Про космос и вселенную и нашу жизнь. Способы мониторинга лесных пожаров

Мы поболтали с Георгием Потаповым, начальником проекта «Космоснимки – Пожары», о мониторинге, обработке данных со спутников и применении карты пожаров.

Е.И.: Поведайте, как и в то время, когда показался проект «Космоснимки – Пожары»?

Г.П.: История проекта «Космоснимки – Пожары» начинается с 2010 года. Многие не забывают, какая тогда была обстановка с информацией и пожарами о них – около была информационная паника, обусловленная тем, что информации было мало. Наряду с этим все знали, что кругом горят леса, торфяники. Все дышали смогом, вредным для здоровья, но информации фактически не было: что горит?

Где горит? Горит ли вблизи вашей дачи? Горит ли вблизи вашего города? Куда понесет дым в ближайшие дней?

Как один из вкладов в удаление этого информационного голода мы в компании ScanEx сделали публичную карту пожаров и стали выкладывать на нее все данные, которую имели возможность извлечь из разработки спутникового мониторинга.

С того времени мы выпустили версию с глобальным покрытием пожаров за счет интеграции данных NASA, американского космического агентства. NASA кроме этого есть оператором тех спутников, эти которых мы обрабатываем.

В начале этого лета случилось второе серьёзное изменение – показалась бета-версия сервиса оповещения. Это то, что мы в далеком прошлом желали сделать, – создать коммуникационный сервис. Именно поэтому сервису пользователи смогут приобретать данные о ситуации на интересующей его территории. К примеру, в случае если у вас имеется мобильное приложение, вы приобретаете данные о предупреждениях либо угрозах в окрестностях собственного расположения.

Кроме этого вероятно будет получать по email отчеты о произошедших пожарах.

Е.И.: А кто принимает ответ о том, есть ли эта обстановка угрозой и высылать ли уведомление?

Г.П.: на данный момент мы по факту показываем все данные – в случае если имеется в отечественной совокупности информация о пожаре, мы высылаем уведомление. Мы планируем в будущем разбирать эти сведенья с позиций угроз, а также – куда данный пожар может распространяться и чему он может угрожать. До тех пор пока аналитика будет в таком зачаточном состоянии.

К примеру, определяются все города, каковые находятся в близи от мест, где происходят пожары.

Е.И.: Это определяется машинным способом? Как по большому счету совокупность осознаёт, что в данном месте пожар?

Г.П.: Да, это автоматизированная совокупность. Она трудится на базе автоматических методов распознавания термальных аномалий по инфракрасным каналам спутниковой съемки. Способ основан на отличии температур в инфракрасных каналах, и в случае если имеется какая-то термальная аномалия, метод принимает ее за пожар.

Позже посредством настроек проводится дополнительная параметризация этого сигнала, а затем принимается ответ о том, есть ли эта точка пожаром, либо нет.

Е.И.: Эти, каковые вы приобретаете со спутников, находятся в открытом доступе? Как они попадают к вам?

Г.П.: Информация со спутников – это открытые эти, это информация с американских спутников «Terra», «Aqua» и «NPP». По программе NASA Earth Observation Program было запущено два спутника, на данный момент к ним присоединился третий. У спутников ограниченный ресурс, исходя из этого, быть может, какие-то из них с течением времени выйдут из строя.

Но по большому счету в будущем их должно становиться больше, эти с них, надеюсь, будут открытыми, и нам удастся их применять для различных целей, а также для мониторинга пожаров.

на данный момент эти попадают к нам из двух источников. Первый источник – это сеть центров ScanEx, обработки и центров приёма данных, из которых мы приобретаем результаты детектирования пожаров, выкладываем эти результаты на карту и т.д. А второй источник – это информация более большого уровня, которую мы скачиваем с серверов NASA.

С серверов NASA мы скачиваем уже готовые маски пожаров – выделенные по спутниковым снимкам пожары. Дальше мы совершенно верно так же эти сведенья додаём на карту и визуализируем их как отдельный слой. Если вы посмотрите, то на карте имеется два слоя – пожары ScanEx и пожары FIRMS.

Е.И.: Вы не объединяете их в один слой?

Г.П.: Нет, по причине того, что один из них более своевременный, а второй но предоставляет глобальное покрытие. Исходя из этого на данный момент мы их не склеиваем.

Е.И.: Из-за чего один из слоев есть более своевременным, и какая отличие между ними во времени?

Г.П.: Пара часов, как нам думается, в среднем. По причине того, что эти на американских серверах выкладываются с некоей задержкой – до тех пор пока долетит спутник и скинет данные, возможно, задержка связана еще с цепочкой обработки. Но оперативность – это одна из компонент информационного сервиса, которая ответственна для спасателей и для работ, принимающих ответы на базе данной информации.

Для них, чем раньше они определят о пожаре, тем лучше, тем силами и меньшими средствами они смогут с этим пожаром совладать.

Причем, в большинстве случаев, спасателями, лесниками и МЧСовцами употребляется наземные средства – и комплексный мониторинг наблюдения, наблюдатели, каковые сидят на башнях, и камеры, установленные на башне, на изображения с которых оператор наблюдает в диспетчерском центре. Но имеется громадные территории, на которых никакая вторая информация не дешева, не считая космической съемки.

Е.И.: А как правильными являются эти? Были ли ситуации, в то время, когда ошибочно определялся пожар?

Г.П.: Да, это нередкая неприятность по большому счету в автоматических методах. Вы постоянно выбираете: или у вас имеется избыточная информация, но вы имеете возможность взять большое количество фальшивых срабатываний, или вы ограничиваете эти фальшивые срабатывания, но наряду с этим упускаете, быть может, какую-то данные. Это неизбежно, а также в случае если глазами искать на спутниковом снимке термальные странности, то все равно возможно совершить ошибку и принять ошибочное решение о том, есть ли конкретная термальная аномалия пожаром либо не есть.

Помимо этого, имеется, к примеру, такая неприятность, как техногенные источники тепла – трубы фабрик, факела, каковые образуются при сжигании газа при добычи нефти. Все это довольно часто оставляет сигнал на карте пожаров. Но мы такие фальшивые тревоги стараемся фильтровать тем, что эти места на карту и создаем такую маску, которая фильтрует эти фальшивые сигналы.

Если вы взглянуть на карту, то для слоя ScanEx имеется желтые пожарчики, обозначенные вторым стилем, – это вот те возможные техногенные источники, базу которых мы стараемся пополнять по мере сил.

Е.И.: Как при таких условиях осуществляется верификация данных?

Г.П.: Как я уже сообщил, мы создаем маску этих техногенных источников, т.е. мы легко термоточки – пожары, определенные по спутниковым данным, – маскируем в окрестности техногенных источников. А сами источники на карте – наблюдаем на спутниковые снимки, время от времени подгружаем слой с Викимапии чтобы взглянуть, имеется ли на этом месте какой-то завод либо какое-то добывающее предприятие, от которого смогут появиться факела.

