Для процесса горения веществ необходим доступ. Составляющие пожара и взрыва

Для возникновения горения необходимо наличие в одном месте и в одно время трех компонентов: горючего вещества, окислителя и источника зажигания (рис 414). Кроме того, нужно, чтобы горючее вещество было наг. Грета до необходимой температуры и находилась в соответствующем количественном соотношении с окислителем, а источник зажигания мало необходимую энергию для начального импульса (зажигания). Так, спичкой можно зажечь лист бумаги, а деревянную колоду - невозможно. Необходимость для горения одновременно трех компонентов, так называемый треугольник огня, обнаружил еще в XVIII в французский ученый. Лавуазьвуазьє.

Рис 414. Условия, необходимые для возникновения горения

После возникновения горения протекает тем интенсивнее, чем больше удельная площадь контакта горючего вещества с окислителем (бумажные обрезки горят интенсивнее, чем пачки бумаги) и чем выше концентрация я окислителя, температура и давление. На пожарах температура достигает 1000-1300 °. С, а в отдельных случаях, например, при горении магниевых сплавов - 3000 °С.

Горючими веществами считаются вещества, которые при воздействии на них высоких температур, открытого пламени или другого источника зажигания могут заниматься и в дальнейшем гореть с образование м тепла и, зазвич чай, излучением света. В горючих веществ относятся: дерево, бумага, ткани, большинство пластмасс, природный газ, бензин, керосин и другие вещества в твердом, жидком, газообразном состоянии. Как правило, наиболее опасными в пожарном отношении являются горючие вещества в газообразном состояниині.

В состав подавляющего большинства горючих веществ входят углерод (Карбон) и водород (водород), которые являются основными горючими составляющими этих веществ. Поэтому и основными продуктами полного горения (при достаточно й количества кислорода) горючих веществ является. С02 и. Н20. Есть также целый ряд горючих веществ, которые представляют собой простые элементы, например, сера (Сера), фосфор (Фосфор), углерод (Карбонн).

Горючие вещества имеют разную теплотворную способность, поэтому температура на пожарах зависит не только от количества вещества, горит, но и от ее качества (химического состава). В табл 44 приведены температуру в пламя при горении некоторых веществ и материалелів.

Таблица 44. Температура пламени при горении некоторых веществ и материалов

окислителя при горении веществ чаще всего выступает кислород воздуха -. О, однако с уменьшением содержания кислорода в воздухе замедляется скорость горения, а при содержании кислорода менее 14% (норма 21%) горение большинства веществ становится невозможным. Кроме кислорода, окислителями могут быть химические соединения, в состав которых входит кислород, например, селитра (KNO3), азотная кислота (HNO3), марганцовокислый калий (КМn2O4) а также отдельные химические элементы (фтор, хлор, бром). Некоторые вещества содержат в своем составе кислорода столько, что его достаточно для горения без доступа воздуха (пыль, взрывчаткавка).

Источником зажигания, т.е. инициатором пожара может быть: открытое пламя, раскаленные предметы, электрические заряды, тепловые процессы химического, электрического и механического происхождения, искры от ударов т и трения, солнечная радиация, электромагнитные и другие излучения. Источники зажигания могут быть высоко-, средне-и маломощными (табл. 45)5):

таблице 45. Мощности некоторых источников зажигания

433 Разновидности горения

Различают следующие разновидности горения: взрыв, детонация, вспышка, возгорание, воспламенение, самовозгорание, самовоспламенение, тления

Взрыв - чрезвычайно быстрое химическое превращение, сопровождающееся выделением энергии и образованием сжатых газов, способных выполнять механическую работу основном эта механическая работа сводится к разрушения нувань, возникающих при взрыве и обусловлены образованием ударной волны - внезапного скачкоподибного рост давления. При удалении от места взрыва механическое воздействие ударной волны ослабляетсяся.

Детонация - это горение, которое распространяется со скоростью несколько тысяч метров в секунду. Возникновение детонации объясняется сжатием, нагревом и перемещением несгоревшей смеси перед фронтом пламени в приводит к ускорению распространения пламени и возникновения в смеси ударной волны. Таким образом, наличие достаточно мощной ударной волны является необходимой предпосылкой для детонации, поскольку в этом случае передача теплоты в смеси осуществляется не путем медленного процесса теплопроводности, а распространением ударной минлі.

Вспышка - кратковременное интенсивное сгорания ограниченного объема газовоздушной смеси над поверхностью горючего вещества или пылевоздушной смеси сопровождается кратковременным видимым излучением, ал ле без ударной волны и устойчивое горение.

Возгорание - начало горения под воздействием источника зажигания

воспламенения - возгорание, сопровождающееся появлением пламени

Тление - беспламенное горения материала (вещества) в твердой фазе с видимым излучением света из зоны горения

Самовозгорание - начало горения вследствие самоиницийованих экзотермических процессов

самовоспламенения - самовозгорание, сопровождающееся появлением пламени

Самовозгорание возникает тогда, когда в результате экзотермических процессов скорость выделения тепла в массе горючего вещества превышает скорость его рассеивания в окружающую среду. Инициировать экзотермических процессы, а затем вызвать самовозгорание могут:

высокая температура горючего вещества, обусловлена??действием внешнего источника нагрева (тепловое самовозгорание);

Жизнедеятельность микроорганизмов в массе горючего вещества, что приводит к ее самонагревания (микробиологическое самовозгорание);

Химические реакции, в результате воздействия на вещество воздуха, воды или химически активных веществ (химическое самовозгорание)

