Солнечная система. Планеты солнечной системы

Солнечная система – это спаянная силами взаимного притяжения система небесных тел. В нее входят: центральная звезда – Солнце, 8 больших планет с их спутниками, несколько тысяч малых планет, или астероидов, несколько сот наблюдавшихся комет и бесчисленное множество метеорных тел, пыли, газа и мелких частиц. Она сформировалась путём гравитационного сжатия газопылевого облака примерно 4,57 млрд лет назад.

Помимо Солнца в систему входит восемь следующих больших планет:

Солнце


Солнце – ближайшая к Земле звезда, все другие находятся от нас неизмеримо дальше. Например, ближайшая к нам звезда Проксима из системы a Центавра в 2500 раз дальше Солнца. Для Земли Солнце мощный источник космической энергии. Оно дает свет и тепло, необходимые для растительного и животного мира, и формирует важнейшие свойства атмосферы Земли . В целом Солнце определяет экологию планеты. Без него – не было бы и воздуха, необходимого для жизни: он превратился бы в жидкий азотный океан вокруг замерших вод и обледеневшей суши. Для нас, землян, важнейшая особенность Солнца в том, что около него возникла наша планета и на ней появилась жизнь.

Меркурий

Меркурий - ближайшая к Солнцу планета.

Древние римляне считали Меркурия покровителем торговли, путешественников и воров, а также вестником богов. Неудивительно, что небольшая планета, быстро перемещающаяся по небу вслед за Солнцем, получила его имя. Меркурий был известен еще с древних времен, однако древние астрономы не сразу поняли, что утром и вечером видят одну и ту же звезду. Меркурий ближе к Солнцу, чем Земля: среднее расстояние от Солнца составляет 0,387 а.е., а расстояние до Земли колеблется от 82 до 217 млн. км. Наклонение орбиты к эклиптике i = 7° - одно из самых больших в Солнечной системе. Ось Меркурия почти перпендикулярна к плоскости его орбиты, а сама орбита очень вытянута (эксцентриситет е = 0,206). Средняя скорость движения Меркурия по орбите - 47,9 км/с. Из-за приливного воздействия Солнца Меркурий попал в резонансную ловушку. Измеренный в 1965 году период его обращения вокруг Солнца (87,95 земных суток) относится к периоду вращения вокруг оси (58,65 земных суток) как 3/2. Три полных оборота вокруг оси Меркурий завершает за 176 суток. За тот же срок планета совершает два оборота вокруг Солнца. Таким образом, Меркурий занимает относительно Солнца то же самое положение на орбите, и ориентировка планеты остаётся прежней. Спутников Меркурий не имеет. Если они и были, то в процессе формирования планеты упали на протомеркурий. Масса Меркурия почти в 20 раз меньше массы Земли (0,055M или 3,3 10 23 кг), а плотность почти такая же, как у Земли (5,43 г/см3). Радиус планеты составляет 0,38R (2440 км). Меркурий меньше некоторых спутников Юпитера и Сатурна.


Венера

Вторая планета от Солнца, имеет почти круговую орбиту. Она проходит к Земле ближе, чем какая-либо другая планета.

Но плотная, облачная атмосфера не позволяет непосредственно видеть ее поверхность. Атмосфера: СО 2 (97%), N2 (ок. 3%), H 2 O (0,05%), примеси CO, SO 2 , HCl, HF. Благодаря парниковому эффекту, температура поверхности разогревается до сотен градусов. Атмосфера, представляющая собой плотное одеяло из углекислого газа, удерживает тепло, пришедшее от Солнца. Это приводит к тому, что температура атмосферы гораздо выше, чем в духовке. Снимки, полученные с помощью радара, демонстрируют очень большое разнообразие кратеров, вулканов и гор. Есть несколько очень больших вулканов, высотой до 3 км. и шириной сотни километров. Излияние лавы на Венере происходит гораздо дольше, чем на Земле. Давление на поверхности около 107 Па. Поверхностные породы Венеры близки по составу к земным осадочным породам.
Найти Венеру на небе проще, чем любую другую планету. Ее плотные облака хорошо отражают солнечный свет, делая планету яркой на нашем небе. Каждые семь месяцев в течении нескольких недель Венера представляет собой самый яркий объект в западной части неба по вечерам. Три с половиной месяца спустя она восходит на три часа раньше Солнца, становится сверкающей "утренней звездой" восточной части неба. Венеру можно наблюдать через час после захода Солнца или за час до восхода. У Венеры нет спутников.

Земля

Третья от Сол нца планета. Скорость обращения Земли по эллиптической орбите вокруг Солнца равна - 29,765 км/с. Наклон земной оси к плоскости эклиптики 66 o 33"22"". У Земли есть естественный спутник - Луна . Земля обладает магн итным и электрическим полями. Земля образовалась 4,7 млрд. лет назад из рассеянного в протосолнечной системе газо -пылевого вещества. В составе Земли преобладают: железо (34,6%), кислород (29,5%), кремний (15,2%), магний (12,7%). Давление в центре планеты - 3,6*10 11 Па, плотность около 12 500 кг/м 3 , температура 5000-6000 o C. Большую часть п оверхности занимает Мировой океан (361,1 млн.км 2 ; 70,8%); суша составляет 149,1 млн.км 2 и образует шесть матери ков и острова. Она поднимается над уровнем мирового океана в среднем на 875 метров (наибольшая высота 8848 метров - г.Джомолунгма). Горы занимают 30% суши, пустыни закрывают около 20% поверхности суши, саванны и редколесья - около 20%, леса - около 30%, ледники - 10%. Средняя глубина океана около 3800 метров, наибольшая - 11022 метра (Марианский желоб в Тихом океане), объем воды 1370 млн.км 3 , средняя соленость 35г/л. Атмосфера Земли, общая масса которой 5,15*10 15 тонн, состоит из воздуха - смеси в основном азота (78,1%) и кислорода (21%), остальное - водяной пары, углекислый газ, благородные и другие газы. Около 3-3,5 млрд. лет назад в результате закономерной эволюции материи на Земле возникла жизнь, началось развитие биосферы.

Марс

Четвертая планета от Солнца, похожая на Землю, но меньше по величине и холоднее. На Марсе имеются глубокие каньоны, гигантские вулканы и обширные пустыни. Вокруг Красной планеты, как еще называют Марс, летают две небольшие луны: Фобос и Деймос. Марс - это следующая за Землей планета, если считать от Солнца, и единственный, кроме Луны космический мир, который уже можно достичь при помощи современных ракет. Для астронавтов это путешествие длиной в 4 года могло бы явиться следующим рубежом в исследовании космического пространства. Вблизи экватора Марса, в районе называемом Тарсис, расположены вулканы колоссальных размеров. Тарсис - название, которое астрономы дали возвышенности, имеющей 400 км. в ширину и около 10 км. в высоту. На этом плато расположено четыре вулкана, каждый из которых просто гигант в сравнении с любым земным вулканом. Самый грандиозный вулкан Тарсиса, Гора Олимп, возвышается над окружающей местностью на 27 км. Около двух третей поверхности Марса представляет собой горную местность с большим количеством кратеров, возникших от ударов и окруженных обломками твердых пород. Вблизи вулканов Тарсиса змеится обширная система каньонов длинной около четверти экватора. Долина Маринер имеет ширину 600 км., а глубина ее такова, что гора Эверест целиком опустилась бы на ее дно. Отвесные скалы высятся на тысячи метров, от дна долины до плато наверху. В древние времена на Марсе было много воды, по поверхности этой планеты текли большие реки. На Южном и Северном полюсах Марса лежат ледяные шапки. Но этот лед состоит не из воды, а из застывшего атмосферного углекислого газа (застывает при температуре -100 o C). Ученые считают, что поверхностные воды хранятся в виде захороненных в грунте ледяных глыб, особенно в полярных областях. Состав атмосферы: CO 2 (95%), N 2 (2,5%), Ar (1,5 - 2%), CO (0,06%), H 2 O (до 0,1%); давление у поверхности 5-7 гПа. Всего к Марсу было послано около 30 межпланетных космических станций.

Юпитер


Пятая планета от Солнца, самая большая планета Солнечной системы. Юпитер - не твердая планета. В отличие от четырех твердых планет, ближе других расположенных к Солнцу, Юпитер представляет собой газовый шар.Состав атмосферы: H 2 (85%), CH 4 , NH 3 , He(14%). Газовый состав Юпитера очень похож на солнечный. Юпитер - мощный источник теплового радиоизлучения. Юпитер имеет 16 спутников (Адрастея, Метида, Амальтея, Фива, Ио, Лиситея, Элара, Ананке, Карме, Пасифе, Cинопе, Европа, Ганимед, Каллисто, Леда, Гималия), а также кольцо шириной 20000 км., почти вплотную примыкающие к планете. Скорость вращения Юпитера настолько велика, что планета выпячивается вдоль экватора. Кроме того, такое быстрое вращение является причиной очень сильных ветров в верхних слоях атмосферы, где облака вытягиваются длинными красочными лентами. В облаках Юпитера имеется очень большое количество вихревых пятен. Самое большое из них - так называемое Большое Красное пятно, превосходит по своим размерам Землю. Большое Красное пятно представляет собой огромных размеров бурю в атмосфере Юпитера, которую наблюдают вот уже 300 лет. Внутри планеты под огромным давлением водород из газа превращается в жидкость, а дальше из жидкости в твердое тело. На глубине 100 км. расположен безбрежный океан жидкого водорода. Ниже 17000 км. водород оказывается сжат настолько сильно, что его атомы разрушаются. И тогда он начинает вести себя, как металл; в этом состоянии он легко проводит электричество. Электрический ток, протекающий в металлическом водороде, создает вокруг Юпитера сильное магнитное поле.