Имеется и второй метод – автоматической верификации, полученный итог которого после этого проверяется вручную. Данный метод разрешает оптимизировать поиск техногенных источников.

Е.И.: Но вы не контролируете любой новый пожар на карте?

Г.П.: Нет, любой новый пожар мы не контролируем вручную, на это просто не хватит отечественных рук. Мы показываем данные как имеется и говорим, что это автоматические результаты, полученные таким вот методом. Ответ о том, есть ли эта термоточка пожаром, либо не есть, остается за конечным пользователем.

Е.И.: какое количество людей участвуют в работе над проектом?

Г.П.: В базе всего лежат открытые разработки, и мы используем открытые методы, каковые используем, внедряем и в какой-то степени адаптируем, исходя из этого на этом проекте задействовано мало людей. По большому счету, самими этими разработками детектирования пожаров по спутниковым снимкам занимается научная несколько в американском университете, в какой-то степени в этом участвуют русские эксперты.

У нас этим проектом занимаются три человека, совмещая его с главной работой.

Е.И.: «Космоснимки» – это некоммерческий проект?

Г.П.: Сам публичный сайт – проект некоммерческий. Но мы предлагаем и коммерческие ответы на базе этого проекта и трудимся с клиентами – занимаемся внедрением разработок, консалтингом и т.д. Те технологии, каковые были созданы для карты пожаров, употребляются и в коммерческих заказах.

К примеру, в 2011 году был проект в интересах Министерства природных ресурсов, что, к сожалению, они позже прекратили. В рамках этого проекта мы предоставляли оповещения о пожарах на всех защищаемых территориях федерального значения – заповедниках, заказниках, национальных парках. администрациям и Дирекциям соответствующих заповедников высылалась информация, дающая предупреждение их об угрозе пожара в границах заповедника либо в буферной территории, т.е. поблизости от данной защищаемой природной территории.

Как показал опыт внедрения этого проекта, такая информация была для них крайне полезна, по причине того, что они время от времени кроме того лишены скоростного доступа в Интернет и не смогут искать в сети данные о итогах космического мониторинга. А в рамках этого проекта они приобретали SMS на собственные сотовые телефоны – в сообщениях им приходили координаты задетектированного пожара. Дальше они уже собственными силами контролировали эти сведенья на местности.

Е.И.: А были ли ситуации, в то время, когда карта помогла при пожаре либо не допустить последствия?

Г.П.: Вот, к примеру, эта история про заповедники. Я пара раз слышал про астраханский заповедник – парни ехали тушить один пожар, а им отправили оповещение про второй. Они выехали, вправду в том месте нашли пожар и скоро его загасили.

Е.И.: Как скоро на карте появляется информация о пожаре?

Г.П.: Информация поступает приблизительно в течение получаса по окончании пролета спутника. Спутник пролетел, информация отправилась в обработку, позже стала дешева на сайте. Любой спутник пролетает два раза над одной и той же точкой, а потому, что употребляется три спутника, то получается шесть съемок в день одной территории.

Это значит, что в случае если на данной территории происходит пожар, то информация о нем будет обновлена шесть раз в течении 24 часов.

Е.И.: Вы сохраняете все информацию о пожарах?

Г.П.: Да, у нас хранится архив с 2009 год. По большому счету архив данных с этих спутников дешёв и за более ранние годы, но мы ведем собственный архив со старта проекта.

Е.И.: Какие конкретно у вас замыслы на будущее? Как вы желаете развивать проект дальше?

Г.П.: У нас в самых ближайших замыслах имеется создание глобального ресурса, что будет воображать данные в мире. Помимо этого, мы сохраняем надежду, что возможно будет применять не только эти со спутников, но и другие эти, к примеру, эти регионального мониторинга.

Я говорил уже неоднократно с разработчиками совокупностей видеонаблюдения за пожарами – это совокупности, каковые продаются конкретным клиентам, к примеру, региональным лесхозам. Они закупают эту совокупность и посредством нее выполняют мониторинг пожаров на собственной территории. И я бы весьма желал, дабы нам удалось договориться с ними и заинтересовать их, дабы они данной информацией обменивались и применяли отечественную карту пожаров, как площадку для обмена информацией.

Также, хочется, дабы была возможность разрабатывать технологии, и мы собираются вкладывать в это отечественные личные силы, как это будет вероятно. Это, к примеру, технологии прогнозирования пожароопасности на базе карты пожаров. на данный момент не существует прогнозных задымления распространения и моделей пожаров, это целый нетронутый пласт, а касается это весьма многих.

Вот вы живете, к примеру, в Москве и вам принципиально важно знать прогноз задымления из-за горящих где-то в соседней области либо в Подмосковье пожаров. Все мы пользуемся прогнозом погоды, но данный прогноз не включает ни при каких обстоятельствах информации о пожароопасности либо экологических угрозах. Будет ли такая информация включаться в метеорологическую данные в будущем – это вопрос будущего и вложения каких-то коллективных упрочнений.

Е.И.: Вы не думали о том, дабы сделать «Космоснимки» открытым краудсорсинговым проектом, дабы любой пользователь имел возможность додавать данные о пожарах?

Г.П.: У нас имеется пользователи, которым мы такие возможности воображаем. Это те, кто выезжает на пожары, но кроме того они на данный момент деятельно не додают данные. Я просто не вижу, к сожалению, возможностей у для того чтобы шага.

А вот добавление на карту техногенных источников – в том месте, где по спутниковым снимкам либо по картам возможно сделать вывод о том, что в этом месте находится какой-то антропогенный источник тепла, – это вправду необходимо сделать. Возможно, предложить сообществам, каковые занимаются открытыми данными, поучаствовать в этом проекте. Я легко до этого не добрался еще, но такие идеи были.

Пожары могут принести колоссальный ущерб природе и, чтобы избежать его последствий, производят мониторинг лесных пожаров. Способы различные: есть проверенные временем визуальные осмотры, также практикуют наблюдение с помощью спутников и современной техники. Эффективно использовать системы мониторинга лесных пожаров в комплексе. В Российской Федерации действуют профильные службы и учреждения для сбора, анализа и структурирования данных.

Визуальный осмотр

В некоторых лесах можно встретить специальные вышки. Эти строения выступают в роли наблюдательных пунктов. Их строительством обычно занимаются лесные хозяйства. Вышки оборудуют средствами связи, на наблюдательном пункте есть азимутальный круг. Он нужен для определения направления пожара.

Лес делят на территории по радиусу обзора с такой башни – 5-7 км. Вышки строят из дерева, но в последнее время многие элементы их конструкции меняют на металлические. Срок жизни строений с наблюдательными пунктами из дерева менее 10 лет.

Осмотр лесных территорий осуществляет специальный человек. При обнаружении пожара он определяет его направление, возможную опасность и передает информацию на диспетчерский пункт через радио или телефонную связь.