Тепловое самовозгорание возникает в массе материалов, находящихся в энергетически благоприятном исходном состоянии для вступления в реакцию обмена с кислородом воздуха, при нагревании извне. Такой нагрев может осуществляться следующими путями:

Контактным (вследствие теплообмена при контакте с нагретым предметом);

Радиационным (вследствие лучистого тепла);

Конвективным (вследствие передачи тепла воздушным потоком)

"Механизм"теплового самовоспламенения заключается в следующем. Во время внешнего нагрева материала. Его температура постепенно повышается (фаза а, рис 415). После достижения температуры самонагревания. ТСН в материале происходит резкая интенсификация экзотермических процессов окисления и разложения, что приводит к самонагревания и повышения температуры материала (фаза б). Наиболее интенсивное самонагриван ния возникает в месте, где достигаются наилучшие условия аккумуляции тепла. Таким условиям отвечают глубинные места, поскольку именно в них наихудшие условия рассеивания тепла в окружающую среду. Так, ячейка самонагревания каменного угля, составленного в кучу, находится обычно на глубине 0,5-0,8 м от поверхн,8 м від поверхні.

При достижении температуры самовоспламенения. ТСЗ возникает горения материала без источника зажигания (фаза в)

Рис 415. Типичный график зависимости температуры горючего материала от времени при тепловое самовозгорание

Тепловое самовоспламенение наблюдается при хранении в кучах каменного угля (Та = 50-60 °. С) и хлопка (Та = 120-125 °. С), а также в кипах газетного (обойной) бумаги и гофрированного картона (Т. Три = 100-110 °. С.

Профилактика теплового самовоспламенения - предотвращение нагрева материалов (веществ) от внешних источников тепла

К микробиологического самовозгорания способны органические дисперсные и волокнистые материалы, внутри которых возможна жизнедеятельность, так называемых термофильных микроорганизмов. Именно жизнедеятельность таких микроор рганизмив приводит к первичному самонагревания массы материала. Особенно подвержены микробиологического самовозгорания невысушенные вещества растительного происхождения, сложенные в кучу (сено, солома, зерно, ле н, хлопок, торф и др.). Микробиологическое самовозгорание возникает в период от 10 до 30 суток с момента начала процессесу.

На рис 416 приведена типичная кривая развития процесса микробиологического самовозгорания невысушенной сена, заложенного на хранение

Рис 416. Типичная кривая развития процесса микробиологического самовозгорания невысушенной сена, заложенного на хранение

Химическое самовозгорание возникает в результате действия на горючее вещество воздуха, воды или химически активных веществ

К веществам, способные самовозгораться результате воздействия на них кислорода воздуха, относятся масла, жиры и олифы. Однако для этого необходимы соответствующие условия. Так, при хранении этих веществ в таре самовозгорания не в происходит, поскольку поверхность их соприкосновения с воздухом слишком мала. В то же время пропитанные ими волокнистые материалы имеют развитую поверхность окисления, что существенно увеличивает их способность к самовозгоранию. Пр оте еще одним непременным условием является составление пропитанных материалов в кучу, штабеля, пакеты. В этом случае поверхность окисления значительно превышает поверхность теплоотдачи, что приводит к самонагревания реч овин с последующим их самовозгораниеанням.

По опытным данным, 50 г ваты, пропитанной 100 г льняного масла, показали такой рост температуры (табл. 46)

таблице 46. Рост температуры образца после его утечки

Через 15 ч от момента утечки образца его температура достигнет 170 °. С и он вспыхнет без источника зажигания

К веществам, которые способны самовозгораться при действии на них воды, относятся калий, натрий, цезий, карбиды кальция и щелочных металлов и т.п.. Эти вещества при взаимодействии с водой выделяют горючие газы, которые нагревают иваються за счет теплоты реакции и. Самовозгораютсяя.

К химически активных веществ, которые могут вызвать самовозгорание, принадлежат главным образом окислители: сжатый кислород, азотная кислота, перманганат калия, перекись натрия, селитры, хлорная известь и др.

Например, сжатый кислород приводит к самовозгоранию минеральных масел, которые не занимаются на воздухе. А растительные материалы (солома, сено, лен, хлопок, опилки), скипидар, этиловый спирт самозаймають ься в результате контакта с азотной кислотойю.

Способность самовозгораться веществ и материалов необходимо учесть при разработке мер пожарной профилактики во время их хранения, транспортировки, термообработки, выполнения технологических опера этой тощ.

Известно, что для возникновения горения необходимо наличие:
1. Горючего вещества
2. Окислителя
3. Источника зажигания (энергетический импульс)
Эти три составляющие часто называют треугольником пожара. Если исключить одну из них, то горение возникнуть не может. Это важнейшее свойство треугольника используется на практике для предотвращения и тушения пожаров.

Воздух и горючее вещество составляют систему, способную гореть, а температурные условия обуславливают возможность самовоспламенения и горения системы.

Наибольшая скорость горения получается при горении вещества в чистом кислороде, наименьшая (прекращение горения) – при содержании 14–15% кислорода.

Горение веществ может происходить за счет кислорода, находящегося в составе других веществ, способных легко его отдавать. Такие вещества называются окислителями. Приведем наиболее известные окислители.

· Бертолетова соль (KClO 3).

· Калийная селитра (KNO 3).

· Натриевая селитра (NaNO 3).

В составе окислителей содержится кислород, который может быть выделен путем разложения соли, например:

2 KClO 3 = 2KCl + 3 O 2

Разложение окислителей происходит при нагревании, а некоторых из них даже под воздействием сильного удара.

