Государственной власти местного само. Местные органы государственной власти и местного самоуправления. Гарантии правомочий местного самоуправления

В современных автомобилях доля пластмассовых деталей постоянно растет. Растет и количество ремонтов на пластмассовых поверхностях, все чаще мы сталкиваемся с необходимостью их окрашивания.

Во многом окраска пластмасс отличается от окраски металлических поверхностей, что обусловлено, в первую очередь, самими свойствами пластмасс: они более эластичны и имеют меньшую адгезию к ЛКМ. А так как спектр полимерных материалов, применяемых в автомобилестроении, очень разнообразен, то не будь каких-то универсальных ремонтных материалов, способных создавать качественное декоративное покрытие на многих из их типов, малярам бы, наверное, пришлось получать специальное образование по химии.

К счастью, все на самом деле окажется значительно проще и погружаться с головой в изучение молекулярной химии полимеров нам не придется. Но все же некоторые сведения о типах пластмасс и их свойствах, хотя бы с целью расширения кругозора, будут явно нелишними.

Сегодня вы узнаете

Пластмассы — в массы

В XX веке человечество пережило синтетическую революцию, в его жизнь вошли новые материалы — пластмассы. Пластмассу можно смело считать одним из главных открытий человечества, без ее изобретения многие другие открытия были бы получены намного позже или их не было бы вовсе.

Первая пластмасса была изобретена в 1855 году британским металлургом и изобретателем Александром Парксом. Когда он решил найти дешевый заменитель дорогостоящей слоновой кости, из которой в то время делались бильярдные шары, вряд ли он мог себе представить, какое значение впоследствии приобретет полученный им продукт.

Ингредиентами будущего открытия стала нитроцеллюлоза, камфора и спирт. Смесь этих компонентов прогревалась до текучего состояния, а затем заливалась в форму и застывала при нормальной температуре. Так на свет появился паркезин — прародитель современных пластических масс.

От природных и химически модифицированных природных материалов к полностью синтетическим молекулам развитие пластмасс пришло несколько позже — когда профессор Фрейбургского университета немец Герман Штаудингер открыл макромолекулу — тот «кирпичик», из которого строятся все синтетические (да и природные) органические материалы. Это открытие принесло в 1953 году 72-летнему профессору Нобелевскую премию.

С тех-то пор все и началось… Чуть ли не ежегодно из химических лабораторий шли сообщения об очередном синтетическом материале с новыми, невиданными свойствами, и сегодня в мире ежегодно производятся миллионы тонн всевозможных пластических масс, без которых жизнь современного человека абсолютно немыслима.

Пластмассы используются везде, где только можно: в обеспечении комфортной жизнедеятельности людей, сельском хозяйстве, во всех областях промышленности. Не исключением является и автомобилестроение, где пластик используется все шире, неудержимо вытесняя своего основного конкурента — металл.

По сравнению с металлами пластмассы — очень молодые материалы. Их история не насчитывает и 200 лет, в то время как олово, свинец и железо были были знакомы человечеству еще в глубокой древности — за 3000-4000 лет до н. э. Но несмотря на это, полимерные материалы по ряду показателей значительно превосходят своего основного технологического конкурента.

Преимущества пластмасс

Преимущества пластмасс по сравнению с металлами очевидны.

Во-первых, пластик существенно легче. Это позволяет снизить общий вес автомобиля и сопротивление воздуха при движении, и тем самым — уменьшить расход топлива и, как следствие, выброс выхлопных газов.

Общее снижение веса автомобиля на 100 кг за счет применения пластмассовых деталей позволяет экономить до одного литра топлива на 100 км.

Во-вторых, использование пластмасс дает почти неограниченные возможности для формообразования, позволяя воплощать в реальность любые дизайнерские идеи и получать детали самых сложных и хитроумных форм.

К преимуществам пластмасс также можно отнести их высокую коррозионную стойкость, устойчивость к атмосферным воздействиям, кислотам, щелочам и прочим агрессивным продуктам химии, отличные электро- и теплоизоляционные свойства, высокий коэффициент шумоподавления… Словом, неудивительно, почему полимерные материалы находят столь широкое применение в автомобилестроении.

Предпринимались ли попытки создать полностью пластмассовый автомобиль? А как же! Вспомнить хотя бы небезызвестный «Трабант», выпускавшийся в Германии более 40 лет назад на заводе в Цвик-кау — его кузов был целиком изготовлен из слоистого пластика.

Для получения этого пластика 65 слоев очень тонкой хлопчатобумажной ткани (поступавшей на завод с текстильных фабрик), чередующихся со слоями размолотой крезолоформальдегидной смолы, спрессовывались в очень прочный материал толщиной 4 мм при давлении 40 атм. и температуре 160 °С в течение 10 мин.

До сих пор кузова гэдээровских «Трабантов», про которые пели песни, рассказывали легенды (но чаще сочиняли анекдоты), лежат на многих свалках страны. Лежат… но ведь не ржавеют!

Trabant. Самый популярный в мире автомобиль из пластика

Шутки шутками, а перспективные разработки цельнопластмассовых кузовов серийных авто есть и сейчас, многие кузова спортивных автомобилей целиком изготавливаются из пластика. Традиционно металлические детали (капоты, крылья) на многих автомобилях сейчас также меняют на пластиковые, например, у автомобилей Citroën, Renault, Peugeot и других.

Вот только в отличие от кузовных панелей народного «Траби», пластиковые детали современных автомобилей уже не вызывают иронической улыбки. Напротив — их стойкость к ударным нагрузкам, способность деформированных участков к самовосстановлению, высочайшая антикоррозионная стойкость и малый удельный вес заставляют проникнуться к этому материалу глубоким уважением.