Проблема этого способа мониторинга в малочисленности наблюдательных вышек и работников. Раньше лесничих было на порядок больше, сейчас их количество сократилось в несколько раз.

На части наблюдательных вышек устанавливают видеокамеры. Это не решает основной проблемы, потому что за съемкой должен наблюдать человек в оборудованном пункте. Если система видеонаблюдения автоматизирована, то задача упрощается, но в большинстве камеры требует ручного управления.

Помимо этого, съемка ведется в одном направлении, поэтому необходимо установить несколько камер. Вышки сотовой связи тоже используют для мониторинга. На них устанавливают тепловизоры и видеокамеры.

Исследования с помощью спутников

Один из самых недорогих способов – это спутниковый мониторинг. Спутники с помощью сканеров делают снимки в инфракрасном спектре. Это позволяет узнать разницу температур и определить, где идут лесные пожары.

Данные и снимки обрабатываются на космическом аппарате, где исправляют искажения, делают привязку к географическим точкам. Последний этап обработки, который включает цифровой анализ, визуальное дешифрирование и интерпретацию снимков, производят в автоматическом или интерактивном режиме.

Информацию о лесных пожарах можно увидеть на специальных сайтах, например . Созданы федеральные системы мониторинга лесных пожаров. Они составляют общую картину, используя данные визуального осмотра, спутниковых снимков и других методов мониторинга.

Этот дистанционный метод входит в список функций экологического мониторинга. С помощью спутников также получают метеорологические характеристики, данные о техногенной обстановке, разливе рек, динамике снежных покровов, тепловых выбросах. Каждой области применения соответствует определенный канал, его обозначают цветом.

Карта пожаров в России доступна всем заинтересованным пользователям.

Информация обновляется в среднем 4 раза в день. Это усложняет идентификацию возгораний и снижает оперативность помощи пожарной охраны. Периодичность обновления зависит от времени пролета спутников по орбите. Основные данные предоставляет серия американских спутников NOAA.

Работают и частные спутники, их снимки отличаются точностью и детальностью, но стоят дороже общедоступных. Поэтому наряду с космоснимками используют данные визуального осмотра. На карте пожаров указывают точки пожаров и возможные причины их возникновения. Существует индийская система спутникового мониторинга.

На точность космоснимков влияют многие факторы. Например, повышенная облачность мешает как обнаружению лесных пожаров, так и определению их размера. Очаги возгораний на картах могут не совпадать с реальными, но их примерные координаты очерчены границами.

То есть на карте показана область, где есть очаг. Несколько пожаров на карте обычно объединяют в единый кластер. В этом случае точность также не достоверная. По этим данным определяют площадь пожара и скорость его распространения в лесах. Есть возможность получать оповещения о выявлении лесных пожаров, если оформить подписку на соответствующем сервисе.

Альтернативные методы

В качестве вспомогательных методов мониторинга лесных пожаров называют также осмотр территорий с воздуха. Наблюдение осуществляют с вертолетов, самолетов. В последние годы применение в этом направлении нашли беспилотные летательные аппараты, которые делают видеозаписи.

Стоимость всех перечисленных способов высокая. Из-за этого невозможно организовать непрерывный мониторинг в лесной зоне. Однако при возможности и достаточном финансировании летательные аппараты позволяют получать точную информацию в режиме реального времени. Кроме того, авиация способна тушить пожары при их обнаружении.

В России для тушения и мониторинга лесных пожаров с помощью вертолетов и пожарных самолетов создано федеральное учреждение «Авиалесоохрана». В состав экипажа воздушного судна входит летчик, парашютист-пожарный и десантник-пожарный, которые прошли специальную подготовку.

Статистика

Помимо наполнения интерактивной карты лесных пожаров, ведется их статистика. Она имеет не только информационный характер. На основе полученных данных анализируют причины возгораний, скорость их распространения.

Это необходимо для , составления прогнозов, организации эффективного тушения. По пожарной опасности определяют экономический ущерб. Статистические данные и картографирование позволяют отличать пожары от техногенных источников тепла, которыми могут быть производственные объекты.

Первые записи о лесных пожарах в летописях датированы 1724 годом. Уже тогда были призывы сохранить угодья от огня. Во времена царской России данные уже упорядочивали. Сегодня информация о лесных пожарах сводится в таблицы. Статистику ведут ведомства и службы.

По данным Росстата последние массовые пожары были зафиксированы в летний период 2010 года. Однако их количество не рекордное, экологический и экономический ущерб был причинен вследствие больших территорий, охваченных огнем, и задымлением.

В 2010 году в общей сложности произошло более 39000 лесных пожаров. Тогда сгорело на корню около 150000000 м 3 лесов. Аналогичные масштабы лесных пожаров наблюдали в 1998 году. По количеству пожаров лидирует 2002 год – 434000 возгораний, но последствия не столь плачевны.

Прошедшее лето 2015 года было особенно жарким и знойным, согласитесь? Температура воздуха иногда достигала 40*С в тени, и по новостям не успевали рассказывать о новых рекордах за всю историю наблюдений за погодой.

Неудивительно, что до сих пор по всему миру бушуют лесные пожары. Такое ощущение, что природа решила помочь человечеству истребить себя как вид (экология, войны, техногенные катастрофы…).

Хотите узнать сколько лесов в данный момент пылают во всём мире и где? Карта лесных пожаров Вам в руки…

Помню, как недавно удивился количеству самолётов в небе — сегодня я был в шоке ещё сильнее. Люди, весь мир горит синем пламенем, спасайся, кто может…

Горит центральная часть нашего континента…



…горит вокруг озера Байкал…

…пылает бедная Африка…

Кенгуру спасаются от огня в Австралии…

…и много-много диких обезьян из Бразилии…

Только Европа чувствует себя комфортно…

…и в Северной Америке почти ничего не горит …

Всю эту картину можно наблюдать на специальном сервисе, который так и называется (далее ссылка)…

Карта пожаров

Там справа и вверху есть календарь — выбирайте дату и смотрите где и что горело. По умолчанию установлена дата Вашего захода на сайт…

В настройках можно убрать отображение лишней информации или активировать нужную Вам…

Слева внизу можно выбрать тип карты…

Приближаем карту колёсиком мышки, а передвигаем её — зажав левую кнопку.

Кстати, есть ещё сервис от Яндекса «Лесные пожары «, но там почему-то ничего не горит в Африке, Бразилии, Австралии… . Скорее всего Яндексу просто недоступна данная информация, по каким-то загадочным причинам — вот Вам и сервис.

