Гост 28130 89 пожарная техника. Условные графические обозначения. Обозначения условные графические

Горение - это реакция, при которой происходит преобразование химической энергии топлива в тепло.

Горение бывает полным и неполным. Полное горение происходит при достаточном количестве кислорода. Нехватка его вызывает неполное сгорание, при котором выделяется меньшее количество тепла, чем при полном, и окись углерода (СО), отравляюще действующая на обслуживающий персонал, образовывается сажа, оседающая на поверхности нагрева котла и увеличивающая потери тепла, что приводит к перерасходу топлива и снижению к. п. д. котла, загрязнению атмосферы.

Для сгорания 1 м 3 метана нужно 10 м 3 воздуха, в котором находится 2 м 3 кислорода. Для полного сжигания природного газа воздух подают в топку с небольшим избытком. Отношение действительно израсходованного объёма воздуха V д к теоретически необходимому V т называется коэффициентом избытка воздуха = V д /V т. Этот показатель зависит от конструкции газовой горелки и топки: чем они совершеннее тем меньше. Необходимо следить, чтобы коэффициент излишка воздуха не был меньше 1, так как это приводит к неполному сгоранию газа. Увеличение коэффициента избытка воздуха снижает к. п. д. котлоагрегата.

Полноту сгорания топлива можно определить с помощью газоанализатора и визуально - по цвету и характеру пламени:

прозрачно-голубоватое - сгорание полное;

красный или жёлтый - сгорание неполное.

Горение регулируется увеличением подачи воздуха в топку котла или уменьшением подачи газа. В этом процессе используется первичный (смешивается с газом в горелке - до горения) и вторичный (соединяется с газом или газовоздушной смесью в топке котла в процессе горения) воздух.

В котлах, оборудованных диффузионными горелками (без принудительной подачи воздуха), вторичный воздух под действием разряжения поступает в топку через поддувочные дверцы.

В котлах, оборудованных инжекционными горелками: первичный воздух поступает в горелку за счёт инжекции и регулируется регулировочной шайбой, а вторичный - через поддувочные дверцы.

В котлах со смесительными горелками первичный и вторичный воздух подаётся в горелку вентилятором и регулируется воздушными задвижками.

Нарушение соотношения между скоростью газовоздушной смеси на выходе из горелки и скоростью распространения пламени приводит к отрыву или проскакиванию пламени на горелках.

Если скорость газовоздушной смеси на выходе из горелки больше скорости распространения пламени - отрыв, а если меньше - проскок.

При отрыве и проскоке пламени обслуживающий персонал должен погасить котёл, провентилировать топку и газоходы и снова разжечь котёл.

Газообразное топливо с каждым годом находит все более широкое применение в различных отраслях народного хозяйства. В сельскохозяйственном производстве газообразное топливо широко используется для технологических (при отоплении теплиц, парников, сушилок, животноводческих и птицеводческих комплексов) и бытовых целей. В последнее время его все больше стали применять для двигателей внутреннего сгорания.

По сравнению с другими видами газообразное топливо обладает следующими преимуществами:

сгорает в теоретическом количестве воздуха, что обеспечивает высокие тепловой кпд и температуру горения;

при сгорании не образует нежелательных продуктов сухой перегонки и сернистых соединений, копоти и дыма;

сравнительно легко подводится по газопроводам к удаленным объектам потребления и может храниться централизованно;

легко зажигается при любой температуре окружающего воздуха;

требует сравнительно небольших затрат при добыче, а значит, является по сравнению с другими более дешевым видом топлива;

может быть использовано в сжатом или сжиженном виде для двигателей внутреннего сгорания;

обладает высокими противодетонационными свойствами;

при сгорании не образует конденсата, что обеспечивает значительное уменьшение износа деталей двигателя и т.п.

Вместе с тем газообразное топливо имеет также определенные отрицательные свойства, к которым относятся: отравляющее действие, образование взрывчатых смесей при смешении с воздухом, легкое протекание через неплотности соединений и др. Поэтому при работе с газообразным топливом требуется тщательное соблюдение соответствующих правил техники безопасности.