Завершая разговор о достоинствах пластмасс нельзя не отметить тот факт, что хоть и с некоторыми оговорками, но все-таки большинство из них отлично поддается окрашиванию. Не имей серая полимерная масса такой возможности, вряд ли бы она снискала такую популярность.

Зачем красить пластик?

Необходимость окрашивания пластмасс обусловлена с одной стороны эстетическими соображениями, а с другой — необходимостью защищать пластики. Ведь ничего вечного нет. Пластики хоть и не гниют, но в процессе эксплуатации и воздействия атмосферных влияний, они все равно повергаются процессам старения и деструкции. А нанесенный лакокрасочный слой защищает поверхность пластика от различных агрессивных воздействий и, следовательно, продлевает срок его службы.

Если в условиях производства окрашивание пластмассовых поверхностей производится очень просто — в данном случае речь идет о большом количестве новых одинаковых деталей из одной и той же пластмассы (да и технологии там свои), то маляр в авторемонтной мастерской сталкивается с проблемами разнородности материалов различных деталей.

Вот здесь то и приходится ответить себе на вопрос: «Что вообще такое пластмасса? Из чего ее делают, каковы ее свойства и основные виды?».

Что такое пластмасса?

В соответствии с отечественным государственным стандартом:

Пластмассами называются материалы, основной составной частью которых являются такие высокомолекулярные органические соединения, которые образуются в результате синтеза или же превращений природных продуктов. При переработке в определенных условиях они, как правило, проявляют пластичность и способность к формованию или
деформации.

Если из такого сложного даже для чтения, а не только для понимания, описания убрать первое слово «пластмассами», пожалуй, вряд ли кто догадается, о чем вообще идет речь. Что ж, попробуем немного разобраться.

«Пластмассы» или «пластические массы» назвали так потому, что эти материалы способны при нагреве размягчаться, становиться пластичными, и тогда под давлением им можно придать определенную форму, которая при дальнейшем охлаждении и отверждении сохраняется.

Основу любой пластмассы составляет (то самое «высокомолекулярное органическое соединение» из определения выше).

Слово «полимер» происходит от греческих слов «поли» («много») и «мерос» («части» или «звенья»). Это вещество, молекулы которого состоят из большого числа одинаковых, соединенных между собой звеньев. Эти звенья называют мономерами («моно» — один).

Так, например, выглядит мономер полипропилена, наиболее применяемого в автомобилестроении типа пластика:

Молекулярные цепи полимера состоят из практически бесчисленного числа таких кусочков, соединенных в единое целое.

Цепочки молекул полипропилена

По происхождению все полимеры делят на синтетичес­кие и природные . Природные полимеры составляют основу всех животных и растительных организмов. К ним относят полисахариды (целлюлоза, крахмал), белки, нуклеиновые кислоты, натуральный каучук и другие вещества.

Хотя модифицированные природные полимеры и находят промышленное применение, большинство пластмасс являются синтетическими.

Синтетические полимеры получают в процессе химического синтеза из соответствующих мо­номеров.

В качестве исходного сырья обычно применяются нефть, природный газ или уголь. В результате химической реакции полимеризации (или поликонденсации) множество «маленьких» мономеров исходного вещества соединяются между собой, будто бусины на ниточке, в «огромные» молекулы полимера, который затем формуют, отливают, прессуют или прядут в готовое изделие.

Так, например, из горючего газа пропилена получают пластик полипропилен, из которого делают бамперы:

Теперь вы наверное догадались, откуда берутся названия пластмасс. К названию мономера добавляется приставка «поли-» («много»): этилен → полиэтилен , пропилен → полипропилен , винилхлорид → поливинилхлорид и т.д.

Международные краткие обозначения пластмасс являются аббревиатурами их химических наименований. Например, поливинилхлорид обозначают как PVC (Polyvinyl chloride), полиэтилен — PE (Polyethylene), полипропилен — PP (Polypropylene).

Кроме полимера (его еще называют связующим) в состав пластмасс могут входить различные наполнители, пластификаторы, стабилизаторы, красители и другие вещества, обеспечивающие пластмассе те или иные технологические и потребительские свойства, например текучесть, пластичность, плотность, прочность, долговечность и т.д.

Виды пластмасс

Пластмассы классифицируют по разным критериям: химическому составу, жирности, жесткости. Но главным критерием, который объясняет природу полимера, является характер поведения пластика при нагревании. По этому признаку все пластики делятся на три основные группы:

  • термопласты;
  • реактопласты;
  • эластомеры.

Принадлежность к той или иной группе определяют форма, величина и расположение макромолекул, наряду с химическим составом.

Термопласты (термопластичные полимеры, пластомеры)

Термопласты — это пластмассы, которые при нагреве плавятся, а при охлаждении возвращаются в исходное состояние.

Эти пластмассы состоят из линейных или слегка разветвленных молекулярных цепей. При невысоких температурах молекулы располагаются плотно друг возле друга и почти не двигаются, поэтому в этих условиях пластмасса твердая и хрупкая. При небольшом повышении температуры молекулы начинают двигаться, связь между ними ослабевает и пластмасса становится пластичной. Если нагревать пластмассу еще больше, межмолекулярные связи становятся еще слабее и молекулы начинают скользить относительно друг друга — материал переходит в эластичное, вязкотекучее состояние. При понижении температуры и охлаждении весь процесс идет в обратном порядке.

Если не допускать перегрева, при котором цепи молекул распадаются и материал разлагается, процесс нагревания и охлаждения можно повторять сколько угодно раз.

Это особенность термопластов многократно размягчаться позволяет неоднократно перерабатывать эти пластмассы в те или иные изделия. То есть теоретически, из нескольких тысяч стаканчиков из-под йогурта можно изготовить одно крыло. С точки зрения защиты окружающей среды это очень важно, поскольку последующая переработка или утилизация — большая проблема полимеров. Попав в почву, изделия из пластика разлагаются в течение 100–400 лет!