Сатурн

Шестая от Солнца планета, имеет поразительную систему колец. Из-за быстрого вращения вокруг своей оси Сатурн как бы сплюснут у полюсов. Скорость ветров на экваторе достигает 1800 км/ч. Ширина колец Сатурна 400 000 км., но в толщину они имеют всего несколько десятков метров. Внутренние части колец вращаются вокруг Сатурна быстрее, чем наружные. Кольца в основном состоят из миллиардов мелких частиц, каждая из которых обращается по орбите вокруг Сатурна как отдельный микроскопический спутник. Вероятно, эти «микроспутники» состоят из водяного льда или из камней, покрытых льдом. Размер их колеблются от нескольких сантиметров до десятков метров. В кольцах имеются и более крупные объекты - каменные глыбы и фрагменты до сотен метров в поперечнике. Щели между кольцами возникают под действием сил тяготения семнадцати лун (Гиперион, Мимас, Тефия, Титан, Энцелад и др.), которые заставляют кольца расщепляться. В состав атмосферы входят: CH 4 , H 2 , He, NH 3 .

Уран

Седьмая от Солнца планета. Была открыта в 1781 году английским астрономом Уильямом Гершелем, и названа в честь греческог о бога неба Урана. Ориентация Урана в пространстве отличается от остальных планет Солнечной системы - его ось вращения лежит как бы «на боку» относительно плоскости обращения этой планеты вокруг Солнца. Ось вращения наклонена на угол 98 o . Вследствие этого планета бывает обращена к Солнцу попеременно то северным полюсом, то южным, то экватором, то средними широтами. Уран имеет более 27 спутников (Миранда, Ариэль, Умбриэль, Титания, Оберон, Корделия, Офелия, Бианка, Крессида, Дездемона, Джульета, Порция, Розалинда, Белинда, Пэк и др.) и систему колец. В центре Урана находится ядро, состоящее из камня и железа. В состав атмосферы входят: H 2 , He, CH 4 (14%).

Нептун

Е го орбита пересекается с орбитой Плутона в некоторых местах. Экваториальный диаметр такой же, как и у Урана, хотя ра сположен Нептун на 1627 млн. км дальше от Урана (Уран расположен в 2869 млн. км от Солнца). Исходя из этих данных, можно сделать вывод, что эту планету не смогли заметить в XVII веке. Одним из ярких достижений науки, одним из свидетельств неограниченной познаваемости природы было открытие планеты Нептун путем вычислений - "на кончике пера". Уран - планета, следующая за Сатурном, который много веков считался самой из далеких планет, была открыта В. Гершелем в конце XVIII в. Уран с трудом виден невооруженным глазом. К 40-м годам XIX в. точные наблюдения показали, что Уран едва заметно уклоняется от того пути, по которому он должен следовать с учетом возмущений со стороны всех известных планет. Таким образом, теория движения небесных тел, столь строгая и точная, подверглась испытанию. Леверье (во Франции) и Адамс (в Англии) высказали предположение, что, если возмущения со стороны известных планет не объясняют отклонение в движении Урана, значит, на него действует притяжение еще не известного тела. Они почти одновременно рассчитали, где за Ураном должно быть неизвестное тело, производящее своим притяжением эти отклонения. Они вычислили орбиту неизвестной планеты, ее массу и указали место на небе, где в данное время должна была находиться неведомая планета. Эта планета и была найдена в телескоп на указанном ими месте в 1846 г. Ее назвали Нептуном. Нептун не виден невооруженным глазом. На этой планете дуют ветры со скоростями до 2400 км/час, направленные против вращения планеты. Это самые сильные ветры в Солнечной системе.
Состав атмосферы: H 2 , He, CH 4 . Имеет 6 спутников (один из них Тритон).
Нептун - в римской мифологии бог морей.

Орбиты планет являются эллиптическими с Солнцем в одном из фокусов, хотя все они, кроме орбит Меркурия и Плутона являются почти круговыми. Все орбиты планет находятся более или менее в одной и той же плоскости (называемой эклиптикой и определяемой по плоскости орбиты Земли) . Плоскость эклиптики отклонена только на 7 градусов от плоскости экватора Солнца. Орбита Плутона больше всего отклоняется от плоскости эклиптики (на 17 градусов). На диаграмме сверху показаны относительные размеры орбит девяти планет, если смотреть на эклиптику сверху, (следовательно у них не круглый вид). Они все вращаются в одном направлении (по часовой стрелке, если смотреть вниз с северного полюса Солнца; все, кроме Венеры Урана и Плутона вращаются вокруг оси в том же направлении.

На изображении сверху показаны девять планет с приблизительно правильными относительными размерами (смотри другие подобные изображения и сравнение планет земной группы или Приложение 2 для более подробной информации).

Одна из возможностей представить себе реальные размеры Солнечной системы, это вообразить модель в которой все размеры и расстояния сокращены в миллиард раз (1e9). Тогда Земля будет около 1.3 см в диаметре (размером с виноградину). Луна вращается на расстоянии ~30 см нее. Солнце в этом случае будет 1.5 метров в диаметре (примерно рост человека) и находится на расстоянии 150 метров (примерно городской квартал) от Земли. Юпитер - 15 см в диаметре (размер большого грейпфрута) и на расстоянии 5 городских кварталов от Солнца. Сатурн - (размером с апельсин) на расстоянии 10 кварталов; Уран и Нептун (лимоны) - 20 и 30 кварталов. Человек на этой шкале будет размером с атом; а ближайшая звезда на расстоянии 40000 км.

Не изображены на верхней иллюстрации многочисленные малые тела, которые находятся в Солнечной системе: спутники планет; большое число астероидов (маленькие каменные тела), вращающихся вокруг Солнца, в основном между Марсом и Юпитером, но также и в других местах; и кометы (маленькие ледяные тела), которые приходят и уходят из внутренних частей Солнечной системы на высоко поднятых орбитах и случайных ориентациях к эклиптике. За несколькими исключениями, спутники планет вращаются также как и их планеты и находятся приблизительно в плоскости эклиптики, но это не всегда выполняется для комет и астероидов.

Классификация

Классификация этих тел является объектом многих споров . Традиционно, Солнечная система подразделялась на планеты (большие тела, вращающиеся вокруг Солнца), их спутники (или луны, объекты различного размера, вращающиеся вокруг планет), астероиды (объекты с маленькой плотностью, вращающиеся вокруг Солнца) и кометы (маленькие ледяные тела с высоко эксцентричной орбитой). К сожалению, Солнечная система оказалась более сложной, чем это предполагалось:
  • существует несколько спутников больших, чем Плутон, и два больших, чем Меркурий;
  • существует несколько маленьких спутников, которые, вероятно, являются захваченными астероидами;
  • кометы иногда выдыхаются и становятся неотличимы от астероидов;
  • объекты из Пояса Койпера и другие, подобные Хирону не так хорошо соответствуют этой схеме;
  • Системы Земля/Луна и Плутон/Харон иногда рассматриваются как "двойные планеты".
Другие классификации основанные на химическом составе и/или происхождении могут быть предположены, если получат достоверное физическое обоснование. Но это обычно заканчивается или слишком многим количеством классов, или слишком многим количеством исключений. основная черта - это то, что многие тела являются уникальными; нашего сегодняшнего понимания, еще недостаточно для того, чтобы установить точные категории. В последующих страницах я буду использовать обычную классификацию.

Девять тел традиционно упомянутых как планеты, часто дальше классифицируются так:

  • по составу:
    • земные или скальные планеты : Меркурий, Венера, Земля, и Марс:
      • Планеты земной группы состоят в основном из камня и металла и имеют относительно высокие плотности, не сильно вращаются, имеют твердую поверхность, не имеют колец, число спутников небольшое.
    • планеты-гиганты или газовые планеты: Юпитер, Сатурн, Уран, и Нептун:
      • Газовые планеты состоят в основном из водорода и гелия и обычно имеют низкие плотности, быстро вращаются, имеют глубокие атмосферы, кольца и большое количество спутников.
    • Плутон .
  • по размеру:
    • малые планеты: Меркурий, Венера, Земля, Марс и Плутон.
      • Диаметр маленьких планет меньше, чем 13000 км.
    • планеты-гиганты : Юпитер, Сатурн, Уран, Нептун.
      • Диаметр этих планет больше, чем 48000 км.
    • Меркурий и Плутон иногда представляются как наименьшие планеты (не перепутайте с малыми планетами, это официальный термин для астероидов).
    • Планеты-гиганты иногда также классифицируются как газовые гиганты .
  • по расположению относительно Солнца:
    • внутренние планеты солнечной системы: Меркурий, Венера, Земля и Марс.
    • внешние планеты солнечной системы: Юпитер, Сатурн, Уран, Нептун и Плутон.
    • Пояс астероидов между Марсом и Юпитером является границей между внутренней и внешней Солнечной системой.
  • по расположению относительно Земли :
    • внутренние планеты: Меркурий и Венера.
      • ближе к Солнцу, чем Земля.
      • У этих планет при наблюдении с Земли видны фазы как у луны.
    • Земля .
    • внешние планеты: от Марса до Плутона.
      • дальше от Солнца, чем Земля.
      • Эти планеты всегда кажутся полными или около того.
  • по истории :
    • классические планеты: Меркурий, Венера, Марс, Юпитер, Сатурн.
      • известны с доисторических времен
      • наблюдаются не вооруженным глазом
    • современные планеты: Уран, Нептун, Плутон.
      • открыты в настоящее время
      • видны только в телескоп
    • Земля .