2. Продукты горения. Полное и неполное сгорание. Экологические аспекты процессов горения.

В процессе горения образуются продукты сгорания. Состав usшвисит от горящего вещества и условий горения. Продукты сгорания, за исключением окиси углерода, гореть не способны.

Дым, образующийся при горении органических веществ, содержит твердые частицы и газообразные продукты (углекислый газ, окись углерода, азот, сернистый газ и другие). В зависи­мости от состава веществ и условий их горения получается различный по содержанию дым. Дымы, образующиеся при горении разных веществ, отличаются не только составом, но цветом и запахом. По цвету дыма можно определить, какое вещество горит, хотя цвет дыма изменяется в зависимости от условий трения. При горении древесины дым имеет серовато-черный пнет; бумаги, сена, соломы - беловато-желтый; ткани и хлоп­ка- бурый; нефтепродуктов - черный и т. д.

Продукты горения – это газообразные, жидкие или твердые вещества, образующиеся в процессе горения. Состав продуктов сгорания зависит от состава горящего вещества и от условий его горения. Органические и неорганические горючие вещества состоят, главным образом, из углерода, кислорода, водорода, серы, фосфора и азота. Из них углерод, водород, сера и фосфор способны окисляться при температуре горения и образовывать продукты горения: СО, CO 2 , SO 2 , P 2 O 5 . Азот при температуре горения не окисляется и выделяется в свободном состоянии, а кислород расходуется на окисление горючих элементов вещества. Все указанные продукты сгорания (за исключение окиси углерода СО) гореть в дальнейшем больше не способны. Они образуются при полном сгорании, то есть при горении, которое протекает при доступе достаточного количества воздуха и при высокой температуре.

Углекислый газ или двуокись углерода (СО 2) – продукт полного горения углерода. Не имеет запаха и цвета. Горение магния, например, происходит в атмосфере углекислого газа по уравнению:

CO 2 +2 Mg = C + 2 MgO.

При концентрации углекислого газа в воздухе, превышающей 3-4.5%, нахождение в помещении и вдыхание газа в течение получаса опасно для жизни.

Оксид углерода или угарный газ (СО) – продукт неполного сгорания углерода. Этот газ не имеет запаха и цвета, поэтому особо опасен.

Сернистый газ (SO 2) – продукт горения серы и сернистых соединений. Бесцветный газ с характерным резким запахом.

Дым При горении многих веществ, кроме рассмотренных выше продуктов сгорания выделяется дым – дисперсная система, состоящая из мельчайших твердых частиц, находящихся во взвешенном состоянии в каком-либо газе.

При неполном сгорании органических веществ в условиях низких температур и недостатка воздуха образуются более разнообразные продукты – окись углерода, спирты, кетоны, альдегиды, кислоты и другие сложные химические соединения. Они получаются при частичном окислении как самого горючего, так и продуктов его сухой перегонки (пиролиза). Эти продукты образуют едкий и ядовитый дым. Кроме того, продукты неполного горения сами способны гореть и образовывать с воздухом взрывчатые смеси. Такие взрывы бывают при тушении пожаров в подвалах, сушилках и в закрытых помещениях с большим количеством горючего материала. Рассмотрим кратко свойства основных продуктов горения.

Экологические аспекты процессов горения. Применение природного газа позволяет уменьшить загрязнение атмосферы оксидам серы, твердыми частицами и окисью углерода, однако в атмосферу поступает большое количество оксидов азота, окиси углерода и канцерогенных веществ (3,4-бенз(о)перен). Правильная организация горения, выбор рациональных способов сжигания позволяет свести к минимуму образование вредных веществ и выделение их в воздушный бассейн. Использование природного газа позволяет вести не только пассивную, но и активную борьбу за чистоту воздуха: использование установок для дожигания, использование выбросных газов для подачи в газовый горелки вместо соответствующего количества воздуха.

Экологические проблемы горения. Задача – не навредить при сжигании топлив. Негативные проявления:

Техногенное тепловыделение соизмеримо с компонентами теплового баланса атмосферы;

Акустический шум турбулентных пламен при работе авиационных и ракетных двигателей – загрязнитель окружающей среды.

Выброс вредных продуктов сгорания – окислов азота, окислов металлов, угарного газа (при высоких Тг), окислов серы, канцерогенных веществ – продуктов неполного пиролиза органических горючих, сажи, углекислого газа (при низких Тг) – является причиной: изменения оптических свойств атмосферы и уменьшения потока солнечного излучения, возникновения кислотных дождей, усиления «парникового эффекта», разрушения озонового слоя Земли, негативного воздействия на флору и фауну, здания и конструкции. Общий итог: глобальное потепление, климатические катастрофы (циклоны, бураны, смерчи, цунами, наводнения, засухи, сходы лавин, сели)..

3. Уравнения горения веществ в кислороде и на воздухе, методика их составления. Термодинамика процессов горения. Тепловые эффекты реакций горения.

Общее уравнение реакции горения любого углеводорода
C m H n + (m + n/4) O 2 = mCO 2 + (n/2) Н 2 O + Q (8.1)
где m, n - число атомов углерода и водорода в молекуле; Q - тепловой эффект реакции, или теплота сгорания.