Кроме того, благодаря этим свойствам термопласты хорошо поддаются сварке и пайке. Трещины, изломы и деформации можно легко устранить посредством теплового воздействия.

Большинство полимеров, применяемых в автомобилестроении, являются именно термопластами. Используются они для производства различных деталей интерьера и экстерьера автомобиля: панелей, каркасов, бамперов, решеток радиатора, корпусов фонарей и наружных зеркал, колпаков колес и т.д.

К термопластам относятся полипропилен (РР), поливинихлорид (PVC), сополимеры акрилонитрила, бутадиена и стирола (ABS), полистирол (PS), поливинилацетат (PVA), полиэтилен (РЕ), полиметилметакрилат (оргстекло) (РММА), полиамид (РА), поликарбонат (PC), полиоксиметилен (РОМ) и другие.

Реактопласты (термореактивные пластмассы, дуропласты)

Если для термопластов процесс размягчения и отверждения можно повторять многократно, то реактопласты после однократного нагревания (при формовании изделия) переходят в нерастворимое твердое состояние, и при повторном нагревании уже не размягчаются. Происходит необратимое отверждение.

В начальном состоянии реактопласты имеют линейную структуру макромолекул, но при нагревании во время производства формового изделия макромолекулы «сшиваются», создавая сетчатую пространственную структуру. Именно благодаря такой структуре тесно сцепленных, «сшитых» молекул, материал получается твердым и неэластичным, и теряет способность повторно переходить в вязкотекучее состояние.

Из-за этой особенности термореактивные пластмассы не могут подвергаться повторной переработке. Также их нельзя сваривать и формовать в нагретом состоянии — при перегреве молекулярные цепочки распадаются и материал разрушается.

Эти материалы являются достаточно термостойкими, поэтому их используют, например, для производства деталей картера в подкапотном пространстве. Из армированных (например стекловолокном) реактопластов производят крупногабаритные наружные кузовные детали (капоты, крылья, крышки багажников).

К группе реактопластов относятся материалы на основе фенол-формальдегидных (PF), карбамидо-формальдегидных (UF), эпоксидных (EP) и полиэфирных смол.

Эластомеры — это пластмассы с высокоэластичными свойствами. При силовом воздействии они проявляют гибкость, а после снятия напряжения возвращают исходную форму. От прочих эластичных пластмасс эластомеры отличаются способностью сохранять свою эластичность в большом температурном диапазоне. Так, например, силиконовый каучук остается упругим в диапазоне температур от -60 до +250 °С.

Эластомеры, так же как и реактопласты, состоят из пространственно-сетчатых макромолекул. Только в отличие от реактопластов, макромолекулы эластомеров расположены более широко. Именно такое размещение обуславливает их упругие свойства.

В силу своего сетчатого строения эластомеры неплавки и нерастворимы, как и реактопласты, но набухают (реактопласты не набухают).

К группе эластомеров относятся различные каучуки, полиуретан и силиконы. В автомобилестроении их используют преимущественно для изготовления шин, уплотнителей, спойлеров и т.д.

В автомобилестроении используются все три типа пластиков. Также выпускаются смеси из всех трех видов полимеров — так называемые «бленды» (blends), свойства которых зависят от соотношения смеси и вида компонентов.

Определение типа пластика. Маркировка

Любой ремонт пластиковой детали должен начинаться с идентификации типа пластмассы, из которой изготовлена деталь. Если в прошлом это давалось не всегда просто, то сейчас «опознать» пластик легко — все детали, как правило, маркируются.

Обозначение типа пластмассы производители обычно выштамповывают с внутренней стороны детали, будь то бампер или крышка мобильного телефона. Тип пластика, как правило, заключен в характерные скобки и может выглядеть следующим образом: >PP/EPDM<, >PUR<, .

Контрольное задание : снимите крышку своего мобильного телефона и посмотрите из какого типа пластмассы он сделан. Чаще всего это >PC<.

Вариантов подобных аббревиатур может быть множество. Все рассмотреть мы не сможем (да и нет в том необходимости), поэтому остановимся на нескольких наиболее распространенных в автомобилестроении типах пластмасс.

Примеры наиболее распространенных в автомобилестроении типов пластика

Полипропилен — РР, модифицированный полипропилен — PP/EPDM

Самый распространенный в автомобилестроении тип пластика. В большинстве случаев при ремонте поврежденных или окраске новых деталей нам придется иметь дело именно с различными модификациями полипропилена.

Полипропилен обладает, пожалуй, совокупностью всех преимуществ, какими только могут обладать пластмассы: низкой плотностью (0,90 г/см³ — наименьшее значение для всех пластмасс), высокой механической прочностью, химической стойкостью (устойчив к разбавленным кислотам и большинству щелочей, моющим средствам, маслам, растворителям), термостойкостью (начинает размягчаться при 140°C, температура плавления 175°C). Он почти не подвергается коррозионному растрескиванию, обладает хорошей способностью к восстановлению. Кроме того, полипропилен является экологически чистым материалом.

Характеристики полипропилена дают повод считать его идеальным материалом для автомобильной промышленности. За свои столь ценные свойства он даже получил титул «короля пластмасс».

На основе полипропилена изготовлены практически все бампера, также этот материал используется при изготовлении спойлеров, деталей салона, приборных панелей, расширительных бачков, решеток радиатора, воздуховодов, корпусов и крышек аккумуляторных батарей и т.д. В быту даже чемоданы изготавливаются из полипропилена.

При литье большинства вышеперечисленных деталей используется не чистый полипропилен, а его различные модификации.