Картинки

Замечание: большинство изображений в Девять Планет не передают точны цвет объекта. Большая их часть была создана комбинированием нескольких черных и белых изображений, полученных через различные цветные фильтры. Хотя цвета выглядят достаточно "правдоподобно", они не совсем такие, как вы их видите.
  • Монтаж Девять Планет (большая версия сверху) 36k jpg
  • Другая сравнительная характеристика размеров (из LANL) 93k gif
  • Солнце и большие планеты, сравнение (из Extrema) 41k gif
  • Земля и малые тела, сравнение (из Extrema) 35k gif
  • Вояджер 1 мозаика Солнечной системы с расстояния 4 миллиардов миль 36k jpg ; 85k gif (caption)
  • Вояджер 1 изображение 6 планет с расстояния 4 миллиардов миль 123k jpg ; 483k gif
  • Pale Blue Dot , отражение вышеупомянутых изображений Карлом Саганом (Carl Sagan).

Более общий обзор

  • История открытия Солнечной системы
  • Солнечная система. Введение из LANL
  • Семейный портрет Солнечной системы из NSSDC
  • Жизнь Солнечной системы , интерактивная информация с сети.
  • Наша Солнечная система из NASA Spacelink
  • заметки о сильно удаленных объектах Солнечной системы (из RGO)
  • заметки о температуре поверхностей планет (из RGO)
  • масштабированные модели Солнечной системы
    • Масштабированная модель Солнечной системы Meta Page (ссылки на другие)
    • Lakeview Museum Community Solar System , самая большая в мире масштабированная модель Солнечной системы из LPI
    • Sagan Planet Walk в Итаке, NY
    • Построение Солнечной системы , вычисление масштабированных моделей
    • Silver City, NM
    • Solar System Walk в Gainesville, Флорида
    • PlanetTrek , масштабированная модель Солнечной системы
  • Прогулка по Солнечной системе , наглядное вычисление размеров для сравнения из Exploratorium

Начиная с давнего времени люди – ученые, философы, астрономы пытались найти ответ на вопрос о том, как образовалась Солнечная система. К сожалению, до сих пор нет однозначного ответа на этот вопрос, ученые смогли только договориться между собой о принятии за основу гипотезу о самой популярной модели возникновения Солнечной системы. Это теория, которая называется гипотеза туманностей. Сначала она была отвергнута всеми астрономами, но на сегодняшний день ее приняли за основную версию.

  • Согласно гипотезе туманностей наша Солнечная система возникла примерно 4,6 миллиарда лет тому назад, когда молекулярные облака, состоящие из межзвездного газа, частиц льда, пыли и других частиц, начали формировать планетарную систему. Сначала эти облака, вследствие турбулентности, создали звезду, затем начал формироваться планетарный диск. Хотя теорию туманностей принято брать за основы в изучении нашей Солнечной системы, все еще существуют проблемы с наличием твердых доказательств. Основным опровержением этой теории является наличие осевых наклонов планет системы. Согласно теории туманностей все планеты должны иметь один и тот же осевой наклон, однако это не так, и некоторые планеты имеют радикально различные осевые наклоны. Этот факт породил основу тому, чтобы в дальнейшем выдвинуть иную, более правдоподобную гипотезу и отказаться от теории туманностей.
  • Какую бы структуру мы ни приписывали первоначальному Солнцу, планетная система не могла возникнуть просто как результат солнечного вращения. Если Солнце, в одиночестве вращаясь в пространстве, не способно из самого себя произвести семейство планет, возникает необходимость предположить присутствие и участие второй силы.
  • Так же происхождение пояса астероидов остается загадкой. Согласно закону Тициуса-Боде, в этой части Солнечной системы должна была бы находиться планета, поэтому некоторые ученые полагают, что пояс астероидов состоит из осколков таинственным образом разрушившейся планеты. Другие же считают, что это - остатки малых планет, сформировавшиеся в первичном облаке на начальных этапах развития Солнечной системы. По этой теории, астероидам так и не «удалось» сформировать новую планету. Каким бы ни было их происхождение, но ученые сходятся на том, что эти осколки имеют ту же природу, что и планеты. Главным противоречием теории о разрушенной планете служит тот факт, что если все астероиды Солнечной системы собрать в один шар, то его размер будет составлять всего 4% Луны. Куда делась остальная масса? То есть единого мнения нет до сих пор. Однако этот пояс астероидов не случайно занял свое место между Марсом и Юпитером.
  • Возникновение комет. Было предложено несколько теорий происхождения комет, но, кроме одной попытки увидеть в них планетезимали, которые не получили достаточно сильного бокового толчка, чтобы выйти на круговую орбиту, не было создано ни одной схемы, которая объясняла бы происхождение солнечной системы в ее целостности, с ее планетами и кометами. Ведь ни одна космическая теория не может существовать, если ограничит себя или проблемами планет, или проблемами комет исключительно.

Все теории происхождения солнечной системы и исходных сил, обеспечивающих движение составляющих ее частей, восходят к гравитационной теории и небесной механике Ньютона. Солнце притягивает планеты, и если бы не было некоей второй силы, они упали бы на Солнце; но эта сила побуждает каждую планету двигаться в направлении от солнца, и в результате возникает орбита. Подобным же образом сателлит или спутник находится под воздействием силы, которая уводит его от планеты-хозяина, но притяжение планеты искривляет прямую, по которой двигался бы спутник, если бы притяжения между телами не было. И в результате действия этих сил очерчивается его орбита. Инерция, или постоянство движения, свойственная планетам и их спутникам, была установлена Ньютоном, но он не объяснил, как или когда произошел первичный толчок.

Теория Лапласа

Теория происхождения планетной системы, которая господствовала на протяжении всего девятнадцатого столетия, была предложена теологом Сведенборгом и философом Кантом. Она была научно оформлена Лапласом, и суть ее состоит в следующем.

Сотни миллионов лет назад Солнце было очень обширной туманностью и имело форму, приближающуюся к диску. Этот диск по ширине был равен полной орбите самой далекой из планет. Он вращался вокруг собственного центра. Благодаря процессу сжатия, обусловленному гравитацией, в центре этого диска возникло шаровидное Солнце. В результате вращательного движения всей туманности пришла в действие центробежная сила; периферические частицы материи сопротивлялись притяжению центра, собирались в кольца, а затем в шары - это были первые очертания планет. Другими словами, в результате сжатия вращающегося Солнца материя разбивалась, и из отдельных порций этого солнечного материала формировались планеты. Плоскость, в которой вращаются планеты, - это экваториальная плоскость Солнца.

Эта теория теперь представляется неудовлетворительной. Наиболее существенны три возражения. Во-первых, скорость осевого вращения Солнца в период образования планетной системы не могла быть достаточной, чтобы заставить отделиться массы материи. Но даже если бы они отделились, они не собрались бы в шары. Во-вторых, теория Лапласа не объясняет, почему планеты имеют большую скорость углового вращения и годового обращения, чем та, которую могло сообщить им Солнце. В-третьих, что заставило некоторые спутники двигаться ретроградно или в направлении, противоположном движению большей части тел солнечной системы?

«Кажется, точно установлено, что какую бы структуру мы ни приписывали первоначальному Солнцу, планетная система не могла возникнуть просто как результат солнечного вращения. Если Солнце, в одиночестве вращаясь в пространстве, не способно из самого себя произвести семейство планет и сателлитов, возникает необходимость предположить присутствие и участие второй силы.

Волновая теория, которая первоначально называлась «планетезимальной», исходит из того, что другая звезда пересекает пространство вблизи Солнца. Огромный поток материи выбрасывается с Солнца на проходящую звезду, вырывается из массы Солнца, но остается в сфере его влияния, превращаясь в материал, из которого уже и строятся планеты.

Планетезимальная теория

Представьте себе для начала Солнце почти в нынешней его форме, но без планет. Возможно, оно и сгустилось из туманности, однако кольца от него не отделялись, а если и отделялись, то, не располагая достаточным моментом количества движения для того, чтобы остаться независимыми, постепенно упали на главное тело или рассеялись в пространстве. Как бы то ни было, Солнце пребывало в гордом одиночестве.

