и почтовых отделений 60
Служебные помещения в багажных и почтовых вагонов, вагонов-ресторанов 70
Рабочие места водителей и обслуживающего персонала грузовых автомобилей 70
Рабочие места водителей и обслуживающего персонала (пассажиров) легковых автомобилей и автобусов 60
Рабочие места водителей и обслуживающего персонала тракторов, самоходных шасси,прицепных и навесных сельскохозяйственных машин, строительно-дорожных и др. аналогичных машин 80

Таблица 4. Предельно допустимые уровни звукового давления, уровни звука и эквивалентные уровни звука для основных наиболее типичных видов трудовой деятельности и рабочих мест

Классы условий труда в зависимости от уровней шума представлены в таблице 5

Таблица 5. Классы условий труда в зависимости от уровней шума на рабочем месте

Методика проведения измерений

При проведении измерений в некоторых опорных временных интервалах их выбирают так, чтобы они охватывали все характерные и повторяющиеся изо дня в день шумовые ситуации [важно выявить все значительные изменения шума на рабочем месте, например на 5 дБ (дБА) и более]. В этом случае результаты измерения, полученные в различных сменах, не будут противоречивы.

Продолжительность измерений в пределах каждого опорного временного интервала

    для постоянного шума не менее 15 с;

    для непостоянного, в том числе прерывистого, шума она должна быть равна продолжительности по меньшей мере одного повторяющегося рабочего цикла или кратна нескольким рабочим циклам. Продолжительность измерений может также быть равной длительности некоторого характерного вида работы или ее части. Продолжительность измерений считают достаточной, если при дальнейшем ее увеличении эквивалентный уровень звука не изменяется более чем на 0,5 дБА;

  • для непостоянного шума, причины колебания которого не могут быть явно связаны с характером выполняемой работы, – 30 мин (три цикла измерений по 10 мин) или менее, если результаты измерений при меньшей продолжительности не расходятся более чем на 0,5 дБ (дБА);
  • для импульсного шума – не менее времени прохождения 10 импульсов (рекомендуется 15 – 30 с)

Измерения шума для контроля соответствия фактических уровней шума на рабочих местах допустимым уровням по действующим нормам должны проводиться при работе не менее 2/3 обычно используемых в данном помещении единиц установленного оборудования в наиболее часто реализуемом (характерном) режиме его работы или иным способом, когда обеспечено типовое шумовое воздействие со стороны источников шума, не находящихся на рабочем месте (в рабочей зоне). Если известно, что далеко расположенное от рабочего места оборудование создает на нем фоновый шум на 15 – 20 дБ ниже, чем шум при работе оборудования, установленного на данном рабочем месте, то его включать не следует.

Измерения не следует проводить при разговорах работающих, а также при подаче различных звуковых сигналов (предупреждающих, информационных, телефонных звонков и т.д.) и при работе громкоговорящей связи.

Измерения могут проводиться при наличии или отсутствии (последнее предпочтительнее) оператора (работающего) на рабочем месте или в рабочей зоне. Измерения проводят в фиксированных точках или с помощью микрофона, закрепляемого на операторе и перемещающегося вместе с ним, что обеспечивает более высокую точность определения уровня шума и является предпочтительным.

Измерения в фиксированной точке проводят, если положение головы оператора известно точно. При отсутствии оператора микрофон устанавливают в заданную точку измерения, находящуюся на уровне его головы. Если положение головы оператора точно не известно и измерения проводят в отсутствии оператора, то микрофон устанавливают для сидячего рабочего места на высоте (0,91 ± 0,05) м над центром поверхности сидения при его среднем регулировочном положении по росту оператора, а для стоячего рабочего места – на высоте (1,550 ± 0,075) м над опорой на вертикали, проходящей через центр головы прямостоящего человека.

Если присутствие оператора необходимо, то микрофон устанавливают на расстоянии приблизительно 0,1 м от уха, воспринимающего больший (эквивалентный) уровень звука, и ориентируют в направлении взгляда оператора, если это возможно, или в соответствии с инструкцией изготовителя. Если микрофон закрепляют на операторе, то его устанавливают на шлеме или плече с помощью рамки, а также на ошейнике на расстоянии 0,1 – 0,3 м от уха, но так, чтобы не препятствовать работе оператора и не создавать ему опасности.