«Чистый» немодифицированный полипропилен очень чувствителен к ультрафиолетовому излучению и кислороду, он быстро теряет свои свойства и становится хрупким при эксплуатации. По этой же причине нанесенные на него лакокрасочные покрытия не могут иметь долговечной адгезии.

Введенные же в полипропилен добавки — чаще в виде резины и талька — значительно улучшают его свойства и дают возможность его окрашивать.

Окрашиванию поддается только модифицированный полипропилен. На «чистом» полипропилене адгезия будет очень слабой! Из чистого полипропилена >РР< изготавливают бачки омывателей, расширительные емкости, одноразовую посуду, стаканчики и т.д.

Любые модификации полипропилена, какой бы длинной не была аббревиатура его маркировки, первыми двумя буквами обозначен все равно, как >РР…<. Наиболее распространенный продукт этих модификаций — >PP/EPDM< (сополимер полипропилена и этиленпропиленового каучука).

ABS (сополимер акрилонитрила, бутадиена и стирола)

ABS — эластичный, но в тоже время ударопрочный пластик. За эластичность отвечает составляющая каучука (бутадиена), за прочность — акрилонитрил. Этот пластик чувствителен к ультрафиолетовому излучению — под его воздействием пластик быстро стареет. Поэтому изделия из ABS нельзя долго держать на свету и нужно обязательно окрашивать.

Чаще всего используется для производства корпусов фонарей и наружных зеркал, решеток радиатора, облицовки приборной панели, обивки дверей, колпаков колес, задних спойлеров и т. п.

Поликарбонат — PC

Один из наиболее ударопрочных термопластов. Чтобы понять, насколько прочен поликарбонат, достаточно того факта, что это материал используется при изготовлении пуленепробиваемых банковских стоек.

Помимо прочности поликарбонаты характеризуются легкостью, стойкостью к световому старению и перепадам температур, пожаробезопасностью (это трудно воспламеняющийся самозатухающий материал).

К сожалению, поликарбонаты достаточно чувствительны к воздействию растворителей и имеют склонность к растрескиванию под воздействием внутренних напряжений.

Не подходящие агрессивные растворители могут серьезно ухудшать прочностные характеристики пластика, поэтому при покраске деталей, где прочность имеет первостепенное значение (например мотоциклетного шлема из поликарбоната) нужно быть особенно внимательными и четко следовать рекомендациям производителя, а иногда даже принципиально отказываться от окрашивания. Зато спойлеры, решетки радиатора и панели бамперов из поликарбоната можно красить без проблем.

Полиамиды — PA

Полиамиды — жесткие, прочные и при этом эластичные материалы. Детали из полиамида выдерживают нагрузки, близкие к нагрузкам, допустимым для цветных металлов и сплавов. Полиамид обладает высокой стойкостью к износу, химической устойчивостью. Он почти невосприимчив к большинству органических растворителей.

Чаще всего полиамиды используют для производства съемных автомобильных колпаков, различных втулок и вкладышей, хомутов трубок, языков замка дверей и защелок.

Полиуретан — PU, PUR

До широкого внедрения в производство полипропилена, полиуретан был самым популярным материалом для изготовления различных эластичных деталей автомобиля: рулевых колес, грязезащитных чехлов, покрытия для педалей, мягких дверных ручек, спойлеров и т.д.

У многих этот тип пластика ассоциируется с маркой Mercedes. Бамперы, боковые накладки дверц, порогов практически на всех моделях изготавливались до недавнего времени из полиуретана.

Производство деталей из этого типа пластмассы требует менее сложного оборудования чем для полипропиленовых. В настоящее время многие частные компании, как за рубежом, так и в странах бывшего Союза предпочитают работать именно с этим типом пластика для изготовления всевозможных деталей для тюнинга автомобилей.

Стеклопластики — SMC, BMC, UP-GF

Стеклопластики являются одним из важнейших представителей так называемых «армированных пластиков». Они изготавливаются на базе эпоксидных или полиэфирных смол (это реактопласты) со стеклотканью в качестве наполнителя.

Высокие физико-механические показатели, а также стойкость к воздействию различных агрессивных сред определили широкое применение этих материалов во многих областях промышленности. Всем известный продукт, используемый в производстве кузовов американских минивэнов.

При изготовлении изделий из стеклопластика возможно применение технологии типа «сэндвич», когда детали состоят из нескольких слоев различных материалов, каждый из которых отвечает определенным требованиям (прочности, химстойкости, абразивоустойчивости).

Легенда о неизвестном пластике

Вот мы держим в руках пластиковую деталь, не имеющую на себе никаких опознавательных знаков, никакой маркировки. Но нам позарез нужно выяснить ее химический состав или хотя бы тип — термопласт это или реактопласт.

Потому что, если речь идет, например, о сварке, то она возможна лишь с термопластами (для ремонта термореактивных пластмасс применяются клеевые композиции). Кроме того, свариваться могут только одноименные материалы, разнородные просто не взаимодействуют. В связи с этим возникает необходимость идентифицировать пластик «no name», чтобы правильно подобрать ту же сварочную присадку.

Идентификация типа пластика — задача непростая. Анализ пластмасс производится в лабораториях по различным показателям: по спектрограмме сгорания, реакции на различные реактивы, запаху, температуре плавления и так далее.

Тем не менее, существует несколько простейших тестов, позволяющих определить приблизительный химический состав пластика и отнести его к той или иной группе полимеров. Один из таких — анализ поведения образца пластика в открытом источнике огня.

Для теста нам понадобится проветриваемое помещение и зажигалка (или спички), с помощью которой нужно осторожно поджечь кусочек испытуемого материала. Если материал плавится, значит мы имеем дело с термопластом, если не плавится — перед нами реактопласт.

