Публичные договоры в гражданском праве. Как работает публичный договор

Инструкция

Как легко можно догадаться из самого называния, металлический тип решетки встречается у металлов. Эти вещества характеризуются, как правило, высокой температурой плавления, металлическим блеском, твердостью, являются хорошими проводниками электрического тока. Запомните, что в узлах решеток такого типа находятся или нейтральные атомы или положительно заряженные ионы. В промежутках между узлами – электроны, миграция которых и обеспечивает высокую электропроводимость подобных веществ.

Ионный тип кристаллической решетки. Следует запомнить, что он присущ и солям. Характерный – кристаллы всем известной поваренной соли, хлорида натрия. В узлах таких решеток попеременно чередуются положительно и отрицательно заряженные ионы. Такие вещества, как правило, тугоплавки, с малой летучестью. Как легко догадаться, они имеют ионный тип .

Атомный тип кристаллической решетки присущ простым веществам – неметаллам, которые при нормальных условиях представляют собою твердые тела. Например, сере, фосфору, . В узлах таких решеток находятся нейтральные атомы, связанные друг с другом ковалентной химической связью. Таким веществам свойственна тугоплавкость, нерастворимость в воде. Некоторым (например, углероду в виде ) – исключительно высокая твердость.

Наконец, последний тип решетки - молекулярный. Он встречается у веществ, находящихся при нормальных условиях в жидком или газообразном виде. Как опять-таки легко можно понять из , в узлах таких решеток – молекулы. Они могут быть как неполярного вида (у простых газов типа Cl2, О2), так и полярного вида (самый известный пример – вода H2O). Вещества с таким типом решетки не проводят ток, летучи, имеют низкие температуры плавления.

Источники:

  • тип решетки

Температуру плавления твердого вещества измеряют для определения степени его чистоты. Примеси в чистом веществе обычно понижают температуру плавления или увеличивают интервал, в котором плавится соединение. Метод с использованием капилляра является классическим для контроля содержания примесей.

Вам понадобится

  • - испытуемое вещество;
  • - стеклянный капилляр, запаянный с одного конца (диаметром 1 мм);
  • - стеклянная трубка диаметром 6-8 мм и длиной не менее 50 см;
  • - нагреваемый блок.

Инструкция

Поставьте стеклянную трубку вертикально на твердую поверхность и несколько раз бросьте через нее капилляр запаянным концом вниз. Это способствует уплотнению вещества. Для определения температуры столбик вещества в капилляре должен быть около 2-5 мм.

Поместите термометр с капилляром в нагреваемый блок и наблюдайте за изменениями испытуемого вещества при повышении температуры. Термометр до и в процессе нагревания не должен касаться стенок блока и других сильно нагретых поверхностей, иначе он может лопнуть.

Отметьте температуру, при которой появляются первые капли в капилляре (начало плавления ), и температуру, при которой исчезают последние вещества (конец плавления ). В этом интервале вещество начинает спадать до полного перехода в жидкое состояние. При проведении анализа также обратите внимание на изменение или разложение вещества.

Повторите измерения еще 1-2 раза. Результаты каждого измерения представьте в виде соответствующего температурного интервала, в течение которого вещество переходит из твердого состояния в жидкое. В завершение анализа сделайте заключение о чистоте испытуемого вещества.

Видео по теме

В кристаллах химические частицы (молекулы, атомы и ионы) расположены в определенном порядке, в некоторых условиях они образуют правильные симметричные многогранники. Выделяют четыре типа кристаллических решеток - ионные, атомные, молекулярные и металлические.

Кристаллы

Кристаллическое состояние характеризуется наличием дальнего порядка в расположении частиц, а также симметрией кристаллической решетки. Твердыми кристаллами называют трехмерные образования, у которых один и тот же элемент структуры повторяется во всех направлениях.

Правильная форма кристаллов обусловлена их внутренним строением. Если в них заменить молекулы, атомы и ионы точками вместо центров тяжести этих частиц, получится трехмерное регулярное распределение - . Повторяющиеся элементы ее структуры называют элементарными ячейками, а точки - узлами кристаллической решетки. Выделяют несколько типов кристаллов в зависимости от частиц, которые их образуют, а также от характера химической связи между ними.

Ионные кристаллические решетки

Ионные кристаллы образуют анионы и катионы, между которыми есть . К данному типу кристаллов относятся соли большинства металлов. Каждый катион притягивается r аниону и отталкивается от других катионов, поэтому в ионном кристалле невозможно выделить одиночные молекулы. Кристалл можно рассматривать как одну огромную , причем ее размеры не ограничены, она способна присоединять новые ионы.