Применение газообразных видов топлива обусловливается их составом и свойствами углеводородной части. Наиболее широко применяются природный или попутный газ нефтяных или газовых месторождений, а также заводские газы нефтеперерабатывающих и других заводов. Основными составляющими компонентами этих газов являются углеводороды с числом углеродных атомов в молекуле от одного до четырех (метан, этан, пропан, бутан и их производные).

Природные газы из газовых месторождений практически полностью состоят из метана (82...98%), с небольшой Применение газообразного топлива для двигателей внутреннего сгорания Непрерывно увеличивающийся парк автомобилей требует все большего количества топлива. Решить важнейшие народнохозяйственные проблемы стабильного обеспечения автомобильных двигателей эффективными энергоносителями и сокращения потребления жидкого топлива нефтяного происхождения возможно за счет использования газообразного топлива - сжиженного нефтяного и природного газов.

Для автомобилей используют только высококалорийные или среднекалорийные газы. При работе на низкокалорийном газе двигатель не развивает необходимой мощности, а также сокращается дальность пробега автомобиля, что экономически невыгодно. Па). Выпускают следующие виды сжатых газов: природный, коксовый механизированный и коксовый обогащенный

Основным горючим компонентом этих газов является метан. Так же как и для жидкого топлива, наличие в газообразном топливе сероводорода нежелательно из-за его коррозионного воздействия на газовую аппаратуру и детали двигателя. Октановое число газов позволяет форсировать автомобильные двигатели по степени сжатия (до 10...12).

В газе для автомобилей крайне нежелательно присутствие циана CN. Соединяясь с водой, он образует синильную кислоту, под действием которой в стенках баллонов образуются мельчайшие трещины. Наличие в газе смолистых веществ и механических примесей приводит к образованию отложений и загрязнений на приборах газовой аппаратуры и на деталях двигателей.