Данные спутниковых наблюдений весьма важны при оценке распространения лесных пожаров, выявления их очагов, анализе развития дымов от пожаров, гарей, выявлении опасности возникновения пожаров.
Возможность ликвидации пожара на малой площади, особенно в условиях высокой пожарной опасности, определяется оперативностью обнаружения. Таким образом, наиболее подходящими требованиям оперативного мониторинга лесных и торфяных пожаров соответствуют спутники с высоким радиометрическим разрешением и высокой периодичностью съемки (серии NOAA и EOS). Для мониторинга последствий пожаров необходимо использовать спутники с высоким пространственным разрешением.
Задачи мониторинга пожаров и их последствий:

  • детектирование пожаров, определение мест загорания;
  • мониторинг и контроль развития пожаров;
  • оценка пожарной опасности в пределах сезона;
  • прогнозирование рисков возникновения пожаров в долгосрочной перспективе;
  • оценка последствий пожаров . Совмещение снимков до и после пожаров дает возможность выявить гари, определить их площади на текущее время и оценить нанесенный ущерб.

Последствия воздействия лесных пожаров на окружающую среду и человека:

  • Экономические: потери древесины, в т.ч. повреждение молодняков, ресурсов побочного лесопользования; Расходы на тушение, расчистку горельников и др.; восстановительные работы; убытки других отраслей: прекращение авиа-, ж/д-, автоперевозок, судоходства и др.
  • Экологические: загрязнение продуктами горения воздушной среды, водной среды, почв:
    • уничтожение кислорода;
    • тепловое загрязнение;
    • массовый выброс парниковых газов;
    • изменение микроклимата;
    • задымление и загазованность атмосферы;
    • гибель животных и растений;
    • снижение биоразнообразия.
  • Социальные: гибель и травматизм людей, непосредственно в зоне пожара; ухудшение психофизиологических показателей населения: физических, эмоциональных, интеллектуальных, репродуктивных, наследственности; рост заболеваемости населения; уменьшение продолжительности жизни.

Для детектирования пожаров используются тепловые каналы космических снимков (Рис.1, Табл. 1, 2.).
Таблица 1 . Диапазоны длин волн.

Рисунок 1

Диапазон Сокращения

Русский

Английский

Русский

Английский

Ультрафиолетовый

Инфракрасный

Ближний ИК

Средний ИК

Short Wave Infrared

Дальний ИК

Mid Wave Infrared

Тепловой ИК

Thermal Infrared

Микроволновой

Космические аппараты, которые позволяют детектировать очаги пожара, представлены в таблице 1.

Таблица 2. Характеристики КА.

КА/Прибор

NOAA/
AVHRR

TERRA (AQUA) /
MODIS

LANDSAT/
TM (ETM +)

TERRA/
ASTER

Обзорность, км.

Радиометрическое разрешение, бит

NIR – 8
SWIR – 8
TIR - 12

Пространственное разрешение, м.

NIR - 250-1000
SWIR – 500
TIR - 1000

NIR, SWIR – 30 TIR - 60

NIR – 15
SWIR – 30
TIR - 90

Количество спектральных каналов в ИК диапазоне

NIR – 1
SWIR – 1
TIR - 2

NIR – 6
SWIR – 3
TIR - 16

NIR – 1
SWIR – 2
TIR - 1

NIR – 1
SWIR – 6
TIR - 5

Методы детектирования пожаров базируются на анализе температур яркости в отдельных спектральных каналах.
Ключевым признаком поискового явления есть локальное повышение температуры в месте возгорания.
Обнаружение очагов пожаров визуальным способом позволяет быстрее и точнее определить пороги обнаружения тепловых аномалий. В общем случае данные пороги будут разными. Это связано прежде всего с площадью и температурой горения, временем года и суток, и с географическими координатами места пожара.
Присутствие очага горения в видимом спектре определяется по наличию основного дешифровочного признака лесных пожаров - дымовому шлейфу.
По форме на снимке очаг напоминает конус светло-серого цвета. Следует помнить, что перистая и слоистая облачность по своей структуре и яркости могут напоминать дымовые шлейфы лесных пожаров. Поэтому те части снимков видимого спектра, где предварительно обнаружен лесной пожар, просматриваются в инфракрасном диапазоне спектра. В этом случае шлейфы дыма от лесных пожаров практически не просматриваются.
В основе всех методов лежат следующие принципы :

  • Анализа распределения сигнала в пределах определенных спектральных каналов аппаратуры наблюдения;
  • Пороговое правило отнесения участка изображения (или пиксела) к соответствующему классу;
  • Статистический анализ распределения спектральных характеристик отдельных участков изображения (или пикселов);
  • Анализ достоверности отнесения зарегистрированного сигнала к соответствующему классу.

Последовательность процедур обработки космических изображений :

  • Определение информативных каналов.
  • Обособление туч, водных объектов и утраченных данных на снимках в определенных каналах.
  • Определение мест потенциальных пожаров.
  • Определение локальных спектральных особенностей поверхности и регистрация пожаров за косвенными признаками.
  • Уточнение детектирования с учетом локальных особенностей, применение комплексных правил определения пожаров.
  • Анализ возможности ошибочного распознавания.
  • Заверка результатов детектирования и принятие решения.

Алгоритм автоматического определения очагов пожаров реализован в программном обеспечении, поставляемом ИТЦ «СканЭкс»:

    • ScanViewer (для спутников серии NOAA). Cпециалистами ИТЦ СканЭкс в приложении ScanViewer реализован аппарат, позволяющий проводить автоматическое детектирование очагов лесных пожаров по данным радиометра AVHRR, входящего в состав бортового измерительного комплекса ИСЗ серии NOAA. Сочетание алгоритмов автоматического обнаружения с визуальным просмотром изображения и наложением картографической информации составляет основу интерактивной технологии обнаружения и мониторинга лесных пожаров. Недостаток этих методов, заключается в том, что точно определить можно лишь крупные пожары.
    • ScanEx MODIS Processor (для спутников серии EOS). Для выявления и оперативного обнаружения пожаров в приложении ScanEx MODIS Processor используются алгоритмы, разработанные для прибора MODIS и позволяющие определить местоположение пожаров и их интенсивность.

Методика обнаружения пожаров основана на сравнении температур (интенсивностей входного сигнала, полученного радиометром MODIS) каждого пикселя в двух инфракрасных спектральных каналах, 21 канал (4 мкм T4) и 31 канал (11 мкм T11). Эта методика реализована в рамках программы Scanex Modis Processor с возможностью диалоговой настройки входных и выходных параметров.
При этом считается, что чем выше температура пикселя в 21 канале, тем больше вероятность пожара. Аналогично, чем больше разность температур в каналах 4 мкм. и 11 мкм. (dT411), тем больше вероятность пожара.
Потенциальный очаг пожара выявляется двумя способами:

  • Абсолютные значения каждой из вышеназванных величин в пикселе (T4 и dT411) превышают допустимые пределы, заданные в параметрах маски пожаров (например, T4 выше 360К днем или dT411 больше 25 K днем).
  • Значение интенсивности сигнала в канале 4 мкм некоторого пикселя сильно отличается от окружения (например, T4 > T4b + pT4.s.d.c.*dT4b - температура текущего исследуемого пикселя в канале 4 мкм больше средней температуры окружающих пикселей + стандартное отклонение температуры окружающих его пикселей умноженное на эмпирический коэффициент (standard deviation coefficient, обычно pT4.s.d.c = 3)).