Атомные кристаллические решетки

В атомных кристаллах отдельные атомы объединены ковалентными связями. Как и ионные кристаллы, их также можно рассматривать как огромные молекулы. При этом атомные кристаллы очень твердые и прочные, плохо проводят электричество и тепло. Они практически нерастворимы, для них характерна низкая реакционная способность. Вещества с атомными решетками плавятся при очень высоких температурах.

Молекулярные кристаллы

Молекулярные кристаллические решетки образуются из молекул, атомы которых объединены ковалентными связями. Из-за этого между молекулами действуют слабые молекулярные силы. Такие кристаллы отличаются малой твердостью, низкой температурой плавления и высокой текучестью. Вещества, которые они образуют, а также их расплавы и растворы плохо проводят электрический ток.

Металлические кристаллические решетки

В кристаллических решетках металлов атомы расположены с максимальной плотностью, их связи являются делокализованными, они распространяются на весь кристалл. Такие кристаллы непрозрачны, отличаются металлическим блеском, легко деформируются, при этом хорошо проводят электричество и тепло.

Данная классификация описывает лишь предельные случаи, большинство кристаллов неорганических веществ принадлежит к промежуточным типам - молекулярно-ковалентным, ковалентно- и др. В качестве примера можно привести кристалл графита, внутри каждого слоя у него ковалентно-металлические связи, а между слоями - молекулярные.

Источники:

  • alhimik.ru, Твердые вещества

Алмаз - это минерал, относящийся к одной из аллотропных модификаций углерода. Отличительной чертой его является высокая твердость, которая по праву приносит ему звание самого твердого вещества. Алмаз достаточно редкий минерал, но вместе с этим и самый широко распространенный. Исключительная его твердость находит свое применение в машиностроении и промышленности.

Инструкция

Алмаз имеет атомную кристаллическую решетку. Атомы углерода, составляющие основу молекулы, располагаются в виде тетраэдра, благодаря чему алмаз имеет такую высокую прочность. Все атомы связаны прочными ковалентными связями, которые образуются, исходя из электронного строения молекулы.

Атом углерода имеет sp3-гибридизацию орбиталей, которые располагаются под углом в 109 градусов и 28 минут. Перекрывание гибридных орбиталей происходит по прямой линии в горизонтальной плоскости.

Таким образом, при перекрывании орбиталей под таким углом образуется центрированный , который относится к кубической системе, поэтому можно сказать, что алмаз имеет кубическую структуру. Такая структура считается одной из самых прочных в природе. Все тетраэдры образуют трехмерную сеть из слоев шестичленных колец атомов. Такая устойчивая сеть ковалентных связей и трехмерное их распределение ведет к дополнительной прочности кристаллической решетки.

Молекулярное и немолекулярное строение веществ. Строение вещества

В химические взаимодействия вступают не отдельные атомы или молекулы, а вещества. По типу связи различают вещества молекулярного и немолекулярного строения . Вещества, состоящие из молекул, называются молекулярными веществами . Связи между моле­кулами в таких веществах очень слабые, намно­го слабее, чем между атомами внутри молекулы, и уже при сравнительно низких температурах они разрываются - вещество превращается в жид­кость и далее в газ (возгонка йода). Температуры плавления и кипения веществ, состоящих из мо­лекул, повышаются с увеличением молекулярной массы. К молекулярным веществам относятся веще­ства с атомной структурой (C, Si, Li, Na, K, Cu, Fe, W), среди них есть металлы и неметаллы. К веществам немолекулярного строения отно­сятся ионные соединения. Таким строением обла­дает большинство соединений металлов с неметал­лами: все соли (NaCl, K 2 SO 4), некоторые гидриды (LiH) и оксиды (CaO, MgO, FeO), основания (NaOH, KOH). Ионные (немолекулярные) вещества имеют высокие температуры плавления и кипения.


Твердые вещества: аморфные и кристаллические

Твердые вещества делятся на кристаллические и аморфные .

Аморфные вещества не имеют четкой температуры плавления - при нагревании они постепенно размягчаются и переходят в текучее состояние. В аморфном состоянии, например, находятся пластилин и различные смолы.

Кристаллические вещества характеризуются правильным расположением тех частиц, из которых они состоят: атомов, молекул и ионов - в строго определенных точках пространства. При соединении этих точек прямыми линиями образуется пространственный каркас, называемый кристаллической решеткой. Точки, в которых размещены частицы кристалла, называют узлами решетки. В зависимости от типа частиц, расположенных в узлах кристаллической решетки, и характера связи между ними, различают четыре типа кристаллических решеток: ионные, атомные, молекулярные и металлические.