Теперь убираем пламя. Если пластик продолжает гореть, то это может быть ABS-пластик, полиэтилен, полипропилен, полистирол, оргстекло или полиуретан. Если гаснет — скорее всего это поливинилхлорид, поликарбонат или полиамид.

Далее анализируем цвет пламени и запах, образующийся при горении. Например, полипропилен горит ярким синеватым пламенем, а его дым имеет острый и сладковатый запах, похожий на запах сургуча или жженной резины. Слабым синеватым пламенем горит полиэтилен, а при затухании пламени чувствуется запах горящей свечи. Полистирол горит ярко, и при этом сильно коптит, а пахнет довольно приятно — у него сладковатый цветочный запах. Поливинилхлорид, наоборот, пахнет неприятно — хлором или соляной кислотой, а полиамид — горелой шерстью.

Кое-что о типе пластика может сказать и его внешний вид. Например, если на детали наблюдаются явные следы сварки, то оно наверняка изготовлено из термопласта, а если имеются следы снятых наждаком заусенцев, значит это термореактивная пластмасса.

Также можно провести тест на твердость: попробовать срезать небольшой кусочек пластмассы ножом или лезвием. С термопласта (он более мягкий) стружка будет сниматься, а вот реактопласт будет крошиться.

Или еще один способ: погружение пластика в воду. Этот метод позволяет довольно просто определить пластики, входящие в группу полиолефинов (полиэтилен, полипропилен и др.). Эти пластмассы будут плавать на поверхности воды, так как их плотность почти всегда меньше единицы. Другие полимеры имеют плотность больше единицы, поэтому они будут тонуть.

Эти и другие признаки, по которым можно определить тип пластика, представлены ниже в виде таблицы.

P.S. В мы уделим внимание вопросам подготовки и покраски пластиковых деталей.

Бонусы

Полноразмерные версии изображений откроются в новом окне при нажатии на картинку!

Расшифровка обозначения пластмасс

Обозначения наиболее распространенных пластиков

Классификация пластиков в зависимости от жесткости

Основные модификации полипропилена и области их применения в автомобиле

Методы определения типа пластмассы

С названиями некоторых материалов может происходить путаница. К примеру, многих интересует, чем отличается пластик от пластмассы. Обыватели теряются в догадках, об одном или о двух разных веществах идет речь. Попытаемся в этом разобраться.

Общие сведения

В любом случае в обоих названиях имеется часть «пласт». Она указывает на свойство материалов формироваться при нагреве и застывать в заданном виде. Плотность пластиков (пластмасс) мала, а прочность сравнительно невысока. Вещества не проводят ток. При горении они выделяют токсины.

Сравнение

На самом деле отличие пластика от пластмассы можно проследить только на уровне языка. Другими словами, смысл у этих названий один и тот же, просто вариант «пластик» является сокращенным. В состав материалов обсуждаемой категории входят полимеры. Они могут иметь природное происхождение, но особенно широко применяется синтетическая продукция. Первая пластмасса называлась паркезином с подачи ее изобретателя Паркса.

Разновидности пластика (пластмассы)

Полипропилен . Это твердый материал, который идет на изготовление пищевых упаковок, игрушек, садовой мебели, одноразовых шприцев. Из него выполняют и предметы автомобильного оснащения: бамперы, детали фар, педали. Полипропиленовые изделия не разрушаются при кипячении и стерилизации паром. Если расплавить материал, то можно спичкой вытянуть из него длинную нить.

Полиэтилен . Его виды, характеризующиеся высокой плотностью, используются для производства разнообразных емкостей: бутылок, канистр, фляг, бочек и ведер. Из материалов этой категории также делают трубы для проведения коммуникаций. Полиэтилен с меньшей плотностью обладает пленкообразующими свойствами и востребован, например, при изготовлении упаковок для пачек с чаем, мусорных мешков, брезента.

Поливинилхлорид . Такая пластмасса отличается эластичностью и стойкостью к разным агрессивным веществам. Из нее производят электроизоляционные оболочки, искусственную кожу, грампластинки и напольные покрытия в виде линолеума. Продукты, выделяемые при сжигании поливинилхлорида, являются очень ядовитыми.

Полистирол . Тонкая полоска этого пластика легко сгибается, а затем с треском ломается. Примерами изделий из такого материала являются стаканчики для йогурта, компоненты одноразовой посуды.

Подведем итог. В чем разница между пластиком и пластмассой? Она заключается лишь в способе словообразования. Первый вариант названия сокращенный, второй – полный. Оба понятия обозначают целый класс материалов с определенными свойствами и назначением.

Пластиковые вещи окружают современного человека всюду. Этот универсальный материал нашел широкое применение и на рынке строительных материалов. Причем он охватывает как изделия эконом-класса, так и дорогие дизайнерские вещи. Разные вещи, разный пластик – так в чем же разница?

Чтобы разобраться в видах пластмасс, обратимся к международной классификации. Унифицированные обозначения разработаны Обществом Пластмассовой Промышленности в 1988 году для целей утилизации отходов. Достаточно взглянуть на значок, чтобы понять, с каким материалом мы имеем дело. Это, зачастую, бывает очень нужно, ведь не все пластмассы одинаково полезны!

Полиэтилентерефталат (PET, PETE) – самый дешевый и распространенный вид пластмассы. Он используется для одноразовой тары прохладительных напитков, минеральной воды, растительного масла и т.д. Ключевое слово здесь – одноразовой. Повторное использование пластиковых бутылок крайне вредно, ведь они начинают выделять фталат (вещество, влияющее негативно на нервную и сердечно-сосудистую систему).

Согласно Европейским стандартам из этого вида пластика нельзя изготавливать игрушки для детей. Тем не менее он относится к категории безопасных и поддается переработке.