Представьте себе далее, что к Солнцу приблизилась другая звезда. Возникшие могучие силы тяготения вызвали на обеих звездах гигантские приливы. Возможно, из обеих звезд вырвались языки звездного вещества и образовали между ними временный «мост». Когда звезды проходили друг мимо друга, этот «мост» из звездного вещества неминуемо должен был начать быстро загибаться и приобрел бы момент количества движения за счет движения самих звезд. Удаляясь, каждая звезда унесла с собой часть «моста», которая затем сгустилась в планеты. До сближения обе звезды вращались быстро и не имели планет, после сближения вращение их замедлилось, а вокруг них начали обращаться по орбитам планеты. Возражения против небулярной гипотезы казались неопровержимыми, а теория Чемберлина - Мультона прекрасно ее заменяла. Она представлялась тем более привлекательной, что вместе с ней в астрономию входил почти биологический мотив. Ведь получалось, что планеты возникли как бы от брака двух звезд и что у планет были отец и мать.

Рис. Планетезимальная гипотеза

Так как Чемберлин и Мультон считали, что вещество, вырванное из Солнца, быстро сгустилось в маленькие плотные тела - «планетезимали», которые в свою очередь слились в планеты, их гипотеза получила название планетезимальной. В 1917 г. английские астрономы Джеймс Хопвуд Джипе (1877-1946) и Гарольд Джеффрис (род в 1891 г) разработали планетезимальиую гипотезу более подробно и высказали предположение, что «мост», возникший между звездами, имел сигарообразную форму.

Из наиболее широкой средней части моста образовались гигантские планеты Юпитер и Сатурн, а за Сатурном и внутри орбиты Юпитера возникли небольшие планеты.

Возраст и химический состав Солнца

Если принять планетезимальную теорию, то уже нельзя считать, что возраст Солнца примерно равен возрасту Земли, т.е. составляет 4,7 миллиарда лет. Кто знает, как долго пребывало Солнце в своем гордом одиночестве, прежде чем неведомая странница облагодетельствовала его семьей? Ведь возможно, что планетная система появилась у Солнца сравнительно недавно, а его собственное существование исчисляется десятками или даже сотнями миллиардов лет. Подобный чудовищный срок жизни Солнца стал казаться реальным с тех пор, как был понят взаимный переход массы в энергию и обратно.

Излучение Солнца поддерживалось за счет его массы, но кто мог сказать, какова была его первоначальная масса? Если она была вдвое больше современной и убывала постоянно с теперешней скоростью, то для того, чтобы обладать своей теперешней массой, Солнце должно было бы просуществовать 1500 миллиардов лет. И следовательно, при нынешней мощности излучения ему предстоит просуществовать еще 1500 миллиардов лет, прежде чем оно исчезнет совсем. Однако представляется чрезвычайно маловероятным, чтобы масса терялась с одинаковой скоростью до полного исчезновения. Физики, работавшие с атомными ядрами, убедились, что энергия производится за счет массы обычно в тех случаях, когда ядра одного вида превращаются в ядра другого вида. При этом лишь очень незначительная часть общей массы преобразуется в энергию.

Таким образом, если Солнце получает свою энергию от происходящих внутри него ядерных реакций, оно может потерять лишь незначительную долю своей массы. Затем, когда все ядра его вещества будут преобразованы в ядра нового вещества, ядерные реакции прекратятся. И хотя Солнце сохранит еще огромную массу, оно не будет производить никакой или почти никакой энергии.

Итак, количество содержащейся в Солнце энергии, а следовательно, и срок его существования в прошлом и в будущем зависят от характера происходящих в нем ядерных реакций. Но как могли ученые определить этот характер? На первый взгляд такая задача представляется неразрешимой: ведь сначала нужно определить, из каких веществ состоит Солнце и в каких условиях эти вещества находятся, а уж потом пытаться установить, какого типа ядерные реакции будут происходить в таких веществах при подобных условиях. Да, конечно, это очень сложная задача. Во-первых, как определить химический состав Солнца с расстояния в 150 000 000 км? В начале XIX в. казалось нелепым даже мечтать о подобной возможности.

Французский философ Огюст Конт (1798-1857), рассматривая вопрос об абсолютных пределах человеческого знания, в качестве примера непознанных и навеки не познаваемых фактов привел и химический состав небесных тел. Однако не все, что связано с Солнцем, находится от нас на расстоянии в 150 000 000 км. Его излучение преодолевает космическое пространство и достигает нас. По мере того как XIX в. близился к концу, ученые находили все новые способы извлекать все больше сведений из этого излучения. (С его помощью, например, были измерены лучевые скорости звезд.) Вернемся же к спектру и к его линиям.

В 1859 г. немецкий физик Густав Роберт Кирхгоф (1824-1887) и его сотрудник немецкий химик Роберт Вильгельм Бунзен (1811 -1899) начали внимательно изучать спектры различных паров, нагреваемых в практически бесцветом пламени бунзеновской горелки (нагревательного прибора, вошедшего в широкое употребление благодаря Бунзену; в нем для получения более эффективного горения и более горячего пламени газ смешивается с воздухом). Нагретые пары давали эмиссионный спектр - яркие линии на темном фоне. Характер этих линий зависел от того, какие элементы присутствовали в парах. Каждый элемент имел свою собственную, только ему одному свойственную систему ярких линий, и два разных элемента никогда не показывали одинаковых линий в одинаковых местах спектра.

Эмиссионный спектр служил «отпечатком пальцев» для элементов, присутствовавших в раскаленных парах. Так, Кирхгоф и Бунзен заложили основы спектроскопии. На следующий год, изучая спектры различных минералов, Кирхгоф и Бунзен обнаружили линии, не свойственные ни одному из известных им элементов. Они заподозрили присутствие каких-то еще не открытых элементов, что и было подтверждено химическим анализом. Новые элементы получили названия «цезий» и «рубидий» от латинских слов «небесно-голубой» и «красный»- в честь линий, которые привели к их открытию. Цезий и рубидий были первыми элементами, открытыми благодаря спектроскопии, но отнюдь не последними.

Кирхгоф и Бунзен сделали еще больше. Они исследовали спектр раскаленного твердого тела (испускавшего белый свет, который давал непрерывный спектр) и пропускали его свет через более холодный пар. Они обнаружили, что пар поглощает световые волны определенной длины и что поэтому после того, как свет был пропущен через пар, его спектр уже не был непрерывным - он пересекался темными линиями, отмечавшими место поглощенных световых волн. Это был спектр поглощения, и сразу стало ясно, что примером такого спектра может служить спектр Солнца. Горячая поверхность собственно Солнца испускает белый свет, образующий непрерывный спектр, а когда этот свет проходит через солнечную атмосферу (которая тоже достаточно горяча, но все же холоднее самого Солнца), некоторые световые волны поглощаются. Вот чем объяснялись темные линии в солнечном спектре.

Кирхгоф заметил, что холодный пар поглощает как раз те волны, которые он испускает в раскаленном состоянии. Предположим, например, что пары элемента натрия раскалятся до такой степени, что начнут светиться. Полученный свет будет ярко-желтым. Если пропустить его через узкую щель, а потом через призму, появятся две близко расположенные друг к другу желтые линии, которые и составят весь эмиссионный спектр натрия. Если же пропустить через относительно холодные пары натрия белый свет угольной дуги, то ее обычно непрерывный спектр будет нарушен двумя близко расположенными друг к другу темными линиями в его желтой части. Темные линии, возникающие благодаря поглощению световых волн холодными парами натрия, окажутся точно в тех же местах, которые занимают яркие линии, излучаемые раскаленными парами натрия. Темные линии спектра поглощения могут служить для опознания элемента так же, как и яркие линии эмиссионного спектра.

Что же можно было сказать о солнечном спектре и о линиях поглощения в нем? Одна из наиболее заметных линий этого спектра (та, которую Фраунгофер обозначил буквой D) действительно находится на месте линии натрия. Чтобы проверить это, Кирхгоф пропустил солнечный свет через пары натрия и обнаружил, что линия D стала более четкой и заметной. Более того, пропуская солнечный свет через раскаленные, светящиеся пары натрия, он восполнял в солнечном спектре недостающую линию натрия, и темная линия D исчезала. А раз линии, получаемые в лаборатории, совпадали с линиями солнечного спектра, логично было предположить, что эти последние тоже принадлежали натрию и что, следовательно, в атмосфере Солнца имеется натрий.

Точно так же было установлено, что темные линии Н и К - это линии кальция и, следовательно, в солнечной атмосфере должен присутствовать кальций. В 1862 г. шведский астроном Андерс Йонас Ангстрем (1814-1874) установил, что на Солнце имеется водород. Утверждение Конта оказалось совершенно ошибочным, человек нашел способ определить химический состав Солнца, да и любого другого небесного чела, которое испускает свет, достаточно яркий для того, чтобы дать различимый спектр.

Вначале солнечный спектр изучали только для того, чтобы установить, какие элементы имеются на Солнце, а каких там нет. Но скоро возник вопрос: а в каких количествах они там имеются? С увеличением концентрации каждого данного элемента в светящихся или поглощающих парах его спектральные линии становятся более четкими и широкими. И можно было не только обнаружить наличие тех или иных элементов на Солнце, но и определить их возможное количество В 1929 г. американский астроном Генри Норрис Рессел (1877-1957) тщательно изучил солнечные спектры, и ему удалось установить, что Солнце поразительно богато водородом. Он решил, что на водород приходится три пятых всего объема Солнца. Это было абсолютной неожиданностью, так как водород, хотя и не является редким элементом в точном смысле этого слова, составляет всего лишь 0,14% земной коры.