Ионными называют кристаллические решетки , в узлах которых находятся ионы. Их образуют ве­щества с ионной связью, которой могут быть свя­заны как простые ионы Na+, Cl — , так и сложные SO 4 2- , OH — . Следовательно, ионными кристалличе­скими решетками обладают соли, некоторые оксиды и ги­дроксиды металлов. Напри­мер, кристалл хлорида натрия построен из чередующихся положительных ионов Na + и отрицательных Cl — , образующих решетку в форме куба. Связи между ионами в таком кристалле очень устойчивы. Поэтому вещества с ионной решеткой отличаются сравнительно высокой твердостью и прочностью, они тугоплавки и нелетучи.

Кристаллическая решетка — а) и аморфная решетка — б).


Кристаллическая решетка — а) и аморфная решетка — б).

Атомные кристаллические решетки

Атомными называют кристаллические решетки, в узлах которых находятся отдельные атомы. В таких решетках атомы соединены между собой очень прочными ковалентными связями . Примером веществ с таким типом кристаллических решеток может служить алмаз - одно из аллотропных видоизменений углерода. Большинство веществ с атомной кристаллической решеткой имеют очень высокие температуры плавления (например, у алмаза она свыше 3500 °С), они прочны и тверды, практически нерастворимы.



Молекулярные кристаллические решетки

Молекулярными называют кристаллические решетки, в узлах которых располагаются молекулы. Химические связи в этих молекулах могут быть и полярными (HCl, H 2 O), и неполярными (N 2 , O 2). Несмотря на то, что атомы внутри молекул связаны очень прочными ковалентными связями, между самими молекулами действуют слабые силы межмолекулярного притяжения . По­этому вещества с молекуляр­ными кристаллическими ре­шетками имеют малую твер­дость, низкие температуры плавления, летучи. Большинство твердых ор­ганических соединений имеют молекулярные кристалличе­ские решетки (нафталин, глю­коза, сахар).


Молекулярная кристаллическая решетка(углекислый газ)

Металлические кристаллические решетки

Вещества с металлической связью имеют металлические кристаллические решетки. В узлах таких решеток находятся атомы и ионы (то атомы, то ионы, в которые легко превращаются атомы металла, отдавая свои внешние электроны «в общее пользование»). Такое внутреннее строение металлов определяет их характерные физические свойства: ковкость, пластичность, электро- и теплопроводность, характерный металлический блеск.

Шпаргалки

Темы кодификатора ЕГЭ: Вещества молекулярного и немолекулярного строения. Тип кристаллической решетки. Зависимость свойств веществ от их состава и строения.

Молекулярно-кинетическая теория

Все молекулы состоят из мельчайших частиц – атомов. Все открытые на настоящий момент атомы собраны в таблице Менделеева.

Атом – это мельчайшая, химически неделимая частица вещества, сохраняющая его химические свойства. Атомы соединяются между собой химическими связями . Ранее мы уже рассматривали а. Обязательно озучите теорию по теме: Типы химических связей, перед тем, как изучать эту статью!

Теперь рассмотрим, как могут соединяться частицы в веществе.

В зависимости от расположения частиц друг относительно друга свойства образуемых ими веществ могут очень сильно различаться. Так, если частицы расположены друг от друга далеко (расстояние между частицами намного больше размеров самих частиц), между собой практически не взаимодействуют, перемещаются в пространстве хаотично и непрерывно, то мы имеем дело с газом .

Если частицы расположены близко друг к другу, но хаотично , больше взаимодействуют между собой , совершают интенсивные колебательные движения в одном положении, но могут перескакивать в другое положение, то это модель строения жидкости .

Если же частицы расположены близко к друг другу, но более упорядоченно , и больше взаимодействуют между собой, а двигаются только в пределах одного положения равновесия, практически не перемещаясь в другиеположения, то мы имеем дело с твердым веществом .

Большинство известных химических веществ и смесей могут существовать в твердом, жидком и газообразном состояниях. Самый простой пример – это вода . При нормальных условиях она жидкая , при 0 о С она замерзает – переходит из жидкого состояния в твердое , и при 100 о С закипает – переходит в газовую фазу – водяной пар. При этом многие вещества при нормальных условиях – газы, жидкости или твердые. Например, воздух – смесь азота и кислорода – это газ при нормальных условиях. Но при высоком давлении и низкой температуре азот и кислород конденсируются и переходят в жидкую фазу. Жидкий азот активно используют в промышленности. Иногда выделяют плазму , а также жидкие кристаллы, как отдельные фазы.

Очень многие свойства индивидуальных веществ и смесей объясняются взаимным расположением частиц в пространстве друг относительно друга!

Данная статья рассматривает свойства твердых тел , в зависимости от их строения. Основные физические свойства твердых веществ: температура плавления, электропроводность, теплопроводность, механическая прочность, пластичность и др.

