Скачать фнп правила проведения экспертизы промышленной безопасности. Кто проводит экспертизу промышленной безопасности и что следует знать. Нужна ли экспертиза промышленной безопасности технических устройств

Когда речь заходит о рациональном использовании тепловой энергии, все сразу же вспоминают о кризисе и неимоверных счетах по «жировкам», им спровоцированных. В новых домах, где предусмотрены инженерные решения, позволяющие регулировать потребление тепловой энергии в каждой отдельной квартире, можно найти оптимальный вариант отопления или горячего водоснабжения (ГВС), который устроит жильца. В отношении старых строений дело обстоит куда сложнее. Индивидуальные тепловые пункты становятся единственным разумным решением задачи экономии тепла для их обитателей.

Определение ИТП — индивидуальный тепловой пункт

Согласно хрестоматийному определению ИТП — это не что иное, как тепловой пункт, предназначенный для обслуживания целого здания или отдельных его частей. Эта сухая формулировка требует пояснения.

Функции индивидуального теплового пункта заключаются в перераспределении энергии, поступающей из сети (центральный тепловой пункт или котельная) между системами вентиляции, ГВС и отопления, в соответствии с потребностями здания. При этом учитывается специфика обслуживаемых помещений. Жилые, складские, подвальные и другие их виды, разумеется, должны отличаться и по температурному режиму и параметрам вентиляции.

Установка ИТП подразумевает наличие отдельного помещения. Чаще всего оборудование монтируется в подвальных или технических помещениях многоэтажек, пристройках к многоквартирным домам или в отдельно стоящих строениях, находящихся в непосредственной близости.

Модернизация здания путем установки ИТП требует существенных финансовых затрат. Несмотря на это, актуальность ее проведения продиктована преимуществами, сулящими несомненные выгоды, а именно:

  • расход теплоносителя и его параметры подвергаются учету и оперативному контролю;
  • распределение теплоносителя по системе в зависимости от условий теплопотребления;
  • регулирование расхода теплоносителя, в соответствии с возникшими требованиями;
  • возможность изменения вида теплоносителя;
  • повышенный уровень безопасности в случаях аварий и прочие.

Возможность влиять на процесс расхода теплоносителя и его энергетические показатели привлекательна сама по себе, не говоря об экономии от рационального использования тепловых ресурсов. Единовременные же затраты на оборудование ИТП с лихвой окупятся за весьма скромный промежуток времени.

Структура ИТП зависит от того, какие системы потребления он обслуживает. В общем случае в его комплектацию могут входить системы обеспечения отопления, ГВС, отопления и ГВС, а также отопления, ГВС и вентиляции. Поэтому в состав ИТП обязательно входят следующие устройства:

  1. теплообменники для передачи тепловой энергии;
  2. арматура запорного и регулирующего действия;
  3. приборы для контроля и измерения параметров;
  4. насосное оборудование;
  5. щиты управления и контроллеры.

Здесь приведены лишь устройства, присутствующие на всех ИТП, хотя каждый конкретный вариант может иметь и дополнительные узлы. Источник холодного водоснабжения, обычно находится в том же помещении, например.

Схема теплового пункта отопления построена с использованием пластинчатого теплообменника и является полностью независимой. Для поддержания давления на требуемом уровне устанавливается сдвоенный насос. Предусмотрен простой способ «доукомплектации» схемы системой горячего водоснабжения и другими узлами, и агрегатами, включая приборы учета.

Работа ИТП для ГВС подразумевает включение в схему пластинчатых теплообменников, работающих только на нагрузку по ГВС. Перепады давления в этом случае компенсируются группой насосов.

В случае организации систем для отопления и ГВС выше рассмотренные схемы объединяются. Пластинчатые теплообменники отопления работают вместе с двухступенчатым контуром ГВС, причем подпитка системы отопления осуществляется от обратного трубопровода теплосети посредством соответствующих насосов. Сеть холодного водоснабжения же является подпитывающим источником для системы ГВС.

Если к ИТП необходимо подключить и систему вентиляции, то он оснащается еще одним пластинчатым теплообменником, связанным с ней. Отопление и ГВС продолжают работать по ранее описанному принципу, а контур вентиляции подключается аналогично отопительному с добавлением необходимых контрольно-измерительных приборов.