Однако последующие исследования показали, что Рессел был слишком осторожен в своей оценке. Недавние подсчеты американского астронома Дональда Говарда Мензела (род. в 1901 г.) показывают, что водород составляет 81,76% объема Солнца, а гелий 18,17%, так что на долю всех остальных элементов остается только 0,07%.

По-видимому, можно с уверенностью сказать, что Солнце практически представляет собой светящуюся смесь водорода и гелия в пропорции (по объему) 4:1. (Элемент гелий тоже был открыт с помощью спектрального анализа, причем сначала не на Земле, а на Солнце Английский астроном Джозеф Норман Локьер (1836 - 1920) предположил, что некоторые неопознанные линии солнечного спектра принадлежат еще не открытому элементу, который он в честь греческого бога Солнца Гелиоса назвал гелием. На Земле же гелий был обнаружен шотландским химиком Уильямом Рамзеем (1852-1916) только в 1895 г.).

Масса, исторгнувшаяся из Солнца, распадается на мелкие части, которые образуют планеты. Некоторые из них вырываются из солнечной системы, некоторые вновь падают на Солнце, но остальные вращаются вокруг него, согласно гравитации. Растянувшись по удлиненным орбитам вокруг Солнца, они собираются, выравнивают свои орбиты. Солнце и та - неизвестная доселе звезда должны вращаться вокруг общего центра масс и находится на значительном расстоянии друг от друга. Недавнее открытие доктором Майклом Брауном крупного астероида Седны предоставило первые косвенные физические свидетельства существования второй звезды (так называемой Немезиды) в Солнечной системе. Институт исследований двойных звёздных систем Binary Research Institute (BRI) объявил во всеуслышание, что орбитальные характеристики планетоида Седны свидетельствуют о наличии у Солнца звезды-компаньона. Двойные системы, считавшиеся ранее очень редкими, согласно последним данным, являются обычным явлением в нашей Галактике. Астрофизики Уолтер Краттенден из BRI, профессор Ричард Мюллер из UC Berkeley, д-р Дэниел Уитмир (из университета штата Луизиана) и другие ученые давно занимаются поисками гипотетического спутника Солнца.

Волновая теория не позволяет материи оторваться от Солнца, чтобы сначала рассеяться, а потом собраться воедино. Волна выбрасывает массу малыми порциями, которые довольно быстро переходят из газообразного состояния в жидкое, а затем в твердое. В пользу этой теории свидетельствуют данные о том, что подобная волна, разбиваясь на серию «выбросов», скорее всего даст наибольшие «выбросы» из середины своей массы, а наименьшие - из начала (вблизи Солнца) и конца (наиболее отдаленного от Солнца). Действительно, Меркурий, ближайшая к Солнцу планета, очень мал; Венера больше него; Земля чуть больше Венеры; Юпитер в триста двадцать раз больше Земли (по массе); Сатурн чуть меньше, чем «Юпитер; Уран и Нептун, хотя и большие планеты, не так велики, как Юпитер и Сатурн. Плутон почти так же мал, как и Меркурий.

В прошлом веке ряд астрономов, изучая небесные светила главной последовательности, установили любопытный факт: оказалось, что в этом ряду преобладают двойные звезды. Опираясь на эту закономерность, ученые высказали предположения, что, поскольку Солнце является типичной звездой, то и оно должно относиться к двойным звездным системам.

Так возникла гипотеза о Немезиде - гипотетическом спутнике Солнца, невидимого с Земли. обнаружить эту звезду с помощью телескопов не могут потому, что она давно потухла и превратилась в сверхплотный нейтронный карлик диаметром 40 километров. Косвенным же подтверждением существования Немезиды является движение недавно открытого планетоида Седны. И вполне вероятно, что именно это небесное тело в скором будущем предоставит определенные свидетельства в пользу существования загадочной Немезиды. Хотя теоретические данные говорят в пользу ее существования, наблюдений, которые полностью подтвердили бы факт присутствия Немезиды во вселенских просторах, пока нет. Хотя, как считают некоторые ученые, она вполне может давно присутствовать в звездных каталогах, однако распознать в ней спутницу Солнца тяжело. И прежде всего потому, что движется она вместе с Солнцем, и скорость ее перемещения по небу будет очень невелика. Но именно по быстрому движению слабых объектов астрономы и ищут наших ближайших звездных соседей.

Развитие планет

Масса, исторгнувшаяся из Солнца, распадается на мелкие части, которые образуют планеты. Некоторые из них вырываются из солнечной системы, некоторые вновь падают на Солнце, но остальные вращаются вокруг него, согласно гравитации. Растянувшись по удлиненным орбитам вокруг Солнца, они собираются, выравнивают свои орбиты. Вокруг Солнца начали обращаться планеты, которые полыхали так же, как и сама звезда.

Под действием магнитного поля Солнца началось медленное вращение планет вокруг собственной оси.

Интенсивные реакции ядерного распада расщепляли металл тероидов верхнего слоя, порождая легкие элементы, — началось образование жидкой металлической оболочки и оболочки «кипящего слоя» ядра планеты, создавая основу будущей коры, полыхали водород и кислород, образуя воду, вокруг шара начала создаваться и засияла протоатмосфера, состоящая из углекислого газа, паров воды, азота и его соединений.

Произошло постепенное остывание планет, из легких элементов и окислов — продуктов ядерного распада тероидов — начался синтез гранитов и образование гранитной коры, остывала первичная атмосфера. Поверхность планеты была ровной. Раскаленный гранит покрыт брызгами расплавленного металла, их окислами и солями, из трещин продолжалось истечение расплавленного гранита, вырывались газы. Эту картину можно было наблюдать на Земле 5,7 — 5,5 млрд. лет тому назад — вот почему на Земле возраст самых древних пород такого же порядка, что ошибочно датируется как возраст Земли и Солнечной системы.

За сотни миллионов лет хемосинтеза водных микроорганизмов в атмосфере появилось немного кислорода, атмосферное давление упало до 1,2 ати, температура до 346 0 К (+73 0 С). Завершилось формирование первичного океана, покрывшего всю поверхность планеты. Появились первые микроорганизмы и водоросли на основе фотосинтеза, поглощающие углекислый газ и выделяющие кислород.

Первое противоречие волновой гипотезы связано с тем пунктом, на который обычно ссылаются в ее доказательство - с массой планет. Между Землей и Юпитером вращается маленькая планета Марс, составляющая по массе одну десятую часть Земли, а согласно схеме, здесь можно предполагать планету, превышающую массу Земли в несколько раз. Но на этом месте расположен пояс астероидов.

Пояс астероидов - область Солнечной системы, расположенная между орбитами Марса и Юпитера, являющаяся местом скопления множества объектов всевозможных размеров, преимущественно неправильной формы, называемых астероидами или малыми планетами. Углеродистые астероиды класса C, названные так из-за большого процента простейших углеродных соединений в их составе, являются наиболее распространёнными объектами в главном поясе, на них приходится 75% всех астероидов, особенно большая их концентрация характерна для внешних областей пояса. Эти астероиды имеют слегка красноватый оттенок и очень низкое альбедо (между 0,03 и 0,0938). Поскольку они отражают очень мало солнечного света, их трудно обнаружить. Зато эти астероиды довольно сильно излучают в инфракрасном диапазоне из-за наличия в их составе воды. Суммарная масса главного пояса равна примерно 4 % массы Луны. До сих пор идут сильные споры по поводу образования этого пояса астероидов. Гипотеза о разрушенной планете считается не состоятельной, по той причине что масса всех астероидов составляет менее 4% от Массы Луны .

А что если планета не была разрушена полностью, а была только частично раздроблена и вытолкнута на другую орбиту? Планета Х, находясь непосредственно вблизи Юпитера, чьё гравитационное поле постоянно вносило серьёзные возмущения в ее орбиту, оказалась как раз на пути молодой Земли. Все это закончилось грандиозным столкновением между развивавшейся Землей и Нибиру (или спутником влекомым ее гравитационным притяжением). Это столкновение повлекло за собой изменение облика Земли.

Такой удар разбил Землю и отбросил ее в сторону Солнца. У Земли, сбитой с орбиты, вода должна была рассеяться с большей лёгкостью, чем её основная масса и быстро заполнить образовавшуюся впадину.

Окончательный акт сотворения солнечной системы совершился в момент вторичного возвращения Планеты Х на место небесной битвы. На этот раз Планета Х слилась с оставшейся частью Разрушенной Земли, став Нибиру — планетой пересечения, а рассеявшиеся осколки собрались в поясе астероидов. или стали кометами.

Большая часть воды вперемешку с обломками и магматическими породами (Силикатные сплавы,) были выброшены в космос — так был образован пояс астероидов. В результате большинство планетезималей и астероидов оказались раздробленными на многочисленные мелкие фрагменты, большая часть из которых была притянута Планетой Х, чем и объясняется низкая плотность пояса астероидов, другая часть перешла на вытянутые орбиты, по которым они, попадая во внутреннюю область Солнечной системы, сталкивались с планетами земной группы (такими как Венера, Меркурий, Марс).