Общие сведения. Другой важный источник внутреннего загрязнения, сильный сенсибилизирующий фактор для человека - природный газ и продукты его сгорания. Газ - много-компонентная система, состоящая из десятков различных со-единений, в том числе и специально добавляемых (табл. 12.3).
Имеется прямое доказательство того, что использование приборов, в которых происходит сжигание природного газа (газовые плиты и котлы), оказывает неблагоприятный эффект на человеческое здоровье. Кроме того, индивидуумы с повышенной чувствительностью к факторам окружающей среды реагируют неадекватно на компоненты природного газа и продукты его сгорания.
Природный газ в доме - источник множества различных загрязнителей. Сюда относятся соединения, которые непосредственно присутствуют в газе (одоранты, газообразные углеводороды, ядовитые металлоорганические комплексы и радиоактивный газ радон), продукты неполного сгорания (оксид углерода, диоксид азота, аэрозольные органические частицы, полициклические ароматические углеводороды и небольшое количество летучих органических соединений). Все перечисленные компоненты могут воздействовать на организм человека как сами по себе, так и в комбинации друг с другом (эффект синергизма).
Таблица 12.3
Состав газообразного топлива Компоненты Содержание, % Метан 75-99 Этан 0,2-6,0 Пропан 0,1-4,0 Бутан 0,1-2,0 Пентан До 0,5 Этилен Содержатся в отдельных месторождениях Пропилен Бутилен Бензол Сернистый газ Сероводород Диоксид углерода 0,1-0,7 Оксид углерода 0,001 Водород До 0,001
Одоранты. Одоранты - серосодержащие органические ароматические соединения (меркаптаны, тиоэфиры и тио- ароматические соединения). Добавляются к природному газу с целью его обнаружения при утечках. Хотя эти соединения присутствуют в весьма небольших, подпороговых кон-центрациях, которые не рассматриваются как ядовитые для большинства индивидуумов, их запах может вызывать тошноту и головные боли у здоровых людей.
Клинический опыт и эпидемиологические данные указывают, что химически чувствительные люди реагируют неадекватно на химические соединения, присутствующие даже в подпороговых концентрациях. Индивидуумы, страдающие астмой, часто идентифицируют запах как промотор (триггер) астматических приступов.
К одорантам относится, к примеру, метантиол. Метанти- ол, известный также как метилмеркаптан (меркаптометан, тиометилалкоголь), - газообразное соединение, которое обычно используется как ароматическая добавка к природному газу. Неприятный запах ощущает большинство людей в концентрации 1 часть на 140 млн, однако это соединение может быть обнаружено при значительно меньших концентрациях высокочувствительными индивидуумами. Токсико-логические исследования на животных показали, что 0,16% метантиола, 3,3% этантиола или 9,6% диметилсульфида способны стимулировать коматозное состояние у 50% крыс, подвергнутых воздействию этих соединений в течение 15 мин.
Другой меркаптан, используемый тоже как ароматическая добавка к природному газу, - меркаптоэтанол C2H6OS) известен также как 2-тиоэтанол, этилмеркаптан. Сильный раздражитель для глаз и кожи, способен оказывать токсический эффект через кожу. Огнеопасен и при нагревании разлагается с образованием высокоядовитых паров SOx.
Меркаптаны, являясь загрязнителями воздуха помещений, содержат серу и способны захватывать элементарную ртуть. В высоких концентрациях меркаптаны могут вызывать нарушение периферического кровообращения и учащение пульса, способны стимулировать потерю сознания, развитие цианоза или даже смерть.
Аэрозоли. Сгорание природного газа приводит к образованию мелких органических частиц (аэрозолей), включая канцерогенные ароматические углеводороды, а также некоторые летучие органические соединения. ДОС - предположительно сенсибилизирующие агенты, которые способны индуцировать совместно с другими компонентами синдром «больного здания», а также множественную химическую чувствительность (МХЧ).
К JIOC относится и формальдегид, образующийся в небольших количествах при сгорании газа. Использование газовых приборов в доме, где проживают чувствительные индивидуумы, увеличивает воздействие к этим раздражителям, впоследствии усиливая признаки болезни и также способствуя дальнейшей сенсибилизации.
Аэрозоли, образованные в процессе сгорания природного газа, могут стать центрами адсорбции для разнообразных химических соединений, присутствующих в воздухе. Таким образом, воздушные загрязнители могут концентрироваться в микрообъемах, реагировать друг с другом, особенно когда металлы выступают в роли катализаторов реакций. Чем меньше по размеру частица, тем выше концентрационная активность такого процесса.
Более того, водяные пары, образующиеся при сгорании природного газа, - транспортное звено для аэрозольных частиц и загрязнителей при их переносе к легочным аль-веолам.
При сгорании природного газа образуются и аэрозоли, содержащие полициклические ароматические углеводороды. Они оказывают неблагоприятное воздействие на дыхательную систему и являются известными канцерогенными веществами. Помимо этого, углеводороды способны приводить к хронической интоксикации у восприимчивых людей.
Образование бензола, толуола, этилбензола и ксилола при сжигании природного газа также неблагоприятно для здоровья человека. Бензол, как известно, канцерогенен в дозах, значительно ниже пороговых. Воздействие к бензолу коррелирует с увеличенным риском возникновения рака, особенно лейкемии. Сенсибилизирующие эффекты бензола не известны.