Индивидуальный тепловой пункт. Принцип работы

Центральный тепловой пункт, являющийся источником теплоносителя, подает горячую воду на вход индивидуального теплового пункта через трубопровод. Причем эта жидкость никоим образом не попадает ни в одну из систем здания. Как для отопления, так и для подогрева воды в системе ГВС, а также вентиляции используется исключительно температура подаваемого теплоносителя. Передача энергии в системы происходит в теплообменниках пластинчатого типа.

Температура передается магистральным теплоносителем воде, забранной из системы холодного водоснабжения. Итак, цикл движения теплоносителя начинается в теплообменнике, проходит через тракт соответствующей системы, отдавая тепло, и по обратному магистральному водопроводу возвращается для дальнейшего использования на предприятие, обеспечивающее теплоснабжение (котельную). Часть цикла, предусматривающая отдачу тепла, обогревает жилища и делает воду в кранах горячей.

Холодная вода поступает в подогреватели из системы холодного водоснабжения. Для этого используется система насосов, поддерживающих требуемый уровень давления в системах. Насосы и дополнительные устройства необходимы для снижения, либо повышения, давления воды из снабжающей магистрали до допустимого уровня, а также его стабилизации в системах здания.

Преимущества использования ИТП

Четырехтрубная система теплоснабжения от центрального теплового пункта, применявшаяся раньше достаточно часто, имеет массу недостатков, которые отсутствуют у ИТП. Кроме того, последний имеет ряд весьма значительных преимуществ перед конкурентом, а именно:

  • экономичность, обусловленная значительным (до 30%) снижением потребления тепла;
  • доступность приборов упрощает контроль как за расходом теплоносителя, так и количественными показателями тепловой энергии;
  • возможность гибкого и оперативного влияния на расход тепла путем оптимизации режима его потребления, в зависимости от погоды, например;
  • простота монтажа и довольно скромные габаритные размеры устройства, позволяющие размещать его в небольших помещениях;
  • надежность и стабильность работы ИТП, а также благоприятное влияние на те же характеристике обслуживаемых систем.

Этот перечень можно продолжать сколь угодно долго. Он отражает лишь основные, лежащие на поверхности, преимущества, получаемые при использовании ИТП. В него можно добавить, например, возможность автоматизации управления ИТП. В этом случае его экономические и эксплуатационные показатели становятся еще более привлекательными для потребителя.

Наиболее существенным недостатком ИТП, если не считать транспортных расходов и затрат на погрузочно-разгрузочные мероприятия, является необходимость улаживания всевозможного рода формальностей. Получение соответствующих разрешений и согласований можно отнести к очень серьезным задачам.

Фактически, такие задачи сможет решить только специализированная организация.

Этапы установки теплового пункта

Понятно, что одного решения, пусть и коллективного, основанного на мнении всех жильцов дома, недостаточно. Кратко процедуру оснащения объекта, многоквартирного дома, например, можно описать следующим образом:

  1. собственно, позитивное решение жильцов;
  2. заявка в теплоснабжающую организацию для разработки технического задания;
  3. получение технических условий;
  4. пред проектное обследование объекта, для определения состояния и состава имеющегося оборудования;
  5. разработка проекта с последующим его утверждением;
  6. заключение договора;
  7. реализация проекта и проведение пусконаладочных испытаний.

Алгоритм может показаться, на первый взгляд, достаточно сложным. На самом же деле, всю работу начиная от решения и заканчивая принятием в эксплуатацию можно сделать менее чем за два месяца. Все заботы нужно возложить на плечи ответственной компании, специализирующейся на оказании подобного рода услуг и позитивно зарекомендовавшей себя. Благо, сейчас таковых предостаточно. Останется лишь дожидаться результата.

Индивидуальный тепловой пункт (ИТП) предназначен для распределения тепла с целью обеспечения отоплением и горячей водой жилого, коммерческого или производственного здания.

Основными узлами теплового пункта, подлежащими комплексной автоматизации, являются:

  • узел холодного водоснабжения (ХВС);
  • узел горячего водоснабжения (ГВС);
  • узел отопления;
  • узел подпитки контура отопления.

Узел холодного водоснабжения предназначен для обеспечения потребителей холодной водой с заданным давлением. Для точного поддержания давления обычно используется частотный преобразователь и датчик давления . Конфигурация узла ХВС может быть различной:

  • (автоматический ввод резерва).

Узел ГВС обеспечивает потребителей горячей водой. Основной задачей является поддержание заданной температуры при изменяющемся расходе. Температура не должна быть слишком горячей или холодной. Обычно в контуре ГВС поддерживается температура 55 °С.