Микрофон должен быть удален не менее чем на 0,5 м от оператора, проводящего измерения.

Вблизи источника шума даже незначительные изменения положения микрофона могут существенно влиять на результаты измерения. Если в точке измерения хорошо различимы тона, то могут иметь место стоячие волны. Микрофон рекомендуется несколько раз переместить в зоне 0,1 – 0,5 м и в качестве результата измерений принять среднее значение.

Когда микрофон располагают вплотную к оператору, то может наблюдаться заметная разница при измерениях в присутствии оператора и без него (обычно результаты измерения в присутствии оператора выше). Особенно это проявляется при измерениях высокочастотного тонального шума или шума малых источников на близком расстоянии от них. Для предотвращения грубых ошибок рекомендуется сравнить результаты измерений в присутствии оператора и без него и в случае их значительного различия рассчитать среднее значение.

Октавные уровни звукового давления, уровни звука измеряют шумомерами 1-го или 2-го класса точности.

Аппаратуру калибруют до и после проведения измерения шума в соответствии с инструкциями по эксплуатации приборов.

На рисунке 3 изображены средства измерений уровня звукового давления.

Рисунок 3 – Средства измерений уровня звукового давления

Фактические уровни звукового давления

Примеры фактических уровней звукового давления приведены на рисунке 4.

Рисунок 4 – Фактические уровни звукового давления

Мероприятия по устранению вредного воздействия шума

Мероприятия по защите от шума рабочих мест промышленных предприятий в первую очередь обеспечиваются следующими строительно-акустическими методами.

Рациональное с акустической точки зрения решение генерального плана объекта, рациональное архитектурно-планировочное решение зданий

Основным принципом защиты является группировка помещений с повышенным уровнем шума и их обособленное расположение от других частей здания. Что касается оборудования этих помещений, то наиболее благоприятной считается установка его в центре помещения. В этом случае рядом будет находиться только одна отражающая поверхность – пол. При установке оборудования у стены она также будет отражать звуковые волны, и шум будет усиливаться. Этот принцип действует и для защиты от структурного шума, с той лишь разницей, что оборудование не должно касаться стен помещения.

Применение ограждающих конструкций зданий с требуемой звукоизоляцией

Ограждающими конструкциями зданий являются стены, перекрытия, перегородки и т.п. Они делятся на внешние и внутренние. Внешние служат для защиты от различных климатических факторов, а внутренние ограждающие конструкции – для разделения и перепланировки внутреннего пространства здания.

Элементы ограждений рекомендуется проектировать из материалов с плотной структурой, не имеющей сквозных пор. Ограждения, выполненные из материалов со сквозной пористостью, должны иметь наружные слои из плотного материала, бетона или раствора.

Внутренние стены и перегородки из кирпича, керамических и шлакобетонных блоков рекомендуется проектировать с заполнением швов на всю толщину (без пус-тошовки) и оштукатуренными с двух сторон безусадочным раствором.

Ограждающие конструкции необходимо проектировать так, чтобы в процессе строительства и эксплуатации в их стыках не было и не возникло даже минимальных сквозных щелей и трещин. Возникающие в процессе строительства щели и трещины после их расчистки должны устраняться конструктивными мерами и заделкой невысыхающими герметиками и другими материалами на всю глубину.

Звукоизоляция конструкций здания осуществляется путем их обшивки звукопоглощающими материалами. Эффективность звукоизоляции зависит от типа используемого материала и от его толщины. Наиболее эффективными являются волокнистые материалы, которые, благодаря своей структуре, пропускают лишь малый процент шума. Толщина и материал конструкций определяется на основании проведения акустических расчетов.

Применение звукопоглощающих конструкций

Наличие отражений звуковых волн от поверхностей замкнутого пространства (помещения) и находящихся в нем предметов обычно увеличивает интенсивность звука по сравнению с уровнями, создаваемыми тем же источником звука, излучающим в свободное (открытое) пространство. Для устранения отраженной части звукового поля применяют различные звукопоглощающие материалы и конструкции на их основе.

Звукопоглощающие конструкции (подвесные потолки, облицовка стен, кулисные и штучные поглотители) следует применять для снижения уровней шума на рабочих местах и в зонах постоянного пребывания людей в производственных и общественных зданиях.