В программе имеется набор параметров, которые отвечают за то, будет тот или иной пиксель регистрироваться как очаг пожара или нет. Сочетание этих параметров (маски пожаров) существенно зависят от региона. Например, лесостепная территория Курганской области и Ивдельская тайга имеют различные спектральные характеристики отражения в тепловом диапазоне, принимаемом радиометром MODIS. Кроме того, комбинация этих параметров зависит от сезона (зима, весна, лето, осень) и даже от времени приема.

Таблица 3. Критерии обнаружения тепловой аномалии.

где Т3р, Т34р, Т4р, - температурные пороги, I2, I1- интенсивность излучения в 1 и 2 каналах.
Температурные пороги задаются оператором в следующих интервалах: Т3р - 310-322 К; Т34р - 7-15 К; Т4р - 275-285 К. По умолчанию, для летнего времени задаются следующие температурные пороги: Т3 = 312 К; Т34 = 15 К; Т4 = 276 К.

Радиометр MODIS (Moderate Resolution Imaging Spectroradiometer) (Табл. 4. ) является одним из ключевых съемочных приборов, установленных на борту американских спутников TERRA (на орбите с 1999 г.) и AQUA (на орбите с 2002 г), осуществляющих исследования Земли из космоса по программе EOS (Earth Observing System) национального аэрокосмического агентства (NASA) США.

Таблица 4. Основные технические характеристики MODIS.

Номера каналов

Спектральный

диапазон (мкм.)

Ширина полосы обзора (км.)

Период съемки

Простра-нственное разрешение (м .)

Видимый (красный)

NIR (ближний инфракрасный)

Видимый (синий)

Видимый (зеленый)

NIR (ближний инфракрасный)

MIR (средний инфракрасный)

Видимый (синий)

Видимый (зеленый)

Видимый (красный)

NIR (ближний инфракрасный)

TIR (тепловой инфракрасный)

Радиометр MODIS позволяет осуществлять ежедневный оперативный мониторинг территорий, при этом периодичность наблюдения зависит от ее размеров и географического положения, а также количества используемых спутников.
Периодичность наблюдения отдельной территории при съемке одним спутником составляет от 1-2 раз в дневное время и столько же раз ночью. При съемке двумя спутниками частота наблюдений удвоится - от 4 до 12 раз в сутки (в зависимости от географического положения территории).
Для практического использования данных MODIS разработаны и регулярно совершенствуются алгоритмы обработки первичных данных радиометра, существует 44 стандартных информационных продукта (модули - MOD).
Для выявления тепловых аномалий и пожаров используется модуль (MOD14 ). Он позволяет обеспечить оперативное обнаружение и мониторинг природных (лесных) пожаров, вулканов и других тепловых аномалий с разрешением 1 км. MODIS может зафиксировать пожар на площади менее 1км2.
Алгоритмы детектирования пожаров в автоматическом режиме основаны на значительной разнице температур земной поверхности (обычно не выше 10–25 C) и очага пожара (300–900 C). Почти 100-кратное различие в тепловом излучении объектов фиксируется на снимке, а информация, поступающая с других спектральных каналов, помогает отделить облака.
Съемка тепловой аппаратурой спектрорадиометра MODIS с пространственным разрешением 1 км дает возможность выявить очаг пожара площадью от 1 га или подземный пожар площадью от 9 га.

На спутниках серии NOAA установлены два комплекса приборов: AVHRR (Advanced Very High Resolution Radiometer) (Табл. 5.) и комплект аппаратуры для вертикального зондирования атмосферы.
Космическая съемка аппаратами NOAA разрешает отслеживать пожары в основном в региональном масштабе через невысокую пространственную разрешающую способность снимков (1,1 км).

Таблица 5. Основные технические характеристики AVHRR.


Номера каналов

Спектральный диапазон (мкм)

Ширина полосы обзора (км.)

Период съемки

Радиоме-трическое разрешение (бит)

.)

Видимый (зеленый)

NIR (ближний инфракрасный)

3 A

NIR (ближний инфракрасный)

3 B

NIR (ближний инфракрасный)

TIR (тепловой инфракрасный)

TIR (тепловой инфракрасный)

Для выделения очагов пожаров с помощью "порогового" или "контекстуального" алгоритма на предварительном этапе вся получаемая со спутников NOAA информация должна быть откалибрована. Это значит, что для первого и второго каналов аппаратуры AVHRR необходимо получить значения альбедо А1, А2 соответственно. А для третьего, четвертого и пятого каналов - значения эквивалентной радиационной температуры Т3, Т4 и Т5 соответственно.
Методы определения пожаров базируется на использовании оценки излучения за 3В, 4, 5 каналами AVHRR, которые отвечают инфракрасному диапазону спектра. пожары определяются как экстремальные значения излучения по 3В каналу (на эту область припадает максимум излучения объектов при температуре горения 800-1000К)AVHRR.
Шлейфы дыма, вызванные пожарами, хорошо определяются на 1 и 2 каналах AVHRR.

Для более точной идентификации пожаров используются пороговые алгоритмы, за которыми определяется температура излучения по 3-му и 4-му каналах. Прибор AVHRR откалибровано за температурой до 330 К.
Известно, что максимум потока излучения черного тела, нагретого до температуры 800-1000 К, приходится на среднюю инфракрасную область электромагнитного спектра с длиной волны 3-4 мкм. Исходя из характеристик аппаратуры AVHRR в качестве основного признака для распознавания тепловой аномалии принимаются данные третьего канала, работающего в диапазоне 3,55-3,93 мкм.
Так как пространственное разрешение аппаратуры AVHRR составляет 1,1 км, то в идеальном случае можно обнаруживать объекты, линейные размеры которых превышают 1,1 км. А благодаря высокой интенсивности излучения в среднем ИК-диапазоне и высокому радиометрическому разрешению аппаратуры становится возможным обнаружение тепловых аномалий природного и техногенного характера много меньших размеров. В идеальных условиях наблюдения при максимальном контрасте м. 3-м и 4-м каналами аппаратуры AVHRR есть принцип. возможность обнаружения пожаров с площадью 0,2-0,3 га.
Использование в пороговом алгоритме только одного третьего канала (один порог) приводит к возникновению большого количества ложных тревог. Это связано прежде всего с отражением энергии солнечного излучения кромками облаков (наибольшее число ложных тревог), водной поверхностью, песком, открытыми горными породами, асфальтовыми покрытиями и бетонными сооружениями. Чтобы не допустить ошибок, необходимо использовать данные других спектральных каналов.
Пороговые алгоритмы выделения очагов пожаров:

  1. Алгоритм Кауфмана (1991 год): T3 > 316 К, T3-T4 > 10 К и T4 > 250 К. Здесь Т3, Т4, Т5 - радио-яркостная температура в 3-, 4- и 5-м каналах аппаратуры AVHRR соответственно.
  2. Алгоритм Франса (1993 год): T3 > 320 К, T3-T4 > 15 К, 0 < (T4-T5) < 5 К, A1 < 9%, где А1 - значение альбедо в 1 -м канале.
  3. Алгоритм Кэннеди (1994 год): T3 > 320 К, T3-T4> 15 К, A2< 16%, где А2- значение альбедо во 2-м канале.