Полиэтилен высокой плотности (HDPE или PE HD) – недорогой в производстве и устойчивый к температурным воздействиям вид пластика. Применяется для изготовления пакетов, одноразовой посуды, тары чистящих средств.

Вполне пригоден для многократного использования и относительно безопасен для человека, хотя может выделять формальдегид.

Поливинилхлорид (V или PVC) – классический материал, используемый в технических целях. Из него изготавливаются облицовочные панели , окна, трубы, мебель, тара для технической жидкости и т.д. Он абсолютно не пригоден для пищевого использования.

Классический ПВХ содержит различные фталаты, винилхлорид, бисфенол А и даже кадмий. Для человека этот материал крайне опасен. Кроме того при горении он выделяет диоксины – опасные канцерогены.

Полиэтилен низкой плотности (LDPE или PEBD) – широко распространенный и дешевый материал. Он популярен благодаря мусорным мешкам, линолеуму , CD-дискам.

Для человека этот материал безопасен и может быть использован вторично. Выделяет формальдегид в очень редких случаях.

Полипропилен (PP) – для него характерна прочность и термостойкость. Из него изготавливают контейнеры для микроволновки, шприцы и безопасные игрушки для детей.

Безопасен для человеческого организма. Крайне редко может выделять формальдегид.

Полистирол (PS) – используется как в пищевой промышленности, так и для изготовления стройматериалов. Из него делают мясные лотки, тару для овощей и фруктов, сэндвич-панели и плиты для теплоизоляции. Специалисты относятся к нему с осторожностью касательно применения в пищевой промышленности: в качестве разовой упаковки он годится, а для длительного хранения – уже нет.Поликарбонат, полиамид и прочие виды пластмасс (O или OTHER) – в эту группу включают те виды пластика, которые не получили отдельного классификационного номера. В общем, их можно охарактеризовать как относительно безопасные. Из этих видов пластмасс изготавливаются игрушки, детские бутылочки, тара для воды и прочие виды упаковки.

Если часто подвергать воздействию высоких температур и влажной среды, может выделиться бисфенол А. Это вещество опасно своим влиянием на гормональный фон человека.

Будьте бдительны и обращайте внимание на упаковку! Теперь вы знаете, что означают таинственные символы на пластике, и что за этим может скрываться.

10.02.2018

Постоянно встречающиеся слова “полимер” и “пластмасса” вызывают естественный интерес и вопрос: а чем отличается полимер от пластика? Можно ли использовать эти наименования в отношении одних и тех же веществ, составов? Если говорить не строго, то можно, но с профессиональной и научной точки зрения это не совсем верно. Объясним это, не прибегая к сложным формулам и специфической терминологии.

Пластик и пластмасса

Пластмассами или пластиками имеет смысл называть вещества, полученные в результате объединения полимеров и мономеров со вспомогательными наполнителями или добавками, придающими им определенные свойства. Речь о них пойдет ниже. Например , тот же широко распространенный АБС - это сополимер акрилонитрила с бутадиеном и стиролом, в который можно добавлять другие компоненты, позволяющие повысить прочность или защитить его от воздействия ультрафиолета.

Полимеры - что это такое?

Полимеры - это правильное наименование обширной категории веществ, молекулы которых очень велики и имеют характерный признак, они состоят из длинных цепочек мономеров. Количество мономеров в молекуле может доходить до полумиллиона. Очень важная особенность таких молекулярных структур состоит в том, что звенья мономеров могут располагаться не только в определенном порядке, но и занимать разные пространственные положения. Принято классифицировать их на:

  • линейные полимеры - молекулы выстраиваются в длинные цепи, взаимодействующие между собой, но сохраняющие целостность, способные образовать кристаллическое или аморфное “тело”;
  • разветвленные - цепочка имеет боковые отводы, отростки, это более сложная структура, которая проявляет свойства аморфного тела;
  • трехмерные - сложные, составляющие пространственные формы цепочки, которым свойственны признаки аморфного тела.

Стоит напомнить о разнице между аморфными и кристаллическими телами. Первые не образуют кристаллов, они “текут” при нагревании или иных воздействиях. Пример аморфного тела - это стекло, в структуре которого нет кристаллов, поэтому его можно с определенным допущением назвать вязкой жидкостью, способной потечь при нагревании. Вторые - сложные, связанные внутренне в прочные конструкции структуры, свойства которых зависят от целостности кристаллов и связей между ними.

Разница между пластиком и полимером

Называть все пластики полимерами, а все полимеры пластиками было бы неверно. Пример природного полимера - это крахмал. К этой группе относятся все белки, натуральный каучук, молекула ДНК. Если в процессе производства или эксперимента создать условия для “смешивания” полимера с посторонними веществами, можно получить , пластмассу, обладающую определенными свойствами.

Полимерам свойственно изменение физических свойств под воздействием температуры. Термопластичностью называют способность становиться вязким, податливым при нагревании, термореактивностью - свойство разрушаться при достижении определенного температурного порога. С точки применения в промышленности и производстве ценятся материалы, у которых пороги термопластичности и термореактивности находятся “далеко”. Тогда пластик на основе полимера можно нагревать, чтобы придать ему форму, без риска разрушить его молекулярную структуру.

Как получают пластмассы из полимеров

Получение пластмасс связано с внесением в массу полимера дополнительного вещества, которое позволит придать ему необходимые для применения свойства. Например, можно размягчить в кипятке, расплавить, поджечь - до достижения температуры горения он не потеряет основных свойств. Главным условием такого процесса остается разделение наполнителя и полимера, при котором длинные цепные или пространственные молекулы не изменят своей формы и устойчивости, но будут взаимодействовать с наполнителем.