Марс, находясь в близком соседстве, получил внушительную порцию осколков и железной (силикатной) пыли, которые окрасили его в красный цвет и завалили обломками. Другая внушительная часть пыли и осколков упали на Юпитер — так он получил свои знаменитые красные полосы и пятна, которые до сих пор завораживают нас своей красотой. Сатурн приобрел систему плоских концентрических образований (кольца), состоящих изо льда (около 99%) и примеси силикатной пыли.

Всю эту ситуацию назвали «поздняя тяжёлая бомбардировка», временной период которой был от 4,1 до 3,8 млрд лет назад, в течение которого, как считается, сформировались кратеры на Луне и, предположительно, также на Земле, Меркурии, Венере и Марсе. Основанием в первую очередь является датировка образцов лунного грунта, которая свидетельствует о том, что большинство камней оплавились в этот относительно короткий интервал времени.

Например поверхность Марса сильно кратеированна. Причем, южная часть кратеированна намного больше, чем северная. Специфическую окраску поверхности Марса от красновато-желтой до красновато-коричневой придают гидраты окислов железа в смеси с кремнеземом — примерно с таким же песком (SiO2), как и на Земле.

Кометы

Ныне известно вполне определенно, что в солнечной системе имеется больше шестидесяти комет. Это кометы короткого цикла (менее восьмидесяти лет); они вращаются по вытянутому эллипсу и все, кроме одной, не выходят за линию, обозначенную орбитой Нептуна. Подсчитано, что кроме комет короткого цикла несколько сот тысяч комет навещают солнечную систему; однако в точности неизвестно, возвращаются ли они с достаточной периодичностью. Ныне их видят примерно пятьсот за столетие, и есть мнение, что в среднем период их жизни составляет десятки тысяч лет.

Метеориты C-класса и частички кометной пыли содержат в себе минералы, которые образовывались при высокой температуре свыше 1000 градусов Цельсия. Это никак не согласуется с ранней гипотезой, что кометы образовывались на окраине Солнечной системы, в ходе конденсации газов.

В состав комет входит смесь из заледеневшей воды, газов и небольшого количества частиц камня и металлов.

Было предложено несколько теорий происхождения комет, но, кроме одной попытки увидеть в них планетезимали, которые не получили достаточно сильного бокового толчка, чтобы выйти на круговую орбиту, не было создано ни одной схемы, которая объясняла бы происхождение солнечной системы в ее целостности, с ее планетами и кометами. Ведь ни одна космическая теория не может существовать, если ограничит себя или проблемами планет, или проблемами комет исключительно.

Около пятидесяти комет движутся между Солнцем и орбитой Юпитера; их циклы менее девяти лет. Четыре кометы достигают орбиты Сатурна, две вращаются внутри круга, очерченного Ураном. Девять комет со средним периодом в семьдесят один год движутся внутри орбиты Нептуна. Такой, по современным представлениям, является система комет короткого цикла.

К последней группе принадлежит комета Галлея, у которой на фоне комет короткого цикла самый длинный период обращения - семьдесят шесть лет, А за этим зияет бесконечная брешь, за которой пребывают кометы, которым необходимы тысячи лет, прежде чем они вернутся к Солнцу, если они вообще когда-либо вернутся.

Проходя вблизи Солнца, кометы образуют хвосты. Установлено, что вещество, из которого состоит этот хвост, не возвращается к голове кометы, а рассеивается в воздухе. Следовательно, кометы, как светящиеся тела, должны быть недолговечными. Если комета Галлея следует по своей нынешней орбите с поздней докембрийской эры, она должна «отрастить и потерять восемь миллионов хвостов, что представляется невероятным». Если кометы истощаются, то их количество в пределах солнечной системы должно постоянно уменьшаться, и ни одна комета короткого цикла не смогла бы сохранить свой хвост, имея геологический возраст. Но поскольку имеется множество светящихся комет короткого цикла, они должны были появиться в то время, когда все тела солнечной системы находились уже на своих местах. Ядра комет состоят изо льда с добавлением космической пыли и замороженных летучих соединений: монооксида и диоксида углерода, метана, аммиака.

В итоге получается что кометы были образованы не глубинах глубокого космоса, а в результате столкновения с планетой содержащей воду.

Земля

Предполагая древнее столкновение Земли с другим крупным телом, то должен остаться внушительный след от такого столкновения. Перенесемся на 4 млрд лет назад — в тот момент, когда произошло столкновение.

Земля была заметно крупнее и массивнее — это был идеально ровный шар покрытый полностью водой.

После столкновения Земля потеряла внушительный объем суши и воды. Оставшаяся вода заполнила глубокую впадину, образуя древний океан, который был очень горячий, в связи с обнажившейся магмой. Океан быстро нагрелся, вода кипела и испарялась. Атмосфера не содержала свободного кислорода, он находится только в составе окислов. Почти никаких звуков, кроме свиста ветра, шипения извергающейся с лавой воды и ударов метеоритов о поверхность Земли. Ни растений, ни животных, ни бактерий. Может быть, так выглядела Земля, когда на ней появилась жизнь? Хотя эта проблема издавна волнует многих исследователей, их мнения на этот счет сильно различаются. При извержениях вулканов и с газами, высвобождавшимися из расплавленной магмы, на земную поверхность выносились разнообразные химические вещества, необходимые для синтеза органических молекул.

Отыскать след от столкновения не составило труда. Такие следы должны сохраняться на миллионы лет. И придавать Земле некоторые уникальные особенности, которые до сих пор сильно влияют на нашу жизнь.

Наша планета всё ещё пытается заполнить зияющее отверстие — шрам от того разрушительного столкновения — широко раскинувшееся пространство между Америкой и странами Тихоокеанского Бассейна — обширный Тихий Океан.

На физической карте мира отчетливо виден след от столкновения. (Обозначен красным и оранжевым цветами — ныне это вулканы и высокие горы)

Например если взглянуть на физическую карты мира мы увидим как самые высокие горы и вулканы образуют кольцо (Кстати в научных кругах оно так и называется: Огненное кольцо)

Тихий океан — самый глубокий и большой

Даже в Книге Бытия со всей определенностью говорится, что воды были собраны «в одном месте» на одной стороне Земли, чтобы могла «явиться» суша. Это предполагает наличие впадины, в которой могла собраться вся вода. Впадина, когда-то занимавшая половину поверхности планеты, по-прежнему существует - это уменьшающийся в размерах Тихий океан. Мне удалось найти редкое изображение из научных архивов, на котором показана планета, так, как она бы выглядела без воды. Отчетливо виден след древнего столкновения.

Тихоокеанское дно имеет такой вид:


Со стороны Японии

Не подлежит сомнению, что впадина была значительно шире и захватывала гораздо большую часть поверхности планеты. Причина заключается в том, что обрамляющие океан континенты - Америка на востоке, Азия и Австралия на западе - сближаются, медленно, но неотвратимо сжимая Тихий океан.

Тогда получается что, молодая Земля заполнив водой свою рану, обнажила сушу. Так были образованы древний первичный океан и древний континент Пангея. Даже глядя сейчас из космоса видно что Южная Америка удачно входит в изгиб побережья Западной Африки, а Северная Америка стыкуется с Европой. В прошлом всё составляло одну массу земли. Разве вращающиеся планеты не принимают сферическую форму, переходя из жидкого состояния?

Из-за того что поверхность Земли стала неравномерной — суша, находилась на одной стороне, а зияющая рана на другой — начали происходить . Планета Х, когда в очередной раз проносилась мимо, захватывала за эту единую сушу, тянула ее за собой при близком проходе. В итоге этот единый континент стал разрываться на фрагменты в течении частых периодических визитов Планеты Х.

Неравномерность поверхности делает гравитационное притяжение Планеты Х только более разрушительным, континенты будут схвачены и передёрнуты как рукоятки. Глубина Тихоокеанской впадины также очень уязвима, это слабое место на поверхности, по которому скользят континенты. Таким образом, мы имеем дрейф континентов, который является термином гораздо более мягким, чтобы его можно было бы использовать для происходящих катаклизмов. В итоге то место за которое планета Х обычно захватывает Землю, в течении продолжительных сдвигов полюсов, должно было сильно намагнититься и стать мощной аномалией — скорее всего это было центральное место Пангеи, которое со временем стало перемещаться, а новая лава извергаясь намагничивалась. Мне удалось найти это место называется оно: Бразильская магнитная аномалия (БМА) - магнитная аномалия Земли в Южном полушарии, у берегов Бразилии и Южной Африки (Бразильская и Кейптаунская аномалии, которые часто объединяются в Южно-атлантическую аномалию (ЮАА)). Выглядит она вот так:

Вращение Земли сдерживается в случаях, когда она обращена к Планете X континентами, создавая не только нагромождение платформ, но также и разрывы разломов и создание новых из-за импульса, действующего в Восточном направлении. При каждом последующим Сдвиге Полюсов Земля заполняла свою рану. Сначала, из-за неравномерного характера её формы, стремление принять округлость было небольшим. Земля (после разрыва коры) сжималась с одной стороны, и каждый проход гигантской планеты только немного затягивал это сжатие, разделяя её сушу и перемещая в разрыв. Но каждый последующий проход застаёт более уязвимую картину, и разделение одного континента увеличивалось. Расширяющееся дно Атлантического океана, удаляло Америку от Европы и Африки. Это главная причина сдвигов земной коры и землетрясений вдоль всего Тихоокеанского бассейна, а также подъема горных хребтов вдоль границ этого региона. Столкновение Индийской плиты с Евразийской привело к образованию Гималаев и присоединению Индийского субконтинента к Азии.