Температура плавления – это такая температура, при которой вещество переходит из твердой фазы в жидкую, и наоборот.

– это способность вещества деформироваться без разрушения.

Электропроводность – это способность вещества проводить ток.

Ток – это упорядоченное движение заряженных частиц . Таким образом, ток могут проводить только такие вещества, в которых присутствуют подвижные заряженные частицы . По способности проводить ток вещества делят на проводники и диэлектрики. Проводники – это вещества, которые могут проводить ток (т.е. содержат подвижные заряженные частицы). Диэлектрики – это вещества, которые практически не проводят ток.

В твердом веществе частицы вещества могут располагаться хаотично , либо более упорядоченн о. Если частицы твердого вещества расположены в пространстве хаотично , вещество называют аморфным . Примеры аморфных веществ – уголь, слюдяное стекло .

Если частицы твердого вещества расположены в пространстве упорядоченно, т.е. образуют повторяющиеся трехмерные геометрические структуры, такое вещество называют кристаллом , а саму структуру – кристаллической решеткой . Большинство известных нам веществ – кристаллы. Сами частицы при этом расположены в узлах кристаллической решетки.

Кристаллические вещества различают, в частности, по типу химической связи между частицами в кристалле – атомные, молекулярные, металлические, ионные; по геометрической форме простейшей ячейки кристаллической решетки – кубическая, гексагональная и др.

В зависимости от типа частиц, образующих кристаллическую решетку , различают атомную, молекулярную, ионную и металлическую кристаллическую структуру .

Атомная кристаллическая решетка

Атомная кристаллическая решетка образуется, когда в узлах кристалла расположены атомы . Атомы соединены между собой прочными ковалентными химическими связями . Соответственно, такая кристаллическая решетка будет очень прочной , разрушить ее непросто. Атомную кристаллическую решетку могут образовывать атомы с высокой валентностью, т.е. с большим числом связей с соседними атомами (4 или больше). Как правило, это неметаллы: простые вещества — кремния, бора, углерода (аллотропные модификации алмаз, графит), и их соединения (бороуглерод, оксид кремния (IV) и др .). Поскольку между неметаллами возникает преимущественно ковалентная химическая связь, свободных электронов (как и других заряженных частиц) в веществах с атомной кристаллической решеткой в большинстве случаев нет . Следовательно, такие вещества, как правило, очень плохо проводят электрический ток, т.е. являются диэлектриками . Это общие закономерности, из которых есть ряд исключений.

Связь между частицами в атомных кристалалах: .

В узлах кристалла с атомной кристаллической структурой расположены атомы .

Фазовое состояние атомных кристаллов при нормальных условиях: как правило, твердые вещества .

Вещества , образующие в твердом состоянии атомные кристаллы:

  1. Простые вещества с высокой валентностью (расположены в середине таблицы Менделеева): бор, углерод, кремний, и др.
  2. Сложные вещества, образованные этими неметаллами: кремнезем (оксид кремния, кварцевый песок) SiO 2 ; карбид кремния (корунд) SiC; карбид бора, нитрид бора и др.

Физические свойства веществ с атомной кристаллической решеткой:

прочность;

— тугоплавкость (высокая температура плавления);

— низкая электропроводность;

— низкая теплопроводность;

— химическая инертность (неактивные вещества);

— нерастворимость в растворителях.

Молекулярная кристаллическая решетка – это такая решетка, в узлах которой располагаются молекулы . Удерживают молекулы в кристалле слабые силы межмолекулярного притяжения (силы Ван-дер-Ваальса , водродные связи, или электростатическое притяжение). Соответственно, такую кристаллическую решетку, как правило, довольно легко разрушить . Вещества с молекулярной кристаллической решеткой – легкоплавкие, непрочные . Чем больше сила притяжения между молекулами, тем выше температура плавления вещества . Как правило, температуры плавления веществ с молекулярной кристаллической решеткой не выше 200-300К. Поэтому при нормальных условиях большинство веществ с молекулярной кристаллической решеткой существует в виде газов или жидкостей . Молекулярную кристаллическую решетку, как правило, образуют в твердом виде кислоты, оксиды неметаллов, прочие бинарные соединения неметаллов, простые вещества, образующие устойчивые молекулы (кислород О 2 , азот N 2 , вода H 2 O и др.), органические вещества. Как правило, это вещества с ковалентной полярной (реже неполярной) связью. Т.к. электроны задействованы в химических связях, вещества с молекулярной кристаллической решеткой – диэлектрики, плохо проводят тепло .

Связь между частицами в молекулярных кристалалах: межмолекулярные , электростатические или межмолекулярные силы притяжения .

В узлах кристалла с молекулярной кристаллической структурой расположены молекулы .