Производственная пластмасса может состоять из наполнителей на 90 - 95 %. Принято различать три вида наполнителей для пластиков:

  • дисперсные, имеющие вид отдельных частиц, которые заполняют пространство между длинными связями полимера;
  • волокнистые, способные создавать довольно сложные пространственные структуры, но не формирующие длинных устойчивых связей;
  • армирующие - они способны выстроить внутри структуры “нити”, удерживающие длинные молекулы полимера в определенных позициях.

Добавки второй группы изменяют функциональные свойства полимеров, например, антипирены препятствуют горению, отвердители снижают порог термореактивности, и пластик становится твердым, малотекучим, но быстро разрушающиеся при нагревании.

Появление технологий полимеризации веществ дало возможность получать составы, не имеющие природных аналогов и вполне “управляемые” с точки зрения изменения свойств в зависимости от реальной потребности.



Статьи

Как определить вид пластика?

“Общество пластиковой промышленности” (сокращенно SPI), для облегчения процесса классификации различных видов пластмасс ввело в обиход специальные коды SPI. Вы их видели - достаточно взгляда на дно пластиковой бутылки. Цифра внутри треугольника указывает на тип пластмассы для упрощения сортировки и переработки. Также под знаком может присутствовать буквенный код пластика. Что же они обозначают?

Как разобраться в безбрежном море пластмасс? Чем они отличаются друг от друга?

ПЭТФ (полиэтилентерафталат).
Впервые полученный в 1940-е годы, ПЭТФ первоначально предназначался для производства волокон, но уже в 1960-е годы начал использоваться для производства плёнки. А в 1973 году в США была запатентована ПЭТФ бутылка. Развитие технологии выдувки из преформ, PET BOTTLE RECYCLING стойкость к ударным нагрузкам, свобода в выборе дизайна и относительно низкая стоимость привели к тому, что бутылки - одно из самых значительных направлений использования ПЭТФ пластиков. ПЭТФ используется для производства бутылок для газированных напитков, минеральной воды, соков, пива, растительных масел, майонеза, косметики, бытовых очистителей и других пищевых и непищевых ёмкостей. Под изображением обычно ставится буквенный код PETE, иногда PET и цифра 1.

ПЭНД (полиэтилен низкого давления, высокой плотности). Применяется со времен Второй мировой войны, но актуальности не потерял и в наши дни. К 60-м годам полностью заменил целлофан. Используется для изготовления упаковки, фасовоч-ных пакетов (так называемых “шуршунчиков”). Используется буквенный код HDPE и цифра 2.

ПЭВД (полиэтилен высокого давления, низкой плотности). Наиболее распространенный вид пластмасс. Используется при изготовлении бутылок для моющих средств, игрушек, парниковой пленки, труб. Из него также делали и продолжают делать различные косметические флаконы, бочки, изоляцию в кабеле и т.д. – всего не перечислишь.Используется буквенный код LDPE и цифра 3.

Поливинилхлорид (ПВХ). Применяется с 1927 года. Основной материал для изготовления линолеума. Очень ядовит при сжигании! (при недостатке кислорода выделяются фосген, хлор). После ряда публикаций в 1973 году, его использование для пищевой посуды резко сократилось. Для обозначения используется буквенный код PVC и цифра 4.

Полипропилен. Достаточно жесткий и эластичный материал. Из него делают одноразовые шприцы, посуду для горячих блюд, упаковочную ленту, термоусадочную пленку, мешки для сахара и т.д. Достаточно широко используется для изготовления баночек герметизируемых крышечками из фольги. Все изделия из полипропилена выдерживают кипячение и стерилизацию паром. Используется буквенный код PP и цифра 5.

Полистирол. Одноразовая посуда, стаканчики под йогурт, внутренняя обшивка холодильников, задние стенки отечественных телевизоров, электроизоляционная полистирольная пленка. При производстве полистирола используются химически активные вещества, разрушающие озоновый слой Земли. Используется буквенный код PS и цифра 6.

Прочие. Чаще всего, это многослойная упаковка или упаковка из нескольких типов пластмасс. Например литровая коробка для сока состоит из картона, фольги и полимера. Такая упаковка практически не поддается вторичной переработке, т.к технологически очень сложно разделить материал упаковки на составляющие. Буквенный код отсутствует, а внутри треугольника – прочерк или цифра 7.

Как определиться?

Определить вид пластмассы , если имеется маркировка, достаточно легко – а как быть, если НИКАКОЙ маркировки нет, а узнать, из чего сделана вещь - необходимо?!

В большинстве случаев, это достаточно трудно сделать, особенно при схожести физических свойств пластмасс. Наиболее совершенной является специальная система распознавания пластмасс. Около 30 различных полимеров могут быть идентифицированы в течение одной секунды с помощью так называемой инфракрасной спектроскопии. Эта система используется в Европе при утилизации старых автомобилей. Для России данная система еще не скоро получит широкое распространение, а распознавать пластмассы надо уже сейчас.

Для быстрого и качественного распознавания различных видов пластмасс достаточно немного желания и практического опыта (мне потребовалось около месяца). Методика достаточно проста: анализируются физико-механические особенности пластмасс (твердость, гладкость, эластичность и т. д.) и их поведение в пламени спички (зажигалки).

Может показаться странным, но различные виды пластмасс и горят по-разному! Например, одни ярко вспыхивают и интенсивно сгорают (почти без копоти), другие, наоборот, сильно коптят. Пластмассы даже издают разные звуки при своем горении! Поэтому так важно по набору косвенных признаков точно идентифицировать вид пластмассы, ее марку.

В начале рассмотрим общие характеристики по разным пластмассам, позднее они будут сведены в единую таблицу, что позволит достаточно легко и быстро проводить анализ.