Тепловой эффект (теплота сгорания) Q - количество теплоты, выделяющееся при полном сгорании 1 кмоля, 1 кг или 1 м 3 газа при нормальных физических условиях. Различают высшую Q в и низшую Q н теплоту сгорания: высшая теплота сгорания включает в себя теплоту конденсации водяных паров в процессе горения (в реальности при сжигании газа водяные пары не конденсируются, а удаляются вместе с другими продуктами сгорания). Обычно технические расчеты обычно ведут по низшей теплоте сгорания, без учета теплоты конденсации водяных паров (около 2400 кДж/кг).
КПД, рассчитанный по низшей теплоте сгорания, формально выше, но теплота конденсации водяных паров достаточно велика, и ее использование более чем целесообразно. Подтверждение этому - активное применение в отопительной технике контактных теплообменников, весьма разнообразных по конструкции.
Для смеси горючих газов высшая (и низшая) теплота сгорания газов определяется по соотношению
Q = r 1 Q 1 + r 2 Q 2 + ... + r n Q n (8.2)
где r 1 , r 2 , …, r n - объемные (молярные, массовые) доли компонентов, входящих в смесь; Q 1 , Q 2 , …, Q n - теплота сгорания компонентов.
Процесс горения протекает гораздо сложнее, чем по формуле (8.1), так как наряду с разветвлением цепей происходит их обрыв за счет образования промежуточных стабильных соединений, которые при высокой температуре претерпевают дальнейшие преобразования. При достаточной концентрации кислорода образуются конечные продукты: водяной пар Н 2 О и двуокись углерода СО 2 . При недостатке окислителя, а также при охлаждении зоны реакции, промежуточные соединения могут стабилизироваться и попадать в окружающую среду.
Высокотемпературное горение углеводородов имеет весьма сложный характер и связано с образованием активных частиц в виде атомов и радикалов, а также промежуточных молекулярных соединений. В качестве примера приводятся реакции горения простейшего углеводорода - метана:

1. Н + О 2 -› ОН + О
СН 4 + ОН -› СН 3 + Н 2 О
СН 4 + О -› СН 2 + Н 2 О
2. СН 3 + О 2 -› НСНО + ОН
СН 2 + О 2 -› НСНО + О
3. НСНО + ОН -› НСО + Н 2 О
НСНО + О -› СО + Н 2 О
НСО + О 2 -› СО + О + ОН
4. СО + О -› СО 2
СО + ОН -› СО 2 + Н

Итог единичного цикла:
2СН 4 + 4О 2 -› 2СО 2 + 4Н 2 О

Термодинамика горения

Исходный состав горючей смеси характеризуется молярными или массовыми долями компонентов и начальными давлением и температурой. Если состав смеси подобран так, что при её сгорании и горючее, и окислитель полностью преобразуются в продукты реакции, то такая смесь называется стехиометрической. Смеси с избытком топлива называются богатыми , а с недостатком топлива - бедными . Степень отклонения состава смеси от стехиометрического характеризуется коэффициентом избытка топлива (англ. equivalenceratio ) :

где Y F и Y O - массовые доли топлива и окислителя соответственно, а (Y F /Y O) st - их отношение в стехиометрической смеси. В русскоязычной литературе используется также коэффициент избытка окислителя (или воздуха), обратный коэффициенту избытка топлива.

Адиабатическая температура горения смесей CH 4 с воздухом в зависимости от коэффициента избытка топлива. P = 1 бар, T 0 = 298,15 K.

Если горение происходит адиабатически при постоянном объёме, то сохраняется полная внутренняя энергия системы, если же при постоянном давлении - то энтальпия системы. На практике условия адиабатического горения приближённо реализуются в свободно распространяющемся пламени (без учёта теплопотерь излучением) и в других случаях, когда потерями тепла из зоны реакции можно пренебречь, например, в камерах сгорания мощных газотурбинных установок или ракетных двигателей.

Адиабатическая температура горения - это температура продуктов, достигаемая при полном протекании химических реакций и установлении термодинамического равновесия. Для термодинамических расчётов используются таблицы термодинамических функций всех компонентов исходной смеси и продуктов. Методы химической термодинамики позволяют рассчитать состав продуктов, конечное давление и температуру при заданных условиях сгорания. В настоящее время доступно много программ, способных выполнять эти расчёты .

Теплота сгорания - это количество теплоты, выделившейся при полном сгорании исходных компонентов, то есть до CO 2 и H 2 O для углеводородных топлив. На практике часть выделившейся энергии расходуется на диссоциацию продуктов, поэтому адиабатическая температура горения без учёта диссоциации оказывается заметно выше той, что наблюдается на практике .

Термодинамический расчёт позволяет определить равновесный состав и температуру продуктов, но не даёт никакой информации о том, с какой скоростью система приближается к равновесному состоянию. Полное описание горения требует знания механизма и кинетики реакций и условий тепло- и массообмена с окружающей средой.

4. Типы пламени и скорость горения. Теории горения: тепловая, цепная, диффузионная.

В общем случае скорость горения зависит от скорости смешения исходных компонентов в зоне прогрева и зоне реакции (для гетерогенных систем), от скорости химических реакций между компонентами, от скорости передачи тепла и активных частиц из зоны реакции к исходной системе. Нормальная скорость горения (и тем более форма фронта горения) зависит от условий течения свежей смеси и продуктов горения (особенно при горении в двигателях).

Поэтому в теории горения рассматривается несколько основных типов пламен. Они неодинаковы по своему научному и практическому значению и степени изученности. Неодинаковы параметры, представляющие наибольший интерес для данного типа пламени. Существенно отличается подход к теоретическому рассмотрению каждого типа пламени. Некоторые различия имеются и в экспериментальных методах.