Звукопоглощающие конструкции следует размещать на потолке и на верхних частях стен. Целесообразно размещать звукопоглощающие конструкции отдельными участками или полосами. На частотах ниже 250 Гц эффективность звукопоглощающей облицовки увеличивается при ее размещении в углах помещения.

Площадь звукопоглощающих облицовок и количество штучных поглотителей определяются расчетным путем.

Штучные поглотители следует применять, если облицовок недостаточно для полу-чения требуемого снижения шума, а также вместо звукопоглощающего подвесного потолка, когда его устройство невозможно или малоэффективно (большая высота производ-ственного помещения, наличие мостовых кранов, наличие световых и аэрационных фонарей). Как обязательные мероприятия по снижению шума и обеспечению оптимальных акустических параметров помещений звукопоглощающие конструкции должны применяться: в шумных цехах производственных предприятий; в машинных залах вычислительных центров; в звукоизолирующих кабинах, боксах и укрытиях.

Акустические свойства материалов существенно зависят от их структурных параметров, которые определяют область применения этих материалов. Так, если требуется снижение шума в области низких частот, то целесообразно использовать облицовки, выполненные из ультра- или супер-тонких волокнистых материалов плотностью 15 – 20 кг/м3. Для снижения широкополосного шума в диапазоне средних и высоких частот следует выбирать материалы с более крупными волокнами плотностью 20 – 30 кг/м3 и более.

Необходимо отметить, что в зоне действия прямого звука звукопоглощающие конструкции практически не дают снижения уровней шума.

Применение звукоизолирующих кабин наблюдения и дистанционного управления

Звукоизолирующие кабины следует применять в промышленных цехах и на территориях, где допустимые уровни превышены, для защиты от шума рабочих и обслуживающего персонала. В звукоизолирующих кабинах следует располагать пульты контроля и управления «шумными» технологическими процессами и оборудованием, рабочие места мастеров и начальников цехов.

В зависимости от требуемой звукоизоляции кабины могут быть спроектированы из обычных строительных материалов (кирпича, железобетона и т.п.) или иметь сборную конструкцию, собираемую из заранее изготовленных конструкций из стали, алюминия, пластика, фанеры и других листовых материалов на сборном или сварном каркасе.

Звукоизолирующие кабины следует устанавливать на резиновых виброизоляторах для предотвращения передачи вибраций на ограждающие конструкции и каркас кабины. Внутренний объем кабины должен составлять не менее 15 м3 на одного человека. Высота кабины (внутри) – не менее 2,5 м. Кабина должна быть оборудована системой вентиляции или кондиционирования воздуха с необходимыми глушителями шума. Внутренние поверхности кабины должны быть на 50 - 70 % облицованы звукопоглощающими материалами.

Двери кабины должны иметь уплотняющие прокладки в притворе и запорные устройства, обеспечивающие обжатие прокладок. В кабинах 1-го и 2-го классов должны быть двойные двери с тамбуром.

Применение звукоизолирующих кожухов на шумных агрегатах

Применение звукоизолирующих кожухов является одним из наиболее эффективных решений проблемы изоляции агрегатов с повышенным уровнем шума. Звукоизолирующий кожух целесообразно применять в тех случаях, когда создаваемый агрегатом (машиной) шум в расчетной точке превышает допустимое значение на 5 дБ и более хотя бы в одной октавной полосе, а шум всего остального технологического оборудования в той же октавной полосе (в той же расчетной точке) на 2 дБ и более ниже допустимого.

Звукоизолирующие кожухи, как правило, изготавливаются из волокнистых материалов, а каркасом служат тонкие перфорированные металлические панели. Если величина звукоизоляции воздушного шума не превышает 10 дБ на средних и высоких частотах, то кожух может быть выполнен из эластичных материалов (винила, резины и др.), если превышает – кожух следует выполнять из листовых конструкционных материалов. Элементы кожуха должны крепиться на каркасе.

Кожух из металла следует покрывать вибродемпфирующим материалом (листовым или в виде мастики), при этом толщина покрытия должна быть в 2 – 3 раза больше толщины стенки. С внутренней стороны на кожухе должен помещаться слой звукопоглощающего материала толщиной 40 – 50 мм. Для его защиты от механических воздействий, пыли и других загрязнений следует использовать металлическую сетку со стеклотканью или тонкой пленкой толщиной 20 – 30 мкм.