ПЭВД (полиэтилен высокого давления, низкой плотности). Горит синеватым, светящимся пламенем с оплавлением и горящими потеками полимера. При горении становится прозрачным, это свойство сохраняется длительное время после гашения пламени. Горит без копоти. Горящие капли, при падении с достаточной высоты (около полутора метров), издают характерный звук. При остывании, капли полимера похожи на застывший парафин, очень мягкие, при растирании между пальцами- жирны на ощупь. Дым потухшего полиэтилена имеет запах парафина. Плотность ПЭВД: 0,91-0,92 г/см. куб.

ПЭНД (полиэтилен низкого давления, высокой плотности). Более жесткий и плотный чем ПЭВД, хрупок. Проба на горение – аналогична ПЭВД. Плотность: 0,94-0,95 г/см. куб.

ПЭСД (полиэтилен среднего давления). Самый жесткий из полиэтиленов. Плотность: 0,96-0,97 г/см. куб.

Все виды полиэтилена размягчаются при помещении в кипящую воду. При комнатной температуре не растворимы в органических растворителях. При температуре 100 градусов Цельсия и выше, полностью растворяются в бензоле. Плавают в воде.

Пенополиэтилен. Губчатая масса белого цвета. Свойства при горении, см. ПЭВД.

Полипропилен. При внесении в пламя, полипропилен горит ярко светящимся пламенем. Горение аналогично горению ПЭВД, но запах более острый и сладковатый. При горении образуются потеки полимера. В расплавленном виде - прозрачен, при остывании - мутнеет. Если коснуться расплава спичкой, то можно вытянуть длинную, достаточно прочную нить. Капли остывшего расплава жестче, чем у ПЭВД, твердым предметом давятся с хрустом. Дым с острым запахом жженой резины, сургуча. Плотность полипропилена: 0,9-0,91 г/см.куб. т.е он легче ПЭВД и также плавает в воде.

Полиэтилентерафталат (ПЭТ). Прочный, жёсткий и лёгкий материал. Плотность ПЭТФ составляет 1, 36 г/см.куб. Обладает хорошей термостойкостью (сопротивление термодеструкции) в диапазоне температур от - 40° до + 200°. ПЭТФ устойчив к действию разбавленных кислот, масел, спиртов, минеральных солей и большинству органических соединений, за исключением сильных щелочей и некоторых растворителей. При горении сильно коптящее пламя. При удалении из пламени самозатухает.

Полистирол. При сгибании полоски полистирола, легко гнется, потом резко ломается с характерным треском. На изломе наблюдается мелкозернистая структура. Горит ярким, сильно коптящим пламенем (хлопья копоти тонкими паутинками взмывают вверх!). Запах сладковатый, цветочный.Полистирол хорошо растворяется в органических растворителях (стирол, ацетон, бензол). Плотность полистирола: от 1,05 до 1,08 г/см. куб. (тонет в воде!).

Пенополистирол (пенопласт). Легкий, пористый материал белого цвета. Один из лучших и доступных тепло-звукоизоляционных материалов. Объемная масса: 0,01-0,1 г/см. куб. Проба на горение аналогична полистиролу. Легко растворяется в ацетоне.

Поливинилхлорид (ПВХ). Эластичен. Трудногорюч (при удалении из пламени самозатухает). При горении сильно коптит, в основании пламени можно наблюдать яркое голубовато-зеленое свечение. Очень резкий, острый запах дыма. При сгорании образуется черное, углеподобное вещество (легко растирается между пальцами в сажу). Растворим в четыреххлористом углероде, дихлорэтане. Плотность: 1,38-1,45 г/см. куб.

Полиакрилат (органическое стекло). Прозрачный, хрупкий материал. Горит синевато-светящимся пламенем с легким потрескиванием. У дыма острый фруктовый запах (эфира). Легко растворяется в дихлорэтане.

Полиамид (ПА). Материал имеет отличную масло-бензостойкость и стойкость к углеводородным продуктам, которые обеспечивают широкое применение ПА в автомобильной и нефтедобывающей промышленности (изготовление шестерен, искуственных волокон…). Полиамид отличается сравнительно высоким влагопоглощением, которое ограничивает его применение во влажных средах для изготовления ответственных изделий. Горит голубоватым пламенем. При горении разбухает, “пшикает”, образует горящие потеки. Дым с запахом паленого волоса. Застывшие капли очень твердые и хрупкие. Полиамиды растворимы в растворе фенола, концентрированной серной кислоте. Плотность: 1,1-1,13 г/см. куб. Тонет в воде.

Полиуретан. Основная область применения – подошвы для обуви. Очень гибкий и эластичный материал (при комнатной температуре). На морозе - хрупок. Горит коптящим, светящимся пламенем. У основания пламя голубое. При горении образуются горящие капли-потеки. После остывания, эти капли – липкое, жирное на ощупь вещество.Полиуретан растворим в ледяной уксусной кислоте.

Пластик АВС. Все свойства по горению аналогичны полистиролу. От полистирола достаточно сложно отличить. Пластик АВС более прочный, жесткий и вязкий. В отличие от полистирола более устойчив к бензину.

Фторопласт-3 . Применяется в виде суспензий для нанесения антикоррозийных покрытий. Не горюч, при сильном нагревании обугливается. При удалении из пламени сразу затухает. Плотность: 2,09-2,16 г/см.куб.

Фторопласт-4. Безпористый материал белого цвета, слегка просвечивающийся, с гладкой, скользкой поверхностью. Один из лучших диэлектриков! Не горюч, при сильном нагревании плавится. Не растворяется практически ни в одном растворителе. Самый стойкий из всех известных материалов. Плотность: 2,12-2,28 г/см.куб. (зависит от степени кристалличности – 40-89%).

Статья Кудрявцева А.В., В.Новгород

P.S: Большинство сборщиков именно такими принципами руководствуются на приёмке пластмасс. В Википедии можно посмотреть



Просмотров