Перечислим наиболее важные для теории горения типы пламен:

1) ламинарное пламя в гомогенной газовой смеси. К этому же типу относится пламя при горении летучих взрывчатых веществ;

2) ламинарное диффузионное пламя при горении струи горючего газа в окислительной атмосфере. К этому типу примыкает пламя при диффузионном горении жидкого горючего, налитого в цилиндрический сосуд, и т. п.;

3) пламя при горении капли жидкого горючего или частицы твердого горючего в окислительной атмосфере;

4) турбулентные пламена в гомогенных или в предварительно не смешанных газовых смесях;

5) пламя при горении нелетучих взрывчатых веществ, порохов и т. д. в тех случаях, когда существенную роль играет реакция в конденсированной фазе.

Коротко рассмотрим некоторые характеристики основных типов пламен в той мере, в какой это полезно для понимания закономерностей горения конденсированных смесей.

Предварительно следует остановиться на определении скорости горения . При ламинарном горении газовых смесей и гомогенных конденсированных систем большое принципиальное значение имеет понятие нормальной скорости горения (). По определейию, равна скорости перемещения пламени относительно свежей смеси в направлении, перпендикулярном поверхности пламени в данной точке. Размерность в системе СИ - м/сек, однако для скорости горения эта единица пока употребляется редко и только для газовых систем. Обычно величину для газовых систем выражают в см/сек, а для конденсированных систем в мм/сек (если выражать скорость горения конденсированных систем в м/сек, то в обычном диапазоне давлений получаются очень малые дробные числа).

Для гомогенных конденсированных систем чаще всего измеряется скорость горения цилиндрических зарядов, горящих с торца, причем фронт горения полагается плоским (опыт показывает, что в большинстве случаев при наличии надлежащей оболочки это допущение справедливо, и искажения наблюдаются лишь на краях заряда). К тому же для твердых веществ (и достаточно вязких жидких веществ) исходное (твердое или жидкое) вещество неподвижно во время горения. Поэтому в данном случае нормальная скорость горения просто равна видимой скорости пламени (в лабораторной системе координат) и постоянна в различных точках заряда.

Для возникновения горения необходимо наличие в одном месте и в одно время трех компонентов: горючего вещества, окислителя и источника зажигания (рис. 4.14). Кроме того, нужно, чтобы горючее вещество была нагрета до необходимой температуры и находилась в соответствующем количественном соотношении с окислителем, а источник зажигания мало необходимую энергию для начального импульса (зажигания). Так, спичкой можно зажечь лист бумаги, а деревянную колоду - невозможно. Необходимость для горения одновременно трех компонентов, так называемый треугольник огня, обнаружил еще в XVIII в. французский ученый Лавуазье.

Рис. 4.14.

После возникновения горения протекает тем интенсивнее, чем больше удельная площадь контакта горючего вещества с окислителем (бумажные обрезки горят интенсивнее, чем пачки бумаги) и чем выше концентрация окислителя, температура и давление. На пожарах температура достигает 1000-1300 ° С, а в отдельных случаях, например, при горении магниевых сплавов - 3000 ° С.

Горючими веществами считаются вещества, которые в случае воздействия на них высоких температур, открытого пламени или другого источника зажигания могут заниматься и в дальнейшем гореть с образованием тепла и, как правило, излучением света. К горючих веществ относятся: дерево, бумага, ткани, большинство пластмасс, природный газ, бензин, керосин и другие вещества в твердом, жидком, газообразном состоянии. Как правило, наиболее опасными в пожарном отношении являются горючие вещества в газообразном состоянии.

В состав подавляющего большинства горючих веществ входят углерод (Карбон) и водород (водород), которые являются основными горючими составляющими этих веществ. Поэтому и основными продуктами полного горения (при достаточном количестве кислорода) горючих веществ является С02 и Н20. Есть также целый ряд горючих веществ, которые представляют собой простые элементы, например, сера (Сера), фосфор (Фосфор), углерод (Карбон).

Горючие вещества имеют разную теплотворную способность, поэтому температура на пожарах зависит не только от количества вещества, горит, но и от ее качества (химического состава). В табл. 4.4 приведены температуру пламени при горении некоторых веществ и материалов.

Таблица 4.4.

Окислителем при горении веществ чаще всего выступает кислород воздуха - О.,. Однако с уменьшением содержания кислорода в воздухе замедляется скорость горения, а при содержании кислорода менее 14% (норма 21%) горения большинства веществ становится невозможным. Кроме кислорода, окислителями могут быть химические соединения, в состав которых входит кислород, например, селитра (KNO3), азотная кислота (HNO3), марганцовокислый калий (КМn2O4), а также отдельные химические элементы (фтор, хлор, бром). Некоторые вещества содержат в своем составе кислорода столько, что его достаточно для горения без доступа воздуха (порох, взрывчатка).

Источником зажигания, то есть инициатором пожара может быть: открытый огонь, раскаленные предметы, электрические заряды, тепловые процессы химического, электрического и механического происхождения, искры от ударов и трения, солнечная радиация, электромагнитные и другие излучения. Источники зажигания могут быть высоко-, средне- и маломощными (табл. 4.5):

Таблица 4.5.

Разновидности горения

Различают следующие разновидности горения: взрыв, детонация, вспышка, возгорание, воспламенение, самовозгорание, самовоспламенение, тления.

Взрыв - чрезвычайно быстрое химическое превращение, сопровождающееся выделением энергии и образованием сжатых газов, способных выполнять механическую работу. Преимущественно эта механическая работа сводится к разрушениям, которые возникают во время взрыва и обусловлены образованием ударной волны - внезапного скачкообразно рост давления. При удалении от места взрыва механическое воздействие ударной волны ослабляется.