Фазовое состояние молекулярных кристаллов при нормальных условиях: газы, жидкости и твердые вещества .

Вещества , образующие в твердом состоянии молекулярные кристаллы :

  1. Простые вещества-неметаллы, образующие маленькие прочные молекулы (O 2 , N 2 , H 2 , S 8 и др.);
  2. Сложные вещества (соединения неметаллов) с ковалентными полярными связями (кроме оксидов кремния и бора, соединений кремния и углерода) — вода H 2 O, оксид серы SO 3 и др.
  3. Одноатомные инертные газы (гелий, неон, аргон, криптон и др.) ;
  4. Большинство органических веществ, в которых нет ионных связей метан CH 4 , бензол С 6 Н 6 и др.

Физические свойства веществ с молекулярной кристаллической решеткой:

— легкоплавкость (низкая температура плавления):

— высокая сжимаемость;

— молекулярные кристаллы в твердом виде, а также в растворах и расплавах не проводят ток;

— фазовое состояние при нормальных условиях – газы, жидкости, твердые вещества;

— высокая летучесть;

— малая твердость.

Ионная кристаллическая решетка

В случае, если в узлах кристалла находятся заряженные частицы – ионы , мы можем говорить о ионной кристаллической решетке . Как правило, с ионных кристаллах чередуются положительные ионы (катионы) и отрицательные ионы (анионы), поэтому частицы в кристалле удерживаются силами электростатического притяжения . В зависимости от типа кристалла и типа ионов, образующих кристалл, такие вещества могут быть довольно прочными и тугоплавкими . В твердом состоянии подвижных заряженных частиц в ионных кристаллах, как правило, нет. Зато при растворении или расплавлении кристалла ионы высвобождаются и могут двигаться под действием внешнего электрического поля. Т.е. проводят ток только растворы или расплавы ионных кристаллов. Ионная кристаллическая решетка характерна для веществ с ионной химической связью . Примеры таких веществ – поваренная соль NaCl, карбонат кальция – CaCO 3 и др. Ионную кристаллическую решетку, как правило, в твердой фазе образуют соли, основания, а также оксиды металлов и бинарные соединения металлов и неметаллов .

Связь между частицами в ионных кристаллах: .

В узлах кристалла с ионной решеткой расположены ионы .

Фазовое состояние ионных кристаллов при нормальных условиях: как правило, твердые вещества .

Химические вещества с ионной кристаллической решеткой:

  1. Соли (органические и неорганические), в том числе соли аммония (например, хлорид аммония NH 4 Cl);
  2. Основания;
  3. Оксиды металлов;
  4. Бинарные соединения, в составе которых есть металлы и неметаллы.

Физические свойства веществ с ионной кристаллической структурой:

— высокая температура плавления (тугоплавкость);

— растворы и расплавы ионных кристаллов – проводники тока;

— большинство соединений растворимы в полярных растворителях (вода);

— твердое фазовое состояние у большинства соединений при нормальных условиях.

И, наконец, металлы характеризуются особым видом пространственной структурыметаллической кристаллической решеткой , которая обусловлена металлической химической связью . Атомы металлов довольно слабо удерживают валентные электроны. В кристалле, образованном металлом, происходят одновременно следующие процессы: часть атомов отдает электроны и становится положительно заряженными ионами ; эти электроны хаотично перемещаются в кристалле ; часть электронов притягивается к ионам . Эти процессы происходят одновременно и хаотично. Таким образом, возникают ионы , как при образовании ионной связи, и образуются общие электроны , как при образовании ковалентной связи. Свободные электроны перемещаются хаотично и непрерывно по всему объему кристалла, как газ. Поэтому иногда их называют «электронным газом ». Из-за наличия большого числа подвижных заряженных частиц металлы проводят ток, тепло . Температура плавления металлов сильно варьируется. Металлы также характеризуются своеобразным металлическим блеском, ковкостью , т.е. способностью изменять форму без разрушения при сильном механическом воздействии, т.к. химические связи при этом не разрушаются.

Связь между частицами : .

В узлах кристалла с металлической решеткой расположены ионы металлов и атомы .

Фазовое состояние металлов при обычных условиях: как правило, твердые вещества (исключение — ртуть, жидкость при обычных условиях).

Химические вещества с металлической кристаллической решеткой — простые вещества-металлы .

Физические свойства веществ с металлической кристаллической решеткой:

— высокая тепло- и электропроводность;

— ковкость и пластичность;

— металлический блеск;

— металлы, как правило, нерастворимы в растворителях;

— большинство металлов – твердые вещества при нормальных условиях.