Кожух не должен иметь непосредственный контакт с агрегатом и трубопроводами. Технологические и вентиляционные отверстия должны быть снабжены глушителями и уплотнителями. Установка звукоизолирующих кожухов является одним из основных мероприятий для снижения шума вентиляционного оборудования в зданиях и помещениях. Они устанавливаются на приточные, некоторые вытяжные установки и кондиционеры. Звукоизолирующие кожухи представляют собой два металлических листа со звукопоглощающим материалом между ними. Акустическая эффективность таких кожухов может составлять до 10 – 15 дБ на низких и до 30 – 40 дБ – на высоких частотах.

Применение акустических экранов

Акустический экран представляет собой некоторую преграду между рабочим местом и источником шума, обладающую высоким уровнем звукоизоляции. Экраны следует применять для снижения уровней звукового давления на рабочих местах в зоне действия прямого звука и в промежуточной зоне. Устанавливать экраны следует по возможности ближе к источнику шума.

Экраны следует изготавливать из твердых листовых материалов или отдельных щитов с обязательной облицовкой звукопоглощающими материалами поверхности, обращенной в сторону источника шума.

Конструктивно экраны могут быть плоскими и П-образной формы (в этом случае их эффективность повышается). Если экран окружает источник шума, то он превращается в выгородку и его эффективность приближается к эффективности бесконечного экрана с высотой h. Выгородки целесообразно применять для источника (источников) шума, уровни звуковой мощности которого на 15 дБ и более выше, чем у остальных источников шума.

Элементы экранов могут располагаться вертикально и под определенным наклоном к горизонтальной (вертикальной) плоскости. Угол наклона зависит от взаимного расположения источника шума и рабочего места.

Основные параметры экрана (высота, форма, толщина звукопоглощающей облицовки), при которых обеспечивается заданная акустическая эффективность при фиксированном расстоянии до источника шума, определяются расчетным путем. Линейные размеры экранов должны быть по крайней мере в три раза больше линейных размеров источника шума.

Cнижением шума вентиляторов и применением глушителей шума в системах вентиляции, кондиционирования воздуха и в аэрогазодинамических установках

Для снижения шума вентилятора следует: выбирать агрегат с наименьшими удельными уровнями звуковой мощности; обеспечивать работу вентилятора в режиме максимального КПД; снижать сопротивление сети и не применять вентилятор, создающий избыточное давление; обеспечивать плавный подвод воздуха к входному патрубку вентилятора.

Для снижение шума от вентилятора по пути его распространения по воздуховодам следует: предусматривать центральные (непосредственно у вентилятора) и концевые (в воздуховоде перед воздухораспределительными устройствами) глушители шума; ограничивать скорость движения воздуха в сетях величиной, обеспечивающей уровни шума, генерируемого регулирующими и воздухораспределительными устройствами, в пределах допустимых значений в обслуживаемых помещениях.

В качестве глушителей шума систем вентиляции могут применяться трубчатые, пластинчатые, канальные, цилиндрические, экранные и камерные, а также облицованные изнутри звукопоглощающими материалами воздуховоды и их повороты.

Конструкцию глушителя следует подбирать в зависимости от размера воздуховода, требуемого снижения уровней шума, допустимой скорости воздуха на основании расчета по соответствующему своду правил.

Виброизоляция технологического оборудования

Воздушный шум, в особенности вибрации, распространяясь с малым затуханием по несущим и ограждающим конструкциям зданий, а также по трубопроводам и стенкам каналов и шахт в зданиях, излучаются ими в виде структурного (ударного) шума в помещениях, значительно удаленных от источников шума и вибраций. Защита от структурного шума осуществляется методами акустической виброизоляции инженерного оборудования и его коммуникаций. К этим методам относятся установка гибких вставок и виброизоляторов, оборудование помещений полами на упругом основании (плавающие полы).

В первом случае для снижения структурного шума вентиляционного оборудования устанавливаются гибкие вставки из льняной парусины на сторонах нагнетания и всасывания вентиляторов. Вставки изготавливаются в соответствии с типовыми чертежами и имеют прямоугольное и круглое поперечное сечение. Для насосов и холодильных машин используются гибкие вставки в виде резиновых рукавов.