Детонация - это горение, которое распространяется со скоростью несколько тысяч метров в секунду. Возникновение детонации объясняется сжатием, нагревом и перемещением несгоревшей смеси перед фронтом пламени, что приводит к ускорению распространения пламени и возникновения в смеси ударной волны. Таким образом, наличие достаточно мощной ударной волны является необходимым условием для детонации, поскольку в этом случае передача теплоты в смеси осуществляется не путем медленного процесса теплопроводности, а распространением ударной волны.

Вспышка - кратковременное интенсивное сгорания ограниченного объема газовоздушной смеси над поверхностью горючего вещества или пылевоздушной смеси, сопровождается кратковременным видимым излучением, но без ударной волны и устойчивого горения.

Возгорания - начало горения под воздействием источника зажигания.

Воспламенения - возгорание, сопровождающееся появлением пламени.

Тления - беспламенное горения материала (вещества) в твердой фазе с видимым излучением света из зоны горения.

Самовозгорание - начало горения вследствие самоиницийованих экзотермических процессов.

Самовоспламенение - самовозгорание, сопровождающееся появлением пламени.

Самовозгорание возникает тогда, когда в результате экзотермических процессов скорость выделения тепла в массе горючего вещества превышает скорость его рассеивания в окружающую среду. Инициировать экзотермические процессы, а затем вызвать самовозгорание могут:

высокая температура горючего вещества, обусловленная действием внешнего источника нагрева (тепловое самовозгорание)

Жизнедеятельность микроорганизмов в массе горючего вещества, что приводит к ее самонагревания (микробиологическое самовозгорание)

Химические реакции, в результате воздействия на вещество воздуха, воды или химически активных веществ (химическое самовозгорание).

Тепловое самовозгорание возникает в массе материалов, находящихся в энергетически благоприятном исходном состоянии для вступления в реакцию обмена с кислородом воздуха, при нагревании извне. Такой нагрев может осуществляться следующими способами:

Контактным (вследствие теплообмена при контакте с нагретым предметом)

Радиационным (вследствие лучистого тепла);

Конвективным (вследствие передачи тепла воздушным потоком).

"Механизм" теплового самовоспламенения заключается в следующем. Во время внешнего нагрева материала Его температура постепенно повышается (фаза а, рис. 4.15). После достижения температуры самонагревания ТСН в материале происходит резкая интенсификация экзотермических процессов окисления и разложения, что приводит к самонагревания и повышение температуры материала (фаза б). Наиболее интенсивное самонагревания возникает в месте, где достигаются наилучшие условия аккумуляции тепла. Таким условиям отвечают глубинные места, поскольку именно в них худшие условия рассеивания тепла в окружающую среду. Так, центр самонагревания угля, составленного в кучу, находится, как правило, на глубине 0,5-0,8 м от поверхности.

При достижении температуры самовоспламенения ТСЗ возникает горения материала без источника зажигания (фаза в).

Рис. 4.15.

Тепловое самовозгорание наблюдается при хранении в кучах каменного угля (Та = 50-60 ° С) и хлопка (Та = 120-125 ° С), а также в кипах газетного (обойного) бумаги и гофрированного картона (Три = 100- 110 ° С).

Профилактика теплового самовоспламенения - предотвращение нагрева материалов (веществ) от внешних источников тепла.

К микробиологического самовозгорания способны органические дисперсные и волокнистые материалы, внутри которых возможна жизнедеятельность, так называемых термофильных микроорганизмов. Именно жизнедеятельность таких микроорганизмов приводит к первичному самонагревания массы материала. Особенно подвержены микробиологического самовозгорания невысушенные вещества растительного происхождения, сложенные в кучу (сено, солома, зерно, лен, хлопок, торф и т.д.). Микробиологическое самовозгорание возникает в период от 10 до 30 суток с момента начала процесса.

На рис. 4.16 приведены типичную кривую развития процесса микробиологического самовозгорания невысушенного сена, заложенного на хранение.

Рис. 4.16. Типичная кривая развития процесса микробиологического самовозгорания невысушенного сена, заложенного на хранение

Химическое самовозгорание возникает вследствие воздействия на горючее вещество воздуха, воды или химически активных веществ.

К веществам, способные самовозгораться вследствие воздействия на них кислорода воздуха, относятся масла, жиры и олифы. Однако для этого необходимы соответствующие условия. Так, при хранении этих веществ в таре самовозгорания не происходит, так как поверхность их соприкосновения с воздухом слишком мала. В то же время пропитанные ими волокнистые материалы имеют развитую поверхность окисления, что существенно увеличивает их способность к самовозгоранию. Однако еще одним непременным условием является составление пропитанных материалов в кучу, штабеля, пакеты. В этом случае поверхность окисления значительно превышает поверхность теплоотдачи, что приводит к самонагревания веществ с последующим их самовозгоранию.

По опытным данным, 50 г ваты, пропитанной 100 г льняного масла, показали такой рост температуры (табл. 4.6).

Таблица 4.6.

Через 15 ч с момента утечки образца его температура достигнет 170 ° С и он вспыхнет без источника зажигания.

К веществам, способные самовозгораться при воздействии на них воды, относятся калий, натрий, цезий, карбиды кальция и щелочных металлов и тому подобное. Эти вещества при взаимодействии с водой выделяют горючие газы, которые нагреваются за счет теплоты реакции и самовозгораются.

К химически активных веществ, которые могут вызвать самовозгорание, принадлежат главным образом окислители: сжатый кислород, азотная кислота, перманганат калия, перекись натрия, селитры, хлорная известь и др.