Сравнение свойств веществ с различными кристаллическими решетками

Тип кристаллической решетки (или отсутствие кристаллической решетки) позволяет оценить основные физические свойства вещества . Для примерного сравнения типичных физических свойств соединений с разными кристаллическими решетками очень удобно использовать химические вещества с характерными свойствами . Для молекулярной решетки это, например, углекислый газ , для атомной кристаллической решетки — алмаз , для металлической — медь , и для ионной кристаллической решетки — поваренная соль , хлорид натрия NaCl.

Сводная таблица по структурам простых веществ, образованных химическими элементами из главных подгрупп таблицы Менделеева (элементы побочных подгрупп являются металлами, следовательно, имеют металлическую кристаллическую решетку).

Итоговая таблица связи свойств веществ со строением:

В химические взаимодействия вступают не отдельные атомы или молекулы, а вещества.

Наша задача познакомиться со строением вещества.

При низких температурах для веществ устойчиво твёрдое состояние.

Самым твёрдым веществом в природе является алмаз. Он считается царём всех самоцветов и драгоценных камней. Да и само его название означает по-гречески «несокрушимый». На алмазы с давних пор смотрели как на чудодейственные камни. Считалось, что человек, носящий алмазы, не знает болезней желудка, на него не действует яд, он сохраняет до глубокой старости память и весёлое расположение духа, пользуется царской милостью.

Алмаз, подвергнутый ювелирной обработке – огранке, шлифовке, называют бриллиантом.

При плавлении в результате тепловых колебаний порядок частиц нарушается, они становятся подвижными, при этом характер химической связи не нарушается. Таким образом, между твёрдым и жидким состояниями принципиальных различий нет.

У жидкости появляется текучесть (т. е. способность принимать форму сосуда).

Жидкие кристаллы

Жидкие кристаллы открыты в конце XIX века, но изучены впоследние 20-25 лет. Многие показывающие устройства современной техники, например некоторые электронные часы, мини-ЭВМ, работают на жидких кристаллах.

В общем-то слова «жидкие кристаллы» звучат не менее необычно, чем «горячий лёд» . Однако на самом деле и лёд может быть горячим, т.к. при давлении более 10000 атм. водянойлёдплавится при температуре выше 200 0 С. Необычность сочетания «жидкие кристаллы» состоит в том, что жидкое состояние указывает на подвижность структуры, а кристалл предполагает строгую упорядоченность.

Если вещество состоит из многоатомных молекул вытянутой или пластинчатой формы и имеющих несимметричное строение, то при его плавлении эти молекулы ориентируются определённым образом друг относительно друга (их длинные оси располагаются параллельно). При этом молекулы могут свободно перемещаться параллельно самим себе, т.е. система приобретает свойство текучести, характерное для жидкости. В то же время система сохраняет упорядоченную структуру, обусловливающую свойства, характерное для кристаллов.

Высокая подвижность такой структуры даёт возможность управлять ею путём очень слабых воздействий (тепловых, электрических и др.), т.е. целенаправленно изменять свойства вещества, в том числе оптические, с очень малыми затратами энергии, что и используется в современной технике.

Типы кристаллических решёток

Любое химическое вещество образованно большим числом одинаковых частиц, которые связаны между собою.

При низких температурах, когда тепловое движение затруднено, частицы строго ориентируются в пространстве и образуют кристаллическую решётку .

Кристаллическая решетка – это структура с геометрически правильным расположением частиц в пространстве.

В самой кристаллической решетке различают узлы и межузловое пространство.

Одно и то же вещество в зависимости от условий (p , t ,…)существует в различных кристаллических формах (т.е. имеют разные кристаллические решетки) – аллотропных модификациях, которые отличаются по свойствам.

Например, известно четыре модификации углерода – графит, алмаз, карбин и лонсдейлит.

Четвёртая разновидность кристаллического углерода «лонсдейлит» мало кому известна. Он обнаружен в метеоритах и получен искусственно, а строение его ещё изучается.

Сажу, кокс, древесный уголь относили к аморфным полимерам углерода. Однако теперь стало известно, что это тоже кристаллические вещества.

Кстати, в саже обнаружили блестящие чёрные частицы, которые назвали «зеркальным углеродом». Зеркальный углерод химически инертен, термостоек, непроницаем для газов и жидкостей, обладает гладкой поверхностью и абсолютной совместимостью с живыми тканями.

Название графита происходит от итальянского «граффитто» - пишу, рисую. Графит представляет собой тёмно – серые кристаллы со слабым металлическим блеском, имеет слоистую решётку. Отдельные слои атомов в кристалле графита, связанные между собой сравнительно слабо, легко отделяются друг от друга.