Металлоорганические соединения. Некоторые компоненты природного газа могут содержать высокие концентрации ядовитых тяжелых металлов, включая свинец, медь, ртуть, серебро и мышьяк. По всей вероятности, эти металлы при-сутствуют в природном газе в форме металлоорганических комплексов типа триметиларсенита (CH3)3As. Связь с органической матрицей этих токсичных металлов делает их раст-воримыми в липидах. Это ведет к высокому уровню поглощения и тенденции к биоаккумуляции в жировой ткани человека. Высокая токсичность тетраметилплюмбита (СН3)4РЬ и диметилртути (CH3)2Hg предполагает влияние на здоровье человека, так как метилированные составы этих металлов более ядовиты, чем сами металлы. Особую опасность представляют эти соединения во время лактации у женщин, так как в этом случае происходит миграция липидов из жировых депо организма.
Диметилртуть (CH3)2Hg - особенно опасное металлоор- ганическое соединение из-за его высокой липофильности. Метилртуть может быть инкорпорирована в организм путем ингаляционного поступления, а также через кожу. Всасывание этого соединения в желудочно-кишечном трактате составляет почти 100%. Ртуть обладает выраженным нейро- токсическим эффектом и свойством влиять на репродуктивную функцию человека. Токсикология не располагает данными о безопасных уровнях ртути для живых организмов.
Органические соединения мышьяка также весьма ядовиты, особенно при их метаболическом разрушении (метабо- лическая активация), заканчивающимся образованием вы-сокоядовитых неорганических форм.
Продукты сгорания природного газа. Диоксид азота способен действовать на легочную систему, что облегчает разви-тие аллергических реакций к другим веществам, уменьшает функцию легких, восприимчивость к инфекционным заболеваниям легких, потенцирует бронхиальную астму и другие респираторные заболевания. Это особенно выражено у детей.
Имеются доказательства того, что N02, полученный при сжигании природного газа, может индуцировать:
воспаление легочной системы и уменьшение жизненной функции легких;
увеличение риска астмоподобных признаков, включая появление хрипов, одышку и приступы заболевания. Это особенно часто проявляется у женщин, приготавливающих еду на газовых плитах, а также у детей;
уменьшение резистентности к бактериальным заболеваниям легких из-за снижения иммунологических механизмов защиты легких;
оказание неблагоприятных эффектов в целом на им-мунную систему человека и животных;
воздействие как адъюванта на развитие аллергических реакций к другим компонентам;
увеличение чувствительности и усиление аллергиче-ской ответной реакции на побочные аллергены.
В продуктах сгорания природного газа присутствует до-вольно высокая концентрация сероводорода (H2S), который загрязняет окружающую среду. Он ядовит в концентрациях ниже, чем 50.ррш, а в концентрации 0,1-0,2% смертелен даже при непродолжительной экспозиции. Так как организм имеет механизм для детоксикации этого соединения, токсичность сероводорода связана больше с его воздействующей концентрацией, чем с продолжительностью экс-позиции.
Хотя сероводород имеет сильный запах, его непрерывное низкоконцентрационное воздействие ведет к утрате чувства запаха. Это делает возможным токсический эффект для людей, которые несознательно могут подвергаться действию опасных уровней этого газа. Незначительные кон- центрации его в воздухе жилых помещений приводят к раздражению глаз, носоглотки. Умеренные уровни вызывают головную боль, головокружение, а также кашель и затруднение дыхания. Высокие уровни ведут к шоку, конвульсиям, коматозному состоянию, которые заканчиваются смертью. Оставшиеся в живых после острого токсического воздействия сероводорода испытывают неврологические дисфункции типа амнезии, тремора, нарушение равновесия, а иногда и более серьезного повреждения головного мозга.
Острая токсичность относительно высоких концентраций сероводорода хорошо известна, однако, к сожалению, имеется немного информации по хроническому низкодозо- вому воздействию этого компонента.
Радон. Радон (222Rn) также присутствует в природном газе и может быть доставлен по трубопроводам к газовым плитам, которые становятся источниками загрязнения. Так как радон распадается до свинца (период полураспада 210РЬ равен 3,8 дня), это приводит к созданию тонкого слоя радиоактивного свинца (в среднем толщиной 0,01 см), который покрывает внутренние поверхности труб и оборудования. Образование слоя радиоактивного свинца повышает фоновое значение радиоактивности на несколько тысяч распадов в минуту (на площади 100 см2). Удаление его очень сложно и требует замены труб.
Следует учитывать, что простого отключения газового оборудования недостаточно, чтобы снять токсическое воздействие и принести облегчение химически чувствительным пациентам. Газовое оборудование должно быть полностью удалено из помещения, так как даже не работающая газовая плита продолжает выделять ароматические соединения, которые она поглотила за годы использования.
Совокупные эффекты природного газа, влияние ароматических соединений, продуктов сгорания на здоровье человека точно не известны. Предполагается, что воздействие от нескольких соединений может умножаться, при этом реакция от воздействия нескольких загрязнителей может быть больше, чем сумма отдельных эффектов.
Таким образом, характеристиками природного газа, вызывающими беспокойство в отношении здоровья человека и животных, являются: огнеопасность и взрывоопасный характер;
асфиксические свойства;
загрязнение продуктами сгорания воздушной среды помещений;
присутствие радиоактивных элементов (радон);
содержание в продуктах сгорания высокотоксичных соединений;
присутствие следовых количеств ядовитых металлов;
содержание токсичных ароматических соединений, добавляемых к природному газу (особенно для людей с мно-жественной химической чувствительностью);
способность компонентов газа к сенсибилизации.

Просмотров