Например, сжатый кислород приводит к самовозгоранию минеральных масел, которые не занимаются на воздухе. А растительные материалы (солома, сено, лен, хлопок, опилки), скипидар, этиловый спирт самовозгораются в результате контакта с азотной кислотой.

Способность самовозгораться веществ и материалов необходимо учесть при разработке мер пожарной профилактики во время их хранения, транспортировки, термообработки, выполнения технологических операций и тому подобное.

Для осуществления горения необходимо выполнение определенных условий, без которых горение невозможно. Первое условие состоит в том, что все процессы горения протекают исключительно в парогазовой фазе. Вторым условием осуществления горения является наличие трех компонент:

  • горючего газа или пара в определенной концентрации с определенной областью воспламенения;
  • окислителя, способного в определенных условиях вступать в химическую реакцию с реагирующим горючим газом;
  • источника воспламенения с достаточной энергией для поджигания и осуществления химической реакции воспламенения горючей смеси.

Характерной особенностью процессов горения является их большая скорость; она обусловлена протеканием реакций в пламени при высокой температуре и сильной зависимостью от температуры скоростей большинства химических процессов. В ряде случаев, когда реагирующая среда неоднородна, результирующая скорость превращения зависит в первую очередь от скорости доставки компонентов в зону реакции, а скорость собственно химического процесса становится несущественной. В такой ситуации решающее значение имеет физическое состояние реагирующих компонентов. В неоднородной среде, например на границе раздела фаз, горение протекает обычно гораздо медленнее, чем в однородной смеси.

Наиболее важным видом горения является горение газов. Большинство твердых и жидких продуктов, участвующих в горении, перед вступлением в основную реакцию либо испаряется, либо разлагается с частичным превращением в газо- образные продукты (газифицируется), которые затем реагируют в газовой фазе. Это происходит в результате прогрева соответствующего компонента (обычно горючего), обусловленного теплопередачей из зоны пламени. Лишь нелетучие горючие, например кокс, твердые продукты пиролиза каменного угля, некоторые металлы, сгорают собственно гетерогенно, на границе раздела фаз. Поэтому закономерности горения газов представляют наибольший интерес.

В повседневной практике принято связывать процесс горения с окислением кислородом различных горючих – угля, газообразных углеводородов, нефтепродуктов и др.

В горючих системах различают горючее и окислитель. В современной технике часто встречаются системы, в которых окислителем служат оксиды азота, галоиды, озон. В ряде случаев в горении участвует только один исходный продукт – эндотермическое соединение, способное к быстрому распаду, полимеризации или самоокислению (взрывчатые вещества и пороха) со значительным тепловыделением. Все же горючие системы, в которых окислителем служит кислород воздуха, наиболее распространены.

Для того чтобы могли протекать реакции горения, необходимо создать условия для воспламенения смеси топлива и окислителя.

Воспламенение может быть самопроизвольным и вынужденным. Под самовоспламенением понимается такое прогрессирующее самоускорение химической реакции, в результате которого медленно протекающий в начальной стадии процесс достигает больших скоростей и на завершающей стадии протекает мгновенно.

Вынужденное воспламенение (зажигание ) обусловлено внесением в реагирующую смесь источника теплоты, температура которого выше ее температуры воспламенения. Газо-воздушная смесь, не воспламеняющаяся при низкой температуре, может воспламениться при повышенной температуре, когда создаются благоприятные условия для возникновения активных центров в результате потери устойчивости сложных исходных молекул веществ.

Процесс воспламенения характеризуется тем, что имеются определенные границы (пределы), вне которых воспламенение не наступает ни при каких условиях. Известно, что газо-воздушные смеси воспламеняются только в том случае, когда содержание газа в воздухе находится в определенных (для каждого газа) пределах. При незначительном содержании газа количество теплоты, выделившейся при горении, недостаточно для доведения соседних слоев смеси до температуры воспламенения, т.е. для распространения пламени. То же наблюдается и при слишком большом содержании газа в газо-воздушной смеси. Недостаток кислорода воздуха, идущего на горение, приводит к понижению температурного уровня, в результате чего соседние слои смеси не нагреваются до температуры воспламенения. Этим двум случаям соответствуют нижний и верхний пределы воспламеняемости. Для метана нижний предел воспламеняемости в воздухе составляет 5,3%, верхний – 14,0%. Смесь метана с кислородом имеет нижний предел 5,1%, а верхний – 61%. Поэтому кроме перемешивания газа с воздухом в определенных пропорциях должны быть созданы начальные условия для воспламенения смеси.

Температура воспламенения газа зависит от ряда факторов, в том числе от содержания горючего газа в газо-воздушной смеси, давления, способа нагрева смеси и т.д., и поэтому не является однозначным параметром. Температура воспламенения метана в воздухе составляет от 545 до 850°С.

В практике используются оба способа воспламенения горючих смесей: самовоспламенение и зажигание. При самовоспламенении весь объем горючей газо-воздушной смеси постепенно путем подвода теплоты или повышения давления доводится до температуры воспламенения, после чего смесь воспламеняется уже без внешнего теплового воздействия. В технике широко применяется второй способ, именуемый зажиганием. При этом способе не требуется нагревать всю газо-воздушную смесь до температуры воспламенения, достаточно зажечь холодную смесь в одной точке объема каким-нибудь высокотемпературным источником (искра, накаленное тело, дежурное пламя и т.д.). В результате воспламенение передается па весь объем смеси самопроизвольно путем распространения пламени, происходящего не мгновенно, а с определенной пространственной скоростью. Эта скорость называется скоростью распространения пламени в газо-воздушной смеси и является важнейшей характеристикой, определяющей условия протекания и стабилизации горения.