Другой способ – снижение шума за счет использования виброизоляторов. Для достижения цели на практике часто применяются виброизоляторы двух типов: стальные пружинные и резиновые виброизоляторы.

Резиновые виброизоляторы, максимальный допустимый статический прогиб которых составляет 30% от их высоты, используются при частоте вращения более 1800 об/мин. Данные виброизоляторы эффективно снижают передачу вибрации на высоких частотах. Однако их применение не позволяет значительно снизить передачу вибрации на низких частотах. Кроме того, резиновые виброизоляторы обладают малой износостойкостью. Наиболее эффективным является применение комбинированных виброизоляторов, состоящих из пружинных виброизоляторов, которые установлены на резиновых или пробковых прокладках толщиной 10 – 20 мм и прилегают к опорной поверхности.

Третий способ – применение полов на упругом основании (плавающие полы). Их эффективность может быть ниже, чем у виброизоляторов (в рассчитываемой полосе частот), но демпфирующая способность таких полов проявляется в широком диапазоне частот.

В конструкциях такого типа, как и в целом при устройстве звукоизоляции, необходимо строго следить за отсутствием сквозных отверстий и щелей в изолирующих конструкциях, плотном примыкании элементов друг к другу. В случае с «плавающими полами» упругие прокладки должны заходить вверх на стены по их периметру, не допуская жесткого механического контакта пола (стяжки) со стенами.

Необходимо отметить организационные способы защиты от шума (см. ниже).

Выбор рациональных режимов работы оборудования, ограничение времени нахождения персонала в зоне эксплуатации агрегатов (машин) с повышенным уровнем шума (защита «временем»)

Защита «временем» предусматривает нахождение в помещениях с высоким уровнем шума только по служебной необходимости с четкой регламентацией по времени совершаемых действий; автоматизацию работ; уменьшение времени настроечных работ и т.д.

Длительность дополнительных регламентированных перерывов устанавливается с учетом уровня шума, его спектра и средств индивидуальной защиты. Для тех групп работников, где по условиям техники безопасности не допускается использование противошумов (прослушивание сигналов и т.п.), учитывается только уровень шума и его спектр.

Отдых в период регламентированных перерывов следует проводить в специально оборудованных помещениях. Во время обеденного перерыва работающие при воздействии повышенных уровней шума также должны находиться в оптимальных акустических условиях (при уровне звука не выше 50 дБА).

Использование средств индивидуальной защиты органов слуха

К средствам индивидуальной защиты органа слуха относятся противошумные вкладыши, противошумные наушники и шлемы. Эффективность СИЗ может быть обеспечена их правильным подбором в зависимости от уровней и спектра шума, а также контролем за правильной эксплуатацией.

Профилактика вредного действия шума на организм человека начинается с его нормирования. Нормирование шума заключается в установлении безопасных уровней звука, превышение которых является угрозой жизни и здоровью населения, поскольку создает риск развития заболеваний связанных с неблагоприятным действием шума.

Нормируется по следующим показателям:

  • уровень звука (для постоянного шума);
  • эквивалентный уровень звука (этот показатель приравнивает уровень звука непостоянного шума за некоторый промежуток времени к определенному уровню звука постоянного широкополосного шума);
  • максимальный уровень звука (для непостоянного шума);
  • уровни звукового давления в октавных полосах со среднегеометрическими частотами 31,5 Гц, 63 Гц, 125 Гц, 250 Гц, 500 Гц, 1000 Гц, 2000 Гц, 4000 Гц, 8000 Гц.

Принципы нормирования шума в жилых и общественных помещениях и на рабочих местах отличаются друг от друга.

Нормирование шума в жилых и общественных зданиях и на прилегающей к ним территории

Для жилых помещений и помещений в общественных зданиях и учреждениях установлены допустимые уровни шума.

Допустимый уровень шума – это уровень, который не вызывает у человека значительного беспокойства и существенных изменений показателей функционального состояния систем и анализаторов, чувствительных к шуму.

Другими словами такой шум не только не заметен для человека, но и не вызовет абсолютно никаких физиологических эффектов со стороны организма. К такому шуму человеческому организму не приходится адаптироваться, а, значит, он не является стрессорным фактором.