Если элемент разрешения удовлетворяет условиям алгоритма, то он относится к классу пожаров; если же не удовлетворяет хотя бы одному из этих условий, то - к фону.
Все эти алгоритмы ориентированы на очаги пожаров достаточно большой площади и интенсивности, что для решения задач выявления пожарной обстановки является неприемлемым, так как важно обнаруживать пожары в начальной степени их развития с целью минимизации материальных затрат на ликвидацию очага возгорания. Кроме того, данные алгоритмы крайне не желательно использовать для обнаружения наличия перегретого торфа в торфяниках.
На сегодняшний день в центре приема и анализа авиационно-космической информации МЧС России за основу принят алгоритм Кауфмана (1) с "плавающими" порогами. Как указывалось ранее, на этапе предварительной обработки информации с аппаратуры AVHRR определяются явные очаги природных пожаров по наличию дымовых шлейфов.
После калибровки изображений определяются характеристики выявленных очагов и прилегающего к ним фона, на основе которых и выбираются соответствующие пороги. После анализа аналогичных характеристик подстилающей поверхности в пределах снимка совместно с характеристиками очагов пожаров определяются "плавающие" пороги .
Однако не следует полностью доверять результатам выделения очагов пожаров с использованием данных порогов, так как возможны случаи отражения электромагнитной энергии от кромок облаков, и возможно появление ложных тревог, вызванных перегретым песком и различными техногенными образованиями. Поэтому сомнительные точки, находящиеся слишком близко к облакам, вблизи рек, морей и т.д., необходимо подвергнуть дополнительной проверке.
Дополнительная проверка заключается в анализе отражательной способности интересующих нас пикселей в первом и втором каналах аппаратуры AVHRR. Если значение альбедо в первом канале больше, чем значение альбедо во втором канале (A1 > A2 ), то данную точку в подавляющем большинстве случаев можно однозначно отнести к ложной тревоге. но возможны случаи, когда возникают сомнения в правильности такого решения (например, отсутствие облачности или песка). В этом случае мы классифицируем данную точку как возможный очаг пожара, если нет какой-либо дополнительной информации о рассматриваемом районе. Если же значения альбедо в первом и втором каналах превышают 10-16% (в зависимости от условий наблюдения), то данная точка также классифицируется как ложная тревога. Во всех остальных случаях принимается гипотеза о наличии тепловой аномалии в рассматриваемых точках.
Если число ложных тревог достаточно велико, то можно несколько завысить порог по третьему и/или по четвертому каналу. Таким способом, не удается полностью избавиться от ложных тревог и все равно приходится проверять большинство предполагаемых очагов. Кроме того, мы намеренно исключаем из рассмотрения пожары малой площади, что также является недопустимым.

Облачность является непрозрачной средой для ИК-излучения, поэтому для пикселей, где ее размер занимает более 60-70% изображения, она выделяется автоматически. Поскольку облачность холоднее земной поверхности, возможно установление порога яркостной температуры в 4- или 5-м канале радиометра с маскировкой пикселей изображения, не превышающих указанное пороговое значение.
В качестве базового алгоритма выделения облачности для данных AVHRR предлагается взять стандарт SHARP-2 Европейского космического агентства. В данном стандарте предусматривается классификация, разделяющая пиксели изображения на следующие классы: земная поверхность (ЗП), вода, облачность.
Выделение облачности на исходном изображении происходит по условиям из стандарта SHARP-2 ЕКА:

  1. "Облачность", если A(2)/A(1) > 0.9 & A(2)/A(1) < 1,1&T4 < 294 К
  2. "Облачность", если Т4 < 249 К
  3. "Облачность", если Т4-T2 > 274 К & T4 < 290 К

Авторами сделано предположение, что данные условия плохо приспособлены для определения границы облачность/ЗП и для выделения "разорванной облачности" на территории Европейской части России, поэтому ими предложено ввести дополнительное условие. Таким условием выступает анализ яркостных характеристик 4-спектрального диапазона.
При анализе используется дополнительное условие (4), в котором анализируется СКО (4) эквивалентной радиационной температуры в 4-спектральном диапазоне прибора AVHRR, вычисленное по окну 15х15 пикселов:
σ4≤σпор,
где σпор - пороговая эквивалентная радиационная температура в 4-спектральном диапазоне прибора AVHRR по окну 15х15 пикселей, значение которой определяется в результате исследования.
По результатам обработки тестовых изображений для Европейской части России (48-67 северной широты) σпор = 1,3.
Так как в спектральных диапазонах 4- и 5-ого каналов приборов AVHRR/2 (3) влияние Солнца на характеристики изображения минимально, то отсеивание облачности можно проводить, анализируя СКО яркостной характеристики. При этом в модифицированном контекстуальном алгоритме учитывается не только значение СКО яркостных характеристик пикселя, но и условия стандарта SHARP-2 для данных AVHRR.
Для тестирования и учета в модифицированном контекстуальном алгоритме выбираются условия классификации из стандарта SHARP-2, которые были взяты в качестве базовых условий. Для тестирования была написана модель выделения водной поверхности. Для анализируемого изображения Х(x1 ,..., x5) проводится классификация пикселей по признакам: "вода", "облачность", "земная поверхность". В результате классификации с учетом условий, на водную поверхность и различную облачность из исходного изображения создается два промежуточных слоя. Первый, состоящий из 0 и 1, где 0 соответствует пикселю, который был классифицирован как шум и 1 соответствует пикселю, который был классифицирован как земная поверхность. Второй, состоящий из 0 и T3, где 0 соответствует пикселю, который был классифицирован как шум, а T3 соответствует радиационной температуре в 3-м канале AVHRR для пикселя, который был классифицирован как земная поверхность.
Все пиксели, классифицированные как "вода" и "облачность", в дальнейшем анализе "наличия сигнала" не рассматриваются.
Последовательно для каждого пикселя выделяется центральная локальная область размерами 15х15 пикселей. Для этой области рассматриваются 5-канальные характеристики пикселей. Также рассчитывается количество пикселей, отличных от классов "вода" и "облачность", и для них рассчитывается среднее значение T3ср.
Признаком выделения сигнала выступает условие: T3ср > T3ср.пор.. При выполнении этого условия принимается решение о "наличии пикселя с пожаром".
Применение модифицированного контекстуального алгоритма позволяет уменьшить вероятность "ложной тревоги" на 10-15% для территории Северной и Центральной части России. Естественным плюсом данного алгоритма является относительная работа и независимость от угла Солнца и времени суток. Самый крупный недостаток - неработоспособность контекстуального алгоритма в случае наличия облачности в текстурных районах изображения.