Таким образом Земля и солнечная система имеет свою нынешнюю форму. Приведенных примеров вполне достаточно для того, чтобы показать крайне слабую аргументацию многих предлагаемых читателям и телезрителям материалов и выводов. И еще раз отметить необходимость подходить к решению большинства проблем естествознания, в особенности касающихся строения и развития Земли и жизни на ней, комплексно, с позиций специалистов из разных областей знаний – геологов, историков и астрономов. А пока этого не произойдет, нам будут предлагаться вместо научно-популярных статей и фильмов сочинения «на вольную тему», где проблемы рассматриваются отдельно, а не комплексно.

Солнечная система – это 8 планет и более 63 их спутника, которые открываются все чаще, несколько десятков комет и большое количество астероидов. Все космические тела движутся по своим четким направленным траекториям вокруг Солнца, которое тяжелее в 1000 раз, чем все тела в солнечной системе вместе взятые. Центром солнечной системы является Солнце – звезда, вокруг которой по орбитам обращаются планеты. Они не выделяют тепла и не светятся, а лишь отражают свет Солнца. В солнечной системе сейчас официально признано 8 планет. Вкратце по порядку удаленности от солнца перечислим их все. А сейчас несколько определений.

Планета – это небесное тело, которое должно удовлетворять четырем условиям:
1. тело должно обращаться вокруг звезды (например, вокруг Солнца);
2. тело должно обладать достаточной гравитацией, чтобы иметь сферическую или близкую к ней форму;
3. тело не должно иметь вблизи своей орбиты других крупных тел;
4. тело не должно быть звездой

Звезда – это космическое тело, которое излучает свет и является мощным источником энергии. Это объясняется, во–первых, происходящими в нем термоядерными реакциями, а во–вторых, процессами гравитационного сжатия, в результате которых выделяется огромное количество энергии.

Спутники планет. В солнечную систему входят также Луна и естественные спутники других планет, которые есть у всех них, кроме Меркурия и Венеры. Известно свыше 60 спутников. Большинство спутников внешних планет обнаружили, когда получили фотографии, сделанные автоматическими космическими аппаратами. Наименьший спутник Юпитера – Леда – в поперечнике всего 10 км.

– это звезда, без которой не могло бы существовать жизни на Земле. Она дает нам энергию и тепло. Согласно классификации звезд, Солнце – желтый карлик. Возраст около 5 млрд. лет. Имеет диаметр на экваторе равный 1 392 000 км, в 109 раз больше земного. Период вращения на экваторе – 25,4 дня и 34 дня у полюсов. Масса Солнца 2х10 в 27 степени тонн, примерно в 332950 раз больше массы Земли. Температура внутри ядра примерно 15 млн градусов Цельсия. Температура на поверхности около 5500 градусов Цельсия. По химическому составу Солнце состоит из 75% водорода, а из прочих 25% элементов больше всего гелия. Теперь по порядку разберемся сколько планет вокруг солнца вращается, в солнечной системе и характеристики планет.
Четыре внутренние планеты (ближайшие к Солнцу) – Меркурий, Венера, Земля и Марс – имеют твердую поверхность. Они меньше, чем четыре планеты гиганта. Меркурий движется быстрее других планет, обжигаясь солнечными лучами днем и замерзая ночью. Период обращения вокруг Солнца: 87,97 суток.
Диаметр на экваторе: 4878 км.
Период вращения (оборот вокруг оси): 58 дней.
Температура поверхности: 350 днем и –170 ночью.
Атмосфера: очень разреженная, гелий.
Сколько спутников: 0.
Главные спутники планеты: 0.

Больше похожа на Землю размерами и яркостью. Наблюдение за нею затруднено из–за окутывающих ее облаков. Поверхность – раскаленная каменистая пустыня. Период обращения вокруг Солнца: 224,7 суток.
Диаметр на экваторе: 12104 км.
Период вращения (оборот вокруг оси): 243 дня.
Температура поверхности: 480 градусов (средняя).
Атмосфера: плотная, в основном углекислый газ.
Сколько спутников: 0.
Главные спутники планеты: 0.


По всей видимости, Земля сформировалась из газопылевого облака, как и другие планеты. Частички газа и пыли сталкиваясь, постепенно "растили" планету. Температура на поверхности достигла 5000 градусов Цельсия. Затем Земля остыла и покрылась твердой каменной корой. Но температура в недрах и по сей день довольно высока – 4500 градусов. Горные породы в недрах расплавлены и при извержении вулканов выливаются на поверхность. Только на земле есть вода. Поэтому тут и существует жизнь. Она расположена сравнительно близко к Солнцу, чтоб получать необходимые тепло и свет, но достаточно далеко, чтоб не сгореть. Период обращения вокруг Солнца: 365,3 суток.
Диаметр на экваторе: 12756 км.
Период вращения планеты (оборот вокруг оси): 23 часа 56 мин.
Температура поверхности: 22 градуса (средняя).
Атмосфера: в основном азот и кислород.
Число спутников: 1.
Главные спутники планеты: Луна.

Из – за сходства с Землей полагали, что здесь существует жизнь. Но опустившийся на поверхность Марса космический аппарат признаков жизни не обнаружил. Это четвертая по порядку планета. Период обращения вокруг Солнца: 687 суток.
Диаметр планеты на экваторе: 6794 км.
Период вращения (оборот вокруг оси): 24 часа 37 мин.
Температура поверхности: –23 градуса (средняя).
Атмосфера планеты: разреженная, в основном углекислый газ.
Сколько спутников: 2.
Главные спутники по порядку: Фобос, Деймос.


Юпитер, Сатурн, Уран и Нептун состоят из водорода и других газов. Юпитер превосходит Землю более чем в 10 раз по диаметру, в 300 раз по массе и в 1300 раз по объему. Он более чем вдвое массивнее всех планет Солнечной системы вместе взятых. Сколько планете Юпитер нужно, чтобы стать звездой? Нужно его массу увеличить в 75 раз! Период обращения вокруг Солнца: 11 лет 314 суток.
Диаметр планеты на экваторе: 143884 км.
Период вращения (оборот вокруг оси): 9 часов 55 мин.
Температура поверхности планеты: –150 градусов (средняя).
Число спутников: 16 (+ кольца).
Главные спутники планет по порядку: Ио, Европа, Ганимед, Каллисто.

Это номер 2, по величине из планет солнечной системы. Сатурн привлекает к себе взгляды благодаря системе колец, образованную из льда, камней и пыли, которые обращаются вокруг планеты. Существует три главных кольца с внешним диаметром 270000 км, но толщина их около 30 метров. Период обращения вокруг Солнца: 29 лет 168 суток.
Диаметр планеты на экваторе: 120536 км.
Период вращения (оборот вокруг оси): 10 часов 14 мин.
Температура поверхности: –180 градусов (средняя).
Атмосфера: в основном водород и гелий.
Число спутников: 18 (+ кольца).
Главные спутники: Титан.


Уникальная планета Солнечной системы. Ее особенность в том, что она вращается вокруг Солнца не как все, а "лежа на боку". Уран тоже имеет кольца, хотя их труднее увидеть. В 1986 г. "Вояжер –2" пролетел на расстоянии 64 000 км, у него было шесть часов на фотосъемку, которые он с успехом реализовал. Период обращения: 84 года 4 суток.
Диаметр на экваторе: 51118 км.
Период вращения планеты (оборот вокруг оси): 17 часов 14 мин.
Температура поверхности: –214 градусов (средняя).
Атмосфера: в основном водород и гелий.
Сколько спутников: 15 (+ кольца).
Главные спутники: Титания, Оберон.

На данный момент, Нептун считается последней планетой Солнечной системы. Его открытие происходило способом математических расчетов, а потом уже увидели в телескоп. В 1989 году, "Вояжер–2" пролетел мимо. Он сделал поразительные фотоснимки голубой поверхности Нептуна и его самого крупного спутника Тритона. Период обращения вокруг Солнца: 164 года 292 суток.
Диаметр на экваторе: 50538 км.
Период вращения (оборот вокруг оси): 16 часов 7 мин.
Температура поверхности: –220 градусов (средняя).
Атмосфера: в основном водород и гелий.
Число спутников: 8.
Главные спутники: Тритон.


24 августа 2006 года Плутон потерял статус планеты. Международный астрономический союз вынес решение о том, какое небесное тело следует считать планетой. Плутон не удовлетворяет требованиям новой формулировки и теряет свой «планетарный статус», в то же время Плутон переходит в новое качество и становится прообразом отдельного класса карликовых планет.