ТИПЫ КРИСТАЛЛИЧЕСКИХ РЕШЁТОК

ионная

металлическая

Что в узлах кристаллической решётки, структурная единица

ионы

атомы

молекулы

атомы и катионы


Тип химической связи между частицами узла

ионная

ковалентная: полярная и неполярная

металлическая

Силы взаимодействия между частицами кристалла

электростати-

ческие

ковалентные

межмолекуляр-

ные

электростати-

ческие

Физические свойства, обусловленные кристаллической решёткой

· силы притяжения между ионами велики,

· Т пл. (тугоплавкте),

· легко растворяются в воде,

· расплав и р-р проводит эл.ток,

· нелетучи (не имеют запаха)

· ковалентные связи между атомами велики,

· Т пл. и T кип очень,

· в воде не растворяются,

· расплав не проводит эл.ток

· силы притяжения между молекулами невелики,

· Т пл. ↓,

· некоторые растворяются в воде,

· обладают запахом – летучи

· силы взаимодействия велики,

· Т пл. ,

· Высокие тепло и электропроводность

Агрегатное состояние вещества при обычных условиях

твёрдое

твёрдое

твёрдое,

газообразное,

жидкое

твёрдое,

жидкое(Нg)

Примеры

большинство солей, щелочей, оксиды типичных металлов

С (алмаз, графит), Si , Ge , B , SiO 2 , CaC 2 ,

SiC (карборунд), BN , Fe 3 C , TaC (t пл. =3800 0 С)

Красный и чёрный фосфор. Оксиды некоторых металлов.

все газы, жидкости, большинство неметаллов: инертные газы, галогены, H 2 , N 2 , O 2 , O 3 , P 4 (белый), S 8 . Водородные соединения неметаллов, оксиды неметаллов: H 2 O ,

CO 2 «сухой лёд». Большинство органических соединений.

Металлы, сплавы


Если скорость роста кристаллов мала при охлаждении – образуется стеклообразное состояние (аморфное).

  1. Взаимосвязь между положениемэлемента в Периодической системе и кристаллической решёткой его простого вещества.

Между положением элемента в периодической системе и кристаллической решёткой его соответствующего простого вещества существует тесная взаимосвязь.

группа

III

VII

VIII

п

е

р

и

о

д

H 2

N 2

O 2

F 2

III

P 4

S 8

Cl 2

Br 2

I 2

Тип

кристаллическойрешётки

металлическая

атомная

молекулярная

Простые вещества остальных элементов имеют металлическую кристаллическую решётку.

ЗАКРЕПЛЕНИЕ

Изучите материал лекции, ответьте на следующие вопросы письменно в тетради:

  1. Что такое кристаллическая решётка?
  2. Какие виды кристаллических решёток существуют?
  3. Охарактеризуйте каждый вид кристаллической решётки по плану: Что в узлах кристаллической решётки, структурная единица → Тип химической связи между частицами узла → Силы взаимодействия между частицами кристалла → Физические свойства, обусловленные кристаллической решёткой → Агрегатное состояние вещества при обычных условиях → Примеры

Выполните задания по данной теме:

  1. Какой тип кристаллической решётки у следующих широко используемых в быту веществ: вода, уксусная кислота (CH 3 COOH ), сахар (C 12 H 22 O 11), калийное удобрение (KCl ), речной песок (SiO 2) – температура плавления 1710 0 C , аммиак (NH 3), поваренная соль? Сделайте обобщённый вывод: по каким свойствам вещества можно определить тип его кристаллической решётки?
  2. По формулам приведённых веществ: SiC , CS 2 , NaBr , C 2 H 2 - определите тип кристаллической решётки (ионная, молекулярная) каждого соединения и на основе этого опишите физические свойства каждого из четырёх веществ.
  3. Тренажёр №1. "Кристаллические решётки"
  4. Тренажёр №2. "Тестовые задания"
  5. Тест (самоконтроль):

1) Вещества, имеющие молекулярную кристаллическую решётку, как правило:

a ). тугоплавки и хорошо растворимы в воде
б). легкоплавки и летучи
в). Тверды и электропроводны
г). Теплопроводны и пластичны

2) Понятия «молекула»не применимо по отношению к структурной единице вещества:

a ). вода

б). кислород

в). алмаз

г). озон

3) Атомная кристаллическая решётка характерна для:

a ). алюминияи графита

б). серы и йода

в). оксида кремния и хлорида натрия

г). алмаза и бора

4) Если вещество хорошо растворимо в воде, имеет высокую температуру плавления,электропроводно, то его кристаллическая решётка:

а). молекулярная

б). атомная

в). ионная

г). металлическая

Cтраница 1


Молекулярные кристаллические решетки и соответствующие им молекулярные связи образуются преимущественно в кристал-дах тех веществ, в молекулах которых связи являются ковалент-ными. При нагревании связи между молекулами легко разрушаются, поэтому вещества с молекулярными решетками обладают низкими температурами плавления.  