Пределы воспламенения газо-воздушных смесей расширяются с повышением температуры, влияние же давления носит более сложный характер. Повышение давления выше атмосферного для некоторых смесей (например, водорода с воздухом) сужает пределы воспламенения, а для других (смесь метана с воздухом) – расширяет. При давлении ниже атмосферного верхний и нижний пределы сближаются, т.е. концентрационные пределы воспламенения сужаются.

Условиями осуществления вынужденного воспламенения являются наличие эффективного источника зажигания и способность образовавшегося фронта пламени самопроизвольно перемещаться (распространяться) в объеме газовоздушной смеси. Этот процесс носит название распространения пламени.

Различают два режима стационарного распространения пламени: в покоящейся или ламинарно движущейся среде и в турбулентном потоке. Первый носит название нормального распространения пламени, а второй – турбулентного.

Рассмотрим явления, происходящие в холодной горючей среде при ее локальном поджигании, которое заключается в быстром разогреве малого объема горючей среды до весьма высокой температуры. Полагаем, что она достаточна для того, чтобы в разогретой области практически мгновенно закончились возможные химические реакции и установилось состояние равновесия, поскольку скорость реакции сильно зависит от температуры. К такому локальному нагреванию обычно приводит газовый разряд либо пережигание тонкой короткой металлической нити током короткого замыкания.

Если реакция в разогретом газе экзотермическая, как это всегда имеет место при горении, то происходит разогрев соседнего слоя газа, обусловленный теплопроводностью. В этом слое в свою очередь произойдут химическое превращение и сопровождающее его выделение тепла Так возникает процесс послойной передачи импульса, инициирующего реакцию и выделение тепла по всему объему, заполненному горючей средой. Зона интенсивной реакции, или зона горения, перемещается в пространстве – происходит распространение пламени.

Реакция в пламени – самоускоряющаяся, обычно до практически полного ее завершения: тепловыделение и химический процесс взаимно ускоряют друг друга. Скорость перемещения пламени определяет интенсивность процесса горения и является его важнейшей характеристикой. Распространение пламени по однородной горючей среде, при котором зона самоускоряющейся реакции движется вследствие послойного разогрева по механизму теплопроводности от продуктов превращения, называют нормальным горением или дефлаграцией. Изложенные качественные представления о механизме горения были развиты одним из основоположников теории горения В. А. Михельсоном.

Зону изменения температуры и состава от начальных, соответствующих холодной горючей среде, до конечных, которые имеют продукты реакции, называют фронтом пламени. Опыт показывает, что эти величины изменяются во фронте пламени очень резко; ширина фронта пламени, границы которого, естественно, строго не фиксированы, при нормальном атмосферном давлении обычно не превышает десятых долей миллиметра. Поэтому во многих случаях можно рассматривать фронт пламени как поверхность, разделяющую холодную горючую среду и нагретые продукты сгорания. Такой прием облегчает установление ряда общих закономерностей, не связанных со спецификой реакций в пламени. При этом скорость реакции и скорость тепловыделения мы будем рассматривать не как объемные, а как поверхностные характеристики и будем относить их к единице поверхности фронта пламени.

Горение. Необходимые и достаточные условия, необходимые для обеспечения горения.

Горением называется сложный физико-химический процесс взаимодействия горючего вещества и окислителя, характеризующийся самоускоряющимся химическим превращением и сопровождающийся выделением большого количества тепла и света. Обычно в качестве окислителя участвует кислород, которого в воздухе 21%. Для обеспечения горения необходимо и достаточно: горючее вещество; окислитель; источник воспламенения определенной мощности, обеспечивающий реакцию между горючим веществом и окислителем. Для обеспечения горения горючее вещество и окислитель должны находится в определенных соотношениях друг с другом. Горение, характеризуемое наличием раздела фаз (например, горение твердого вещества), называется гетерогенным. Горение газообразных смесей называется гомогенным.

Горение может осуществляться в двух режимах: самовоспламенения и распространения фронта пламени. Важнейшая особенность процесса горения – самоускоряющийся характер химического превращения.

58.Пожар. Классификация пожаров в зависимости от веществ, подвергаемых горению. Пожаром называется – неконтролируемый процесс горения, сопровождающийся уничтожением материальных ценностей и создающий опасность для жизни людей. Согласно ГОСТу 12.1.004 пожар осуществляется как неконтролируемое горение вне специального очага, причиняющее материальный ущерб. Классификация пожаров в зависимости от веществ, подверженных горению и рекомендуемые средства пожаротушения при этом приведены в таблице 2.4.

А-горение твердых веществ :А1- Горение твердых, веществ, сопровождаемое тлением (например, древесина, бумага, уголь, текстиль); А2-Горение твердых веществ, не сопровождаемое тлением (каучук, пластмассы); В-горение жидких веществ: В1-Горение жидких веществ, нерастворимых в воде (бензин, нефтепродукты), а также сжижаемых твердых веществ (парафин); В2-Горение жидких веществ, растворимых в воде (спирты, ацетон, глицерин и др.); С-горение газообразных веществ: Бытовой газ, пропан, водород, аммиак и др.; Д-горение металлов и металлосодержащих веществ: Д1-Горение легких металлов и их сплавов (алюминий, магний и др.) кроме щелочных; Д2-Горение щелочных металлов (натрий, калий и др.); Д3-Горение металлосодержащих соединений (металлоорганические соединения, гидраты металлов); Класс пожара Е – объект тушения (электроустановки), находящиеся под напряжением. Тушение производится газовыми составами и порошками.



Просмотров