Таблица 7. Основные технические характеристики сканера TM (Landsat 5).

Номера каналов

Спектральный диапазон
(мкм)

Ширина полосы обзора (км)

Период съемки

Радиомет-рическое разрешение (бит)

Простра нственное разрешение
м .

Видимый (синий)

Видимый (зеленый)

Видимый (красный)

NIR (ближний инфракрасный)

NIR (ближний инфракрасный)

TIR (тепловой инфракрасный)

MWIR (дальний ИК)

Таблица 8. Основные технические характеристики радиометра ETM+ (Landsat 7).

Номера каналов

Спектральный диапазон
(мкм)

Ширина полосы обзора (км)

Период съемки

Радиоме-трическое разрешение (бит)

Простран-ственное разрешение
м .

Видимый (синий)

Видимый (зеленый)

Видимый (красный)

NIR (ближний инфракрасный)

NIR (ближний инфракрасный)

TIR (тепловой инфракрасный)

ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) (Табл. 9) - усовершенствованный космический радиометр теплового излучения и отражения) - это одна из пяти съемочных систем на борту спутника Terra, сочетающая широкий спектральный охват и высокое пространственное разрешение в видимом, ближнем инфракрасном (БИК), среднем инфракрасном (СрИК) и тепловом инфракрасном диапазоне.

Таблица 9. Основные технические характеристики ASTER.


Номера каналов

Спектральный диапазон (мкм)

Ширина полосы обзора (км.)

Период съемки

Радиоме-трическое разрешение (бит)

Простран-ственное разрешение (м .)

VNIR (видимый и ближний инфракрасный)

3 n

3 b (cтерео)

SWIR (средний инфракрасный)

TIR (тепловой инфракрасный)

Абсолютная радиометрическая точность по спектральным зонам составляет 4% для видимого и ближнего инфракрасного диапазона, и 1-3 К для теплового диапазона, в зависимости от температуры. Зоны теплового диапазона предназначены для регистрации температуры земной поверхности.
Level-2 products:AST09T Surface radiance-TIR – температура поверхности Земли .

Таблица 10. Визуальное дешифрирование космических снимков.

КА/
Прибор

NOAA/
AVHRR

TERRA (AQUA) /
MODIS

LANDSAT/
TM (ETM +)

Дешиф-
ровочные признаки

Общий вид пожаров с дымовыми шлейфами

Разогретые участки земной поверхности дешифрируются по белому тону.

Общий вид пожаров с дымовыми шлейфами

Хорошо видны очаги открытого пламени

Участки поверхности с высокой температурой имеют ярко розовый цвет.

Комб-
инация
каналов

RGB - 6:5:7, 6:5:4

Простран-
ственное
разре-
шение

1, 2, 1 - 1100 м.

1 – 250 м.
3 и 4 – 500 м.

31, 23, 21 - 1000 м.

3, 2, 1 - 30 м.

Приме-
чания

Естествен-
ные цвета

Естествен-
ные цвета

Дальний инфракрасный диапазон

Естествен-
ные цвета

Средний и ближний
инфракр-
асный диапазон.
Выявление лесных пожаров

Тепловой, средний и ближний инфракр-
асный диапазон. Выявление подземных торфяных пожаров

Список источников

  1. Дистанционное геотермическое картографирование.
  2. Радиометр MODIS.
  3. Дубровский В., Пархисенко Я.В. Космический мониторинг лесных пожаров по снимкам NOAA в УЦМЗР.
  4. Выявление лесных и степных пожаров, методика решения тематической задачи.
  5. Технология мониторинга лесных (торфяных) пожаров по данным космической съемки.
  6. Аппаратно-программные комплексы приема и обработки данных ДДЗ.
  7. Конвергенция новейших информационных технологий и методов дистанционного зондирования земли для построения аэрокосмического экологического мониторинга мегаполисов.
  8. Мониторинг лесных и торфяных пожаров. ИТЦ СканЭкс.
  9. Пошлякова Л.П. Методика создания ГИС-проекта на основе данных дистанционного зондирования Земли с целью оценки пожароопасности территории.

Экстремально жаркая и засушливая погода, случившаяся нынешним летом в центральных районах европейской части России, и, как следствие этого, масштабные лесные пожары, бушевавшие во многих регионах, привлекли внимание к возможности использования космических съемок для оперативного выявления очагов возгораний. Мы попросили коротко осветить некоторые злободневные вопросы заместителя директора Института космических исследований РАН, отвечающего за направление «Исследование Земли из космоса», одного из руководителей работ по созданию, внедрению и поддержке информационной системы дистанционного мониторинга лесных пожаров Федерального агентства лесного хозяйства (ИСДМ-Рослесхоз), доктора технических наук Е.А. Лупяна.

В немногочисленной публичной информации об использовании космических съемок для мониторинга лесных пожаров в России этим летом упоминаются в основном космические аппараты Terra и Aqua cо спектрометром MODIS. Достаточно ли, на Ваш взгляд, только данных с этих спутников?

Дистанционный мониторинг лесных пожаров сегодня - это комплексный вопрос. Его не следует понимать только как мониторинг активно действующих пожаров. Это еще и мониторинг пожарной опасности, оценка пройденных огнем площадей, степени повреждения лесов и решение многих других задач, необходимых для ведения работ по обнаружению и тушению лесных пожаров, а также оценки их последствий. Конечно, все эти вопросы нельзя решить, используя только данные MODIS. Даже если говорить о получении информации об активном горении, то, как показывает наш опыт, для повышения частоты наблюдения действующих пожаров, безусловно, полезно вместе с данными MODIS использовать и данные приборов AVHRR со спутников NOAA.

Какие из работающих на орбите космических аппаратов перспективны для решения этих задач?

Если говорить о реальном опыте использования спутниковых данных для комплексного Мониторинга природных пожаров и их последствий, то, кроме данных спутников Terra, Aqua (прибор MODIS) и NOAA (прибор AVHRR), в ИСДМ-Рослесхоз сейчас массово используются данные спутников Landsat и SPOT-4. Для детальных выборочных оценок последствий отдельных пожаров используются также данные RapidEye. В ряде случаев (например, для верификации алгоритмов оценки повреждений лесов пожарами), безуслов но, полезны и данные сверхвысокого пространственного разрешения, например QuickBird. Правда, речь о массовом использовании таких данных для решения задач лесопожарного мониторинга пока не идет, в первую очередь из-за высокой цены данных и низкой периодичности съемки. Большие надежды мы возлагаем в перспективе на использование данных среднего пространственного разрешения, в том числе получаемых прибором КМСС, который, как мы надеемся, будет устойчиво работать на российских метеорологических спутниках серии Метеор-М.

Выделяются ли государством достаточные средства для ведения космического мониторинга лесных пожаров?