Молекулярные кристаллические решетки образуются из полярных молекул, между которыми возникают силы взаимодействия, так называемые ван-дер-ваальсовы силы, имеющие электрическую природу. В молекулярной решетке они осуществляют довольно слабую связь. Молекулярную кристаллическую решетку имеют лед, природная сера и многие органические соединения.  

Молекулярная кристаллическая решетка иода показана на рис. 3.17. Большинство кристаллических органических соединений имеют молекулярную решетку.  


Узлы молекулярной кристаллической решетки образованы молекулами. Молекулярную решетку имеют, например, кристаллы водорода, кислорода, азота, благородных газов, диоксида углерода, органических веществ.  

Наличие молекулярной кристаллической решетки твердой фазы является здесь причиной незначительной адсорбции ионов из маточного раствора, а следовательно, и гораздо более высокой чистоты осадков по сравнению с осадками, для которых характерна ионная кристал. Поскольку осаждение в этом случае происходит в оптимальной области кислотности, различной для ионов, осаждаемых этим реактивом, оно находится в зависимости от значения соответствующих констант устойчивости комплексов. Этот факт позволяет, регулируя кислотность раствора, достигать селективного, а иногда даже специфического осаждения определенных ионов. Подобные результаты часто могут быть получены путем подходящего изменения доноркых групп в органических реактивах с учетом особенностей катионов-ком-плексообразователей, которые осаждаются.  


В молекулярных кристаллических решетках наблюдается локальная анизотропия связей, а именно: внутримолекулярные силы очень велики по сравнению с межмолекулярными.  

В молекулярных кристаллических решетках в узлах решетки находятся молекулы. Большинство веществ с ковалентной связью образуют кристаллы такого типа. Молекулярные решетки образуют твердые водород, хлор, двуокись углерода и другие вещества, которые при обычной температуре газообразны. Кристаллы большинства органических веществ также относятся к этому типу. Таким образом, веществ с молекулярно кристаллической решеткой известно очень много.  

В молекулярных кристаллических решетках составляющие их молекулы связаны между собой при помощи относительно слабых ван-дер-ваальсовых сил, тогда как атомы внутри молекулы связаны значительно более сильной ковалентной связью. Поэтому в таких решетках молекулы сохраняют свою индивидуальность и занимают один узел кристаллической решетки. Замещение здесь возможно в том случае, если молекулы сходны между собой по форме и по размерам. Поскольку силы, связывающие молекулы, относительно слабы, то и границы замещения здесь значительно шире. Как показал Никитин , атомы благородных газов могут изоморфно замещать молекулы СО2, SO2, CH3COCH3 и другие в решетках этих веществ. Сходство химической формулы здесь оказывается не обязательным.  

В молекулярных кристаллических решетках в узлах решетки находятся молекулы. Большинство веществ с ковалентной связью образуют кристаллы такого типа. Молекулярные решетки образуют твердые водород, хлор, двуокись углерода и другие вещества, которые при обычной температуре газообразны. Кристаллы большинства органических веществ также относятся к этому типу. Таким образом, веществ с молекулярной кристаллической решеткой известно очень много. Молекулы, находящиеся в узлах решетки, связаны друг с другом межмолекулярными силами (природа этих сил была рассмотрена выше; см. стр. Так как межмолекулярные силы значительно слабее сил химической связи, то молекулярные кристаллы легкоплавки, характеризуются значительной летучестью, твердость их невелика. Особенно низки температуры плавления и кипения у тех веществ, молекулы которых неполярны. Так, например, кристаллы парафина очень мягки, хотя ковалентные связи С-С в углеводородных молекулах, из которых состоят эти кристаллы, столь же прочны, как связи в алмазе. Кристаллы, образуемые благородными газами, также следует отнести к молекулярным, состоящим из одноатомных молекул, поскольку валентные силы в образовании этих кристаллов роли не играют, и связи между частицами здесь имеют тот же характер, что и в других молекулярных кристаллах; это обусловливает сравнительно большую величину межатомных расстояний в этих кристаллах.  

Схема регистрации дебаеграммм.  

В узлах молекулярных кристаллических решеток находятся молекулы, которые связаны друг с другом слабыми межмолекулярными силами. Такие кристаллы образуют вещества с ковалент-ной связью в молекулах. Веществ с молекулярной кристаллической решеткой известно очень много. Молекулярные решетки имеют твердые водород, хлор, диоксид углерода и другие вещества, которые при обычной температуре газообразны. Кристаллы большинства органических веществ также относятся к этому типу.  



Просмотров