Теплоноситель, поступающий из теплосети, проходит через теплообменник и нагревает воду во внутреннем контуре, поступающую к потребителям. Регулирование температуры ГВС производится при помощи клапана с электроприводом. Клапан устанавливается на линии подачи теплоносителя и регулирует его расход с целью поддержания заданной температуры на выходе теплообменника.

Циркуляция во внутреннем контуре (после теплообменника) обеспечивается при помощи насосной группы. Чаще всего используются два насоса, которые работают поочередно для равномерного износа. При выходе из строя одного из насосов происходит переключение на резервный (автоматический ввод резерва - АВР).

Узел отопления предназначен для поддержания температуры в отопительной системе здания. Уставка температуры в контуре формируется в зависимости от температуры воздуха на улице (наружного воздуха). Чем холоднее на улице тем горячее должны быть батареи. Зависимость между температурой в контуре отопления и температурой наружного воздуха определяется отопительным графиком, который должен настраиваться в системе автоматики.

Кроме регулирования температуры, в контуре отопления должна быть реализована защита от превышения температуры воды, возвращаемой в теплосеть. Для этого используется график обратной воды.

Согласно требованиям тепловых сетей, температура обратной воды не должна превышать значений, заданных в графике обратной воды.

Температура обратной воды является показателем эффективности использования теплоносителя.

Кроме описанных выше параметров, существуют дополнительные методы повышения эффективности и экономичности теплового пункта. Ими являются:

  • сдвиг графика отопления в ночное время;
  • сдвиг графика в выходные дни.

Данные параметры позволяют оптимизировать процесс потребления тепловой энергии. Примером может служить коммерческое здание, работающее в будние дни с 8:00 до 20:00. Снизив температуру отопления ночью и выходные дни (когда организация не работает), можно добиться экономии на отоплении.

Контур отопления в ИТП может быть подключен к теплосети по зависимой схеме или независимой. При зависимой схеме вода из теплосети подается в батареи без использования теплообменника. При независимой схеме теплоноситель через теплообменник подогревает воду во внутреннем контуре отопления.

Регулирование температуры отопления производится при помощи клапана с электроприводом. Клапан устанавливается на линии подачи теплоносителя. При зависимой схеме клапан непосредственно регулирует количество подаваемого теплоносителя в батареи отопления. При независимой схеме клапан регулирует расход теплоносителя с целью поддержания заданной температуры на выходе теплообменника.

Циркуляция во внутреннем контуре обеспечивается при помощи насосной группы. Чаще всего используются два насоса, которые работают поочередно для равномерного износа. При выходе из строя одного из насосов происходит переключение на резервный (автоматический ввод резерва - АВР).

Узел подпитки контура отопления предназначен для поддержания требуемого давления в контуре отопления. Подпитка включается в случае падения давления в контуре отопления. Подпитка осуществляется при помощи клапана, либо насосов (одного или двух). Если используются два насоса, то для равномерного износа они чередуются по времени. При выходе из строя одного из насосов происходит переключение на резервный (автоматический ввод резерва - АВР).

Типовые примеры и описание

Управление тремя насосными группами: отопления, ГВС и подпитки:

  • включение насосов подпитки производится при срабатывании датчика, установленного на обратном трубопроводе контура отопления. В качестве датчика может выступать датчик-реле давления или электроконтактный манометр.

Управление четырьмя насосными группами: отопления, ГВС1, ГВС2 и подпитки:

Управление пятью насосными группами: отопления 1, отопления 2, ГВС, подпитки 1 и подпитки 2:

  • каждая насосная группа может состоять из одного или двух насосов;
  • временные интервалы работы для каждой насосной группы настраиваются независимо.

Управление шестью насосными группами: отопления 1, отопления 2, ГВС 1, ГВС 2, подпитки 1 и подпитки 2:

  • при использовании двух насосов производится их автоматическое чередование через заданные промежутки времени для равномерного износа, а также аварийное включение резерва (АВР) при выходе насоса из строя;
  • для контроля исправности насосов используется контактный датчик («сухой контакт»). В качестве датчика может выступать датчик-реле давления, реле перепада давления, электроконтактный манометр или реле протока;
  • включение насосов подпитки производится при срабатывании датчика, установленного на обратном трубопроводе контуров отопления. В качестве датчика может выступать датчик-реле давления или электроконтактный манометр.


Просмотров