Напомню, что критерий «заметности» шума, т.е. его субъективного восприятия, сам по себе не может определять какие либо нормы шума, поскольку к субъективному восприятию даже достаточно высоких уровней шума человек привыкает, но привыкания к шуму в физиологическом смысле не происходит. Утомление и физиологические эффекты, вызванные шумом, со временем накапливаются и могут вылиться в различные функциональные нарушения и заболевания, именно поэтому способность шума на известных уровнях вызывать появление таких эффектов определяет нормы шума наряду с его субъективным восприятием.

Если допустимый уровень шума не превышается, то это не беспокоит людей, находящихся в такой обстановке, создает комфортную атмосферу для выполнения повседневных дел, не вызывает утомления и способствует активному или спокойному отдыху.

При нормировании шума учитываются и различные состояния человека, как физиологические, так и вызванные различными заболеваниями, например, шум, который незаметен для бодрствующего человека, тем более, если он развлекается или занимается активным отдыхом, будет мешать человеку, который пытается заснуть, а значит, помешает нормальному течению сна и отдыху организма, что чревато для его здоровья. Поэтому для помещений, в которых люди могут находиться круглосуточно, установлены различные нормативы для дневного времени суток (с 7 до 23 ч) и для времени ночного (с 23 ч до 7ч).

Аналогично, шум, который не мешает здоровому человеку, может послужить причиной дискомфорта для человека больного. Поэтому для жилых помещений, и для помещений, приравненных к ним, нормы шума несколько выше, чем для палат больниц и санаториев.

В учебных помещениях допустимые уровни шума соизмеримы с нормами для жилых помещений, поскольку для того, чтобы сосредоточиться на учебном процессе какие либо отвлекающие факторы совершенно ни к чему.

Для общественных учреждений, в которых люди развлекаются, совершают покупки, получают какие либо услуги номы шума выше, чем для жилых помещений, учебных и лечебно-профилактических учреждений.

Установлены допустимые уровни шума и для общественных территорий.

Где установлены нормы шума для жилых и общественных помещений

Допустимые уровни шума установлены в специальных нормативных документах, которые регламентируют критерии безопасности и безвредности для здоровья человека различных факторов среды обитания и требования, обеспечивающие благоприятные условия для жизнедеятельности людей. Такими документами являются: санитарные правила (СП), санитарно-эпидемиологические правила и нормативы (СанПиН), санитарные нормы (СН).

Все перечисленные типы документов являются обязательными для исполнения их требований гражданами, индивидуальными предпринимателями, юридическими лицами не зависимо от их принадлежности и вида собственности.

За неисполнение обязательных требований вышеуказанных нормативных документов предусмотрена гражданская, административная и уголовная ответственность.

Основным документом, устанавливающим допустимые уровни шума, является СН 2.2.4/2.1.8.562-96 «Шум на рабочих местах, в помещениях жилых, общественных зданий и на территории жилой застройки».

Кроме него нормы шума регламентируются в специализированных СП и СанПиН, например, СанПиН 2.1.2.2645-10 «Санитарно-эпидемиологические требования к условиям проживания в жилых зданиях и помещениях», СП 2.1.2.2844-11 «Санитарно-эпидемиологические требования к устройству, оборудованию и содержанию общежитий для работников организаций и обучающихся образовательных учреждений» и т.д.

Методика измерения уровней шума в жилых и общественных зданиях изложена в методических указаниях МУК 4.3.2194-07 «Контроль уровня шума на территории жилой застройки, в жилых и общественных зданиях и помещениях»

Увидели ошибку? Выделите и нажмите Ctrl+Enter.

Обсуждение: 5 комментариев

    Мой дом — на углу перекрёстка. Установили светофор с пищалкой для слепых. Пищает пищалка круглые сутки. Специально узнал о %-ном количестве слепых в нашем районе (г.Ноябрьск, Крайний Север): их не оказалось вовсе.
    За три месяца работы этого «доброго» устройства — у меня начинает ехать крыша у самого. Раздражительность — зашкаливает.
    Ну, вы можете представить: что это такое, особенно, ночью…
    Как на эту тему применить санитарные нормы?



Просмотров