Как появились планеты. Ориентировочно 5–6 миллиардов лет назад одно из газопылевых облаков нашей большой Галактики (Млечного пути), имеющее форму диска, начало сжиматься к центру, понемногу формируя нынешнее Солнце. Дальше, по одной из теорий, под действием мощных сил притяжения, большое количество частиц пыли и газа, вращающихся вокруг Солнца, стали слипаться в шары – образуя будущие планеты. Как гласит другая теория, газопылевое облако сразу распалось на раздельные скопления частиц, которые, сжимались и уплотнялись, образовав нынешние планеты. Теперь 8 планет вокруг Солнца вращается постоянно.

10 неожиданных и интригующих фактов о нашей Солнечной системе — нашем Солнце и его семье планет, – о которых вы не знали!

Помните те модели Солнечной системы, которые вы изучали? Солнечная система еще круче! Вот 10 вещей, которые вы можете не знать.

  1. Самая горячая планета не ближе всего к Солнцу . Многие знают, что Меркурий — самая близкая к Солнцу планета. Поэтому нет ничего загадочного в том, почему люди считают Меркурий самой горячей планетой. Мы знаем, что Венера, вторая планета от Солнца, находится в среднем на 45 миллионов километров дальше от Солнца, чем Меркурий. Естественное предположение состоит в том, что, находясь дальше, она должна быть холоднее. Но предположения могут быть неправильными. У Меркурия нет атмосферы, нет утепляющего «одеяла», чтобы помочь ему сохранить тепло Солнца. С другой стороны, Венера окутана неожиданно густой атмосферой, которая в 100 раз толще Земной.

Это само по себе, служило бы для предотвращения возвращения части солнечной энергии обратно в космос и, таким образом, для повышения общей температуры планеты. Но в дополнение к толщине атмосферы, она состоит почти полностью из углекислого газа, мощного парникового газа. Диоксид углерода свободно пропускает солнечную энергию, но гораздо менее прозрачен для длинноволнового излучения, испускаемого нагретой поверхностью. Таким образом, температура поднимается до уровня, намного превышающий ожидаемый, делая Венеру самой горячей планетой.

Фактически средняя температура на Венере составляет около 875 градусов по Фаренгейту (468.33 Цельсия), достаточной, чтобы расплавить олово и свинец. Максимальная температура на Меркурии, планете располагающейся ближе к Солнцу, составляет около 800 градусов по Фаренгейту (426.67 Цельсия). Кроме того, отсутствие атмосферы приводит к изменению температуры поверхности Меркурия на сотни градусов, тогда как толстая мантия углекислого газа сохраняет температуру поверхности Венеры устойчивой, почти не изменяющейся вообще, где-нибудь на планете или в любое время дня или ночи!

  1. Плутон меньше, чем США . Наибольшее расстояние между границами Соединенных Штатов составляет почти 4 700 км (от Северной Калифорнии до Мэн). По самым лучшим текущим оценкам, Плутон чуть более 2300 км в поперечнике, меньше половины ширины США. Конечно, по размеру он намного меньше любой крупной планеты, возможно поэтому, немного легче понять, почему несколько лет назад он был «понижен в звании» и лишен статуса планеты. Теперь Плутон обозначают как «карликовую планету»

  1. «Астероидные поля». Во многих научно-фантастических фильмах космические аппараты часто подвергаются опасности из-за плотных астероидных полей. На самом деле, единственное известное нам «астероидное поле» существует между Марсом и Юпитером, и хотя в нем есть десятки тысяч астероидов (возможно, больше), между ними огромные расстояния, и вероятность столкновения с астероидами мала. Фактически, космические корабли должны быть преднамеренно и тщательно направляться к астероидам, чтобы иметь шанс даже фотографировать их. Учитывая это, очень маловероятно, что космические летательные аппараты когда-либо столкнутся с астероидными роями или поясами в глубоком космосе.

  1. Вы можете создать вулканы, используя воду в качестве магмы. Упомяните вулканы, и все сразу подумают о горе Сент-Хеленс, горе Везувий, или, возможно, кальдере лавы Мауна-Лоа на Гавайях. Вулканы требуют, чтобы расплавленная порода называлась лавой (или «магмой», когда она все еще под землей), правильно? На самом деле, нет. Вулкан образуется, когда подземный резервуар горячего, жидкого минерала или газа прорывается на поверхность планеты или другого незвездного астрономического тела. Точный состав минерала может сильно различаться.

На Земле большинство вулканов имеют лаву (или магму) с кремнием, железом, магнием, натрием и множеством сложных минералов. Вулканы луны Ио, как представляется, состоят в основном из серы и двуокиси серы. На луне Сатурна , луне Нептуна Тритоне и многих других движущей силой является лед, старая добрая замороженная H20!

Вода расширяется, когда она замерзает, и огромное давление может нарастать, как в «нормальном» вулкане на Земле. Когда лед прорывается на поверхность, образуется « ». Таким образом, вулканы могут работать как на воде, так и на расплавленной породе. Кстати, у нас есть относительно небольшие извержения воды на Земле, называемые гейзерами. Они связаны с перегретой водой, которая соприкасается с горячим резервуаром магмы.

  1. Край Солнечной системы в 1000 раз дальше, чем Плутон. Вы все еще можете думать о том, что Солнечная система простирается до орбиты столь любимой карликовой планеты Плутон. Сегодня астрономы даже не рассматривают Плутон как полноценную планету, но впечатление остается. Тем не менее астрономы обнаружили множество объектов, вращающихся вокруг Солнца, которые значительно дальше, чем Плутон.

Это «Транснептуновые объекты», или « ». Считается, что пояс Койпера, первый из двух резервуаров солнечного кометного материала, простирается на 50-60 астрономических единиц (а.е. или среднее расстояние Земли от Солнца). Еще более далекая часть Солнечной системы, огромное облако комет Оорта, может простираться до 50 000 а.е. от Солнца, или примерно на полтора световых года — более чем в тысячу раз дальше, чем Плутон.

  1. Почти все на Земле — редкий элемент. Элементарный состав планеты Земля — это железо, кислород, кремний, магний, сера, никель, кальций, натрий и алюминий. Хотя эти элементы были обнаружены в местах по всей Вселенной, они являются лишь микроэлементами, которые в значительной степени затмеваются гораздо большим содержанием водорода и гелия. Таким образом, Земля, по большей части, состоит из редких элементов. Однако это не означает, что у Земли есть какое-либо особое место. Облако, из которого формировалась Земля, имело гораздо более высокое содержание водорода и гелия, но, будучи легкими газами, они были вытеснены в космос солнечным теплом, когда образовалась Земля.

  1. На Земле есть породы Марса. Химический анализ метеоритов, обнаруженных в Антарктиде, пустыне Сахара и в других местах, показал, что они возникли на Марсе. Например, некоторые содержат карманы газа, которые химически идентичны марсианской атмосфере. Эти метеориты, возможно, были оторваны от Марса из-за более сильного воздействия метеорита или астероида на Марс, или из-за огромного извержения вулкана, а затем столкнулись с Землей.

  1. На Юпитере находится самый большой океан в Солнечной системе. Вращаясь в холодном пространстве, в пять раз дальше от Солнца, чем Земля, Юпитер сохранил гораздо более высокие уровни водорода и гелия, когда он сформировался, чем наша планета. Фактически, Юпитер в основном состоит из водорода и гелия. Учитывая массу и химический состав планеты, физика требует, чтобы водород превратился в жидкость. На самом деле должен быть глубокий планетарный океан жидкого водорода. Компьютерные модели показывают, что это не только самый большой океан, известный в Солнечной системе, но и имеющий глубину около 40 000 км — примерно такой же глубокий, как вся Земля!

  1. Даже маленькие космические тела могут иметь луны. Когда-то считалось, что только объекты размером с планеты могут иметь естественные спутники или луны. Фактически существование лун или способность планеты гравитационно управлять луной на орбите иногда использовалось как часть определения того, что есть на самом деле планета. Просто не казалось разумным, что более мелкие небесные тела обладают достаточной гравитацией, чтобы удерживать луну. В конце концов, у Меркурия и Венеры их совсем нет, а у Марса есть только крошечные луны. Но в 1993 году зонд Galileo заметил у астероида Ида шириной 35 км, его полутора километровую луну — Дактиль. С тех пор луны были обнаружены на орбите около 200 других малых планет, что еще больше усложнило определение «истинной» планеты.

  1. Мы живем внутри Солнца. Обычно мы думаем о Солнце как о большом, горячем шаре света на расстоянии 150 миллионов километров. Но на самом деле внешняя атмосфера Солнца простирается далеко за пределы видимой поверхности. Наша планета вращается вокруг этой слабой атмосферы, и мы видим свидетельства этого, когда порывы солнечного ветра создают Северное и Южное сияние. В этом смысле мы определенно живем «внутри» солнца. Но солнечная атмосфера не заканчивается на Земле. Сияния наблюдались на Юпитере, Сатурне, Уране и даже на далеком Нептуне. Фактически, внешняя солнечная атмосфера, называемая «гелиосферой», как предполагается, простирается, по меньшей мере, на 100 астрономических единиц. Это почти 16 миллиардов километров. На самом деле атмосфера, вероятно, имеет форму капли, из-за движения Солнца в космосе, причем «хвост» простирается на десятки и сотни миллиардов километров.

Солнечная система — это круто. Это были 10 фактов о Солнечной системе, которые вы могли не знать.

нравится(21 ) не нравится(3 )



Просмотров