В последние несколько лет на обеспечение работы и дальнейшее развитие ИСДМ-Рослесхоз выделялись достаточно адекватные средства. К сожалению, в этом году средства были существенно сокращены, что привело в первую очередь к снижению объемов используемых в системе данных высокого пространственного разрешения и соответственно уменьшению работ по детальной оценке отдельных гарей. С учетом того, что в рамках лесопожарного мониторинга должны также решаться вопросы оценки постпожарных изменений и подготовки информации для обновления лесного реестра, необходимо увеличение средств на проведение такого мониторинга.

Можно ли оценить эффективность использования данных ДЗЗ для выявления очагов возгораний?

Следует отметить, что выявление очагов возгораний как одна из основных задач спутникового мониторинга стоит только в зонах космического мониторинга первого уровня (где решения о реакции на возникшие пожары принимаются только после их обнаружения по спутниковым данным) и космического мониторинга второго уровня (где тушение пожаров вообще не производится и мониторинг осуществляется только спутниковыми системами). В этих зонах спутниковый мониторинг сейчас полностью заменил авиационный, и альтернативы ему нет.

В зонах же авиационного и наземного мониторинга задача обнаружения пожаров лежит пока на наземных и авиационных средствах. В то же время, как показывает опыт эксплуатации ИСДМ-Рослесхоз, даже в этих зонах на основе спутниковых данных обнаруживается (т.е. впервые наблюдается) значительное число пожаров. Например, в 2009 г. более 50% пожаров, которые в дальнейшем стали крупными, были зарегистрированы по спутниковым данным на сутки раньше, чем по наземным и авиационным данным.

Высказать свое мнение о современном состоянии и перспективах мониторинга лесных пожаров из космоса с помощью оптико-электронных и радарных систем мы предложили также специалистам компании «Совзонд».

А.С. Черепанов, старший инженер по тематической обработке данных ДЗЗ, кандидат географических наук.

«Использование данных мультиспектрального сенсора MODIS, установленного на аппаратах Terra и Aqua американской системы EOS (Earth Observation Satellites), уже стало традиционным для целей выявления большинства контрастных тепловых аномалий на поверхности Земли, в том числе и раннего выявления очагов лесных и степных пожаров. Обусловлено это, с одной стороны, революционным для своего времени (Terra функционирует с 1999 г., Aqua - c 2002 г.) набором спектральных зон (всего 36, они покрывают диапазон от 0,6 до 14 мкм), широкой полосой охвата (2330 км), высокой периодичностью съемки и, что также немаловажно, открытым бесплатным доступом для всех физических лиц и организаций, а с другой - отсутствием реальной альтернативы для замены этих данных при решении указанной задачи. На современных съемочных системах среднего и высокого пространственного разрешения зачастую отсутствует аппаратура для съемки в среднем инфракрасном и инфракрасном диапазонах спектра, а на тех системах, где она есть (Landsat-5 / TM, Landsat-7 / ETM, Terra/ASTER), не используется очень важный для выявления очагов пожара диапазон - 3,5–4 мкм. Поэтому, несмотря на все имеющиеся недостатки (низкое пространственное разрешение (около 1 км) в важных для выявления очагов пожара диапазонах спектра 3,5–4 и 8–9 мкм; сложная геометрия, требующая специальных приемов при обработке; сильные искажения на краях сцен; низкая точность орбитальной привязки), на сегодняшний день данные сенсора MODIS остаются незаменимыми при решении такой важной и как никогда актуальной задачи мониторинга и выявления очагов лесных пожаров (рис. 1). Безусловно, появление нового спутника (или группировки из спутников), выполняющего съемку в диапазонах спектра 3,5–4 и 8–9 мкм с хорошим пространственным разрешением (100–200 м), могло послужить существенным дополнением к имеющейся системе мониторинга и выявления очагов лесных пожаров».

Ю.И. Кантемиров, ведущий специалист отдела программного обеспечения по обработке радарных данных.

Рис. 1. Данные сенсора MODIS. Лесные пожары в Австралии, январь 2002 г. Инфракрасный канал 9 мкм. Размер пиксела - 1 км . «Использование спутниковых радарных данных для мониторинга лесных пожаров и их предотвращения представляется крайне перспективным ввиду всепогодности радарных съемок.

Однако первые попытки по оконтуриванию гарей, описанные во многих публикациях 1990-х гг., нельзя назвать удачными. Оказалось, что на некоторых радарных снимках гари четко дешифрируются, а на других снимках их не видно совсем. Анализ многопроходных серий радарных снимков также показал, что в некоторых случаях появление и развитие гарей хорошо заметны, в то время как в других случаях никаких изменений на радарных снимках выявить не удается, хотя было известно, что пожары на анализируемых территориях произошли. Этот не слишком удачный опыт 1990-х гг. объясняется довольно просто. В то время широко использовались радарные спутники ERS-1 и ERS-2, которые выполняли съемку только лишь в одной поляризации (ВВ) и только под одним относительно небольшим углом

Рис. 2 Мультивременной RGB-композит на территорию Саскачеван (Канада). В красном канале - снимок ERS за апрель 1995 г., в зеленом - за октябрь 1995 г., в синем - за январь 1996 г. Водная поверхность показана темно-зеленым и синим цветами. Красно-коричневый цвет большая часть снимка) - неповрежденный лес. Светло-голубой цвет - гарь от пожара летом 1995 г. . съемки (23°). Однако даже при таких ограниченных возможностях достигались хорошие результаты за счет анализа интерферометрической когерентности, изменений амплитуды отражения и построения мультивременных RGB-композитов (рис. 2). C появлением новых спутников, способных производить съемку одновременно в четырех поляризациях (ВВ, ВГ, ГВ, ГГ) и в широком диапазоне углов съемки (от 10 до 60°), выяснилось, что съемка в 4-поляризационном режиме или в 2-поляризационном режиме с кросс-поляризацией при больших углах съемки от вертикали значительно усиливает контраст между гарью и окружающим лесом.

С помощью технологий поляриметрии и

Рис. 3. RGB-композит, построенный по трем поляризационным каналам одного радарного 4-поляризационного снимка ALOS/PALSAR. Красный канал - поляризация ГГ, зеленый - ГВ, синий - ВВ) . поляризационной интерферометрии, реализованных в программном комплексе SARscape, можно создать серию выходных тематических продуктов, на которых выделяются гари и наблюдается их развитие во времени. В настоящее время, по мультиполяризационным данным при значительных углах съемки от вертикали уверенно выделяются классы «лес» и «не лес». Сложнее отделить вырубки от гарей. Если недавние вырубки довольно уверенно выделяются в отдельный класс, то старые вырубки от гарей отличить довольно сложно. Пример выделения гарей и вырубок приведен на рисунке 3.

Выводы: для задач мониторинга пожаров радарные данные ДЗЗ должны применяться в комплексе с оптическими и по возможности при поддержке полевых наблюдений. Многопроходные интерферометрические серии радарных снимков предпочтительнее, чем единичные изображения